Advertisement

Functional Non-Equivalence of α and β Hemes in Human Hemoglobins

  • Chien Ho
  • Ted R. Lindstrom
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 28)

Abstract

Proton nuclear magnetic resonance(NMR) spectroscopy has been used to study the structure-function relationships in hemoglobins. By choosing appropriate mutant hemoglobins with single amino acid substitutions in the vicinity of the heme groups and in the α1β2 subunit interface and making use of Perutz’s atomic models of hemoglobin (Perutz, 1969; Bolton and Perutz, 1970), we have shown that NMR studies of hemoglobins can provide detailed and unique information about the heme environment, functional properties of the heme groups, and the subunit interactions during the ligand binding process (Davis et al., 1969a & 1969b; Ho et al., 1970b; Davis et al., 1970; Davis et al., 1971; Lindstrom et al., 1971; Lindstrom et al., 1972a & 1972b; Lindstrom and Ho, 1972).

Keywords

Nuclear Magnetic Resonance Electron Paramagnetic Resonance Nuclear Magnetic Resonance Study Heme Group Nuclear Magnetic Resonance Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldassare, J.J., Charache, S., Jones, R.T., and Ho, C. (1970). Electron Paramagnetic Resonance Studies of Spin-Labeled Hemoglobins. II. Roles of Subunit Interactions and of Intermediate Structures in the Cooperative Oxygenation of Hemoglobin and the Results on Hemoglobin Yakimas Hemoglobin J Capetown and Carboxy-peptidases A and B Treated Hemoglobin A. Biochemistry 9: 4707.PubMedCrossRefGoogle Scholar
  2. Berman, M., Benesch, R., and Benesch, R.E. (1971). The Removal of Organic Phosphates from Hemoglobin. Arch. Biochem. Biophys. 145: 236.PubMedCrossRefGoogle Scholar
  3. Bolton, W. and Perutz, M.F. (1970). Three dimensional Fourier Synthesis of Horse Deoxyhaemoglobin at 2.8 A Resolution. Nature 228: 551.PubMedCrossRefGoogle Scholar
  4. Cassoly, R., Gibson, Q.H., Ogawa, S., and Shulman, R.G. (1971). Effects of Phosphates Upon CO Binding Kinetics and NMR Spectra of Hemoglobin Valency Hybrids. Biochem. Biophys. Res. Commun. 44: 1015.PubMedCrossRefGoogle Scholar
  5. Dadok, J., Sprecher, R.F., Bothnerby, A.A., and Link, T. (1970). Time Sharing High Resolution NMR Spectrometer with Superconducting Solenoid. Abstractsj Section C-2 of the 11th Experimental NMR Conference, Pittsburgh, Pa.Google Scholar
  6. Davis, D.G., Mock, N.L., Laman, V.R., and Ho, C. (1969a). Nuclear Magnetic Resonance Studies of Hemoglobins. J. Mol. Biol. 40: 311.PubMedCrossRefGoogle Scholar
  7. Davis, D.G., Charache, S., and Ho, C. (1969b). Nuclear Magnetic Resonance Studies of Hemoglobins. III. Evidence for the Non-equivalence of a and 3 Chains in Azide Derivatives of Methemoglobins. Proc. Nat. Acad. Sci. U.S.A. 63: 1403.CrossRefGoogle Scholar
  8. Davis, D.G., Lindstrom, T.R., Mock, N.H., Baldassare, J.J., Charache, S., Jones, R.T., and Ho, C. (1971). Nuclear Magnetic Resonance Studies of Hemoglobins. VI. Heme Proton Spectra of Human Deoxyhemoglobins and their Relevance to the Nature of Cooperative Oxygenation of Hemoglobin. J. Mol. Biol. 60: 101.PubMedCrossRefGoogle Scholar
  9. Dayhoff, M.O. (1969). Atlas of Protein Sequences and Structure. National Biomedical Research Foundation, Silver Spring, Md.Google Scholar
  10. Drabkin, D.L. (1946). Spectrophotometry Studies. XIV. The Crystal lographic and Optical Properties of the Hemoglobin of Man in Com parison with those of Other Species. J. Biol. Chem. 163: 703.Google Scholar
  11. Eaton, D.R. and Phillips, W.D. (1965). Nuclear Magnetic Resonance of Paramagnetic Molecules. Advan. Magn. Resonance 1: 103.Google Scholar
  12. Gerald, P.S. and Efrom, M.L. (1961). Chemical Studies of Several Varities of Hb M. Proc. Nat. Acad. Sci. U.S.A. 47: 1758.CrossRefGoogle Scholar
  13. Glasoe, P.D. and Long, F.A. (1960). Use of Glass Electrodes to Measure Acidities in Deuterium Oxide. J. Phys. Chem. 64: 188.CrossRefGoogle Scholar
  14. Gray, R.D. and Gibson, Q.H. (1971). The Binding of Carbon Monoxide to a and 3 Chains in Tetrameric Mammalian Hemoglobin. J. Biol. Chem. 246: 5176.PubMedGoogle Scholar
  15. Ho, C., Baldassare, J.J., and Charache, S. (1970a). Electron Paramagnetic Resonance Studies of Spin-Labeled Hemoglobins and their Implications to the Nature of Cooperative Oxygen Binding to Hemoglobin. Proa. Nat. Acad. Sci. U.S.A. 66: 722.CrossRefGoogle Scholar
  16. Ho, C., Davis, D.G., Mock, N.H., Lindstrom, T.R., and Charache, S. (1970b). Nuclear Magnetic Resonance Studies of Hemoglobins. IV. The Structure-Function Relationship of Human Adult Hemoglobins A and Chesapeake and its Implication to the Nature of Oxygenation of Hemoglobin. Biochem. Biophys. Res. Comrnun. 38: 779.CrossRefGoogle Scholar
  17. Hopfield, J.J., Shulman, R.G., and Ogawa, S. (1971). An Allosteric Model of Hemoglobin. I. Kinetics. J. Mol. Biol. 61: 425.Google Scholar
  18. Koshland, D.E., Nemethy, G., and Filmer, D. (1965). Comparison of Experimental Binding Data and Theoretical Models in Proteins Containing Subunits. Biochemistry 5: 365.CrossRefGoogle Scholar
  19. Kurland, R.J., Little, R.G., Davis, D.G., and Ho, C. (1971). Proton Magnetic Resonance Study of High- and Low-Spin Hemin Derivatives. Biochemistry 10: 2237.PubMedCrossRefGoogle Scholar
  20. Lindstrom, T.R. and Ho, C. (1972). Functional Non-Equivalence of α and β Hemes in Human Adult Hemoglobin. Proc. Nat. Acad. Sci. U.S.A., in press.Google Scholar
  21. Lindstrom, T.R., Olson, J.S., Mock, N.H., Gibson, Q.H., and Ho, C. (1971). Nuclear Magnetic Resonance Studies of Hemoglobins. VIII. Evidence for Preferential Ligand Binding to 3 Chains within Deoxyhemoglobin. Biochem. Biophys. Res. Comrnun. 45: 22.CrossRefGoogle Scholar
  22. Lindstrom, T.R., Noren, I.B.E., Charache, S., Lehmann, H., and Ho, C. (1972a). Nuclear Magnetic Resonance Studies of Hemoglobins. VII. Tertiary Structure around Ligand Binding Site in Carbonmonoxyhemoglobin. Biochemistry, in press.Google Scholar
  23. Lindstrom, T.R., Ho, C., and Pisciotta, A.V. (1972b). Nuclear Magnetic Resonance Studies of Haemoglobin M Milwaukee-1 and their Implications to Haem-Haem Interactions. Nature, in press.Google Scholar
  24. Monod, J., Wyman, J., and Changeux, J.P. (1965). On the Nature of Allosteric Transitions. J. Mol. Biol. 12: 88.PubMedCrossRefGoogle Scholar
  25. Müller, C.J. and Kingma, S. (1961). Hemoglobin Zürich, α2Aβ263 Arg Biochim. Biophys. Acta 50: 595.CrossRefGoogle Scholar
  26. Ogata, R.T. and McConnell, H.M. (1971). The Binding of a Spin-Labeled Triphosphate to Hemoglobin. Cold Spring Harbor Symp. Quart. Biol. 36: 325.CrossRefGoogle Scholar
  27. Ogata, R.T. and McConnell, H.M. (1972). Mechanism of Cooperative Oxygen Binding to Hemoglobin. Proc. Nat. Acad. Sci. U.S.A. 69: 335.CrossRefGoogle Scholar
  28. Ogawa, S. and Shulman, R.G. (1971). Observations of Allosteric Transition in Hemoglobin. Biochem. Biophys. Res. Comrnun. 42:9.CrossRefGoogle Scholar
  29. Perutz, M.F. (1969). The Haemoglobin Molecule. Proc. Roy. Soc. ( London ) B173: 113.CrossRefGoogle Scholar
  30. Perutz, M.F. (1970). Stereochemistry of Cooperative Effects in Haemoglobin. Nature 228: 726.PubMedCrossRefGoogle Scholar
  31. Szabo, A. and Karplus, M. (1972). A Mathematical Model for Structure-Function Relationships in Hemoglobin. Biochem. Biophys. Res. Comrnun. 46: 855.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • Chien Ho
    • 1
  • Ted R. Lindstrom
    • 1
  1. 1.Department of Biophysics and MicrobiologyUniversity of PittsburghPittsburghUSA

Personalised recommendations