Advertisement

Hemoglobin Function During Blood Storage XV: Effects of Metabolic Additives Inosine and Methylene Blue on p50 and 2,3-DPG

  • R. Ben Dawson
  • Walter F. Kocholaty
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 28)

Abstract

The major purpose of transfusing whole blood or red cells is to provide the recipient with an improved ability to transport oxygen to the tissues. Hemoglobin has this capability, but in most mammalian red cells-including the human-2,3-diphosphoglycerate (2,3-DPG) is required for normal oxygen release to the tissues (Chanutin, 1966; Chanutin and Curnish, 1967; Benesch & Benesch, 1967). After the discovery of the mediator of-or cofactor for-normal hemoglobin function; that is, 2,3-DPG, the first studies which looked at this compound in the red cell and the oxygen affinity of hemoglobin during liquid blood storage showed that 2,3-DPG decreased very rapidly during storage in acid citrate dextrose (ACD). The oxygen affinity of hemoglobin increased at the same rate as shown by the decrease in p50 (an inverse though direct measure of oxygen affinity) which was similar in slope of decrease to the decrease in 2,3-DPG during the several weeks which were studied (Akerblom, et al, 1968; Bunn, H. F., et al, 1969). The early work of Chanutin and his coworkers which goes back to 1958, and other studies which relate to the importance of 2,3-DPG for the normal position of the oxyhemoglobin dissociation curve have been reviewed more thoroughly in the preceedings from the first International Symposium on Red Cell Metabolism and Function (Dawson, 1970).

Keywords

Methylene Blue Storage Period Pentose Phosphate Pathway Oxygen Affinity Liquid Storage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akerblom, O., de Verdier, C. H., Garby, L., Hogman, L. (1968). Scan, Clin, and Lab. Invest. 21: 245.CrossRefGoogle Scholar
  2. Benesch, R. and Benesch, R. G. (1967). Biochem. Biophy. Res. Comm. 26: 162.CrossRefGoogle Scholar
  3. Beutler, E., Meul, A., Wood, L. A. (1969). Transfusion 9: 109.PubMedCrossRefGoogle Scholar
  4. Bunn, H. F., May, M. H., Kocholaty, W. F., Shields, C. E. (1969). J. Clin. Invest. 48: 311.PubMedCrossRefGoogle Scholar
  5. Chanutin, A. and Curnish, R. R. (1965). Transfusion 5: 254.PubMedCrossRefGoogle Scholar
  6. Chanutin, A. (1966). U. S. Army Medical R & D, Washington, D. C. 30, June.Google Scholar
  7. Chanutin, A. and Curnish, R. R. (1967).Arch Biochem. Biophys. 121: 96.PubMedCrossRefGoogle Scholar
  8. Dawson, R. B. (1969). Clin. Res. 17: 323.Google Scholar
  9. Dawson, R. B. (1970). In Red Cell Metabolism and Function, G. J. Brewer, Ed., Plenum Pub. Co., New York City, p. 305–17.Google Scholar
  10. Dawson, R. B. (1970a). In Blood Oxygenation, D. Hershey, Ed., Plenum Pub. Co., New York City, p. 231–242.Google Scholar
  11. Dawson, R. B. and Kocholaty, W. F. (1970). Blood 36: 849.Google Scholar
  12. Dawson, R. B., Kocholaty, W. F., and Gray, J. L. (1970) Transfusion 10: 229.Google Scholar
  13. Dawson, R. B., Edinger, M. E., and Ellis, T. J. (1971). J. Lab & Clin. Med. 77: 46.Google Scholar
  14. Dawson, R. B., Kocholaty, W. F. (1971). Am. J. Clin. Path. 56: 654.Google Scholar
  15. Dawson, R. B., Loken, M. R., Crater, D. H. (1972). Transfusion 12: 46.PubMedGoogle Scholar
  16. Dawson, R. B., Kocholaty, W. F. (1972). Blut 24: 78.PubMedCrossRefGoogle Scholar
  17. Dawson, R. B. (1971). Vox Sang. 20: 388.PubMedCrossRefGoogle Scholar
  18. Dawson, R. B. (1972). Vox Sang. 22: 26.PubMedCrossRefGoogle Scholar
  19. Gabrio, B. W., and Huennekens, F. M. (1965). Fed. Proc. 14: 217.Google Scholar
  20. Kocholaty, W0 F., Dawson, R. B., Ledford, E. B., Gray, J. L., Billings, T. A., and Williams, J. (1969) USAMRL Report No. 839. (DDC AD No. 703176 ): Vox Sang., In Press, 1972.Google Scholar
  21. Lowry, O., et al. (1964). J. Biol. Chem. 239: 18.PubMedGoogle Scholar
  22. Mills, G. C. (1969). Tex. Rep. Biol. Med. 27: 773.PubMedGoogle Scholar
  23. Rakitzis, E. and Mills, G. C. (1967). Biochem. Biophys. Acta. 141: 439.PubMedCrossRefGoogle Scholar
  24. Rubinstein, D., Kashket, S., and Denstedt, O. F. (1956). Canad. J. Biochem. Physiol. 34: 61.PubMedCrossRefGoogle Scholar
  25. Strumia, M. M., Strumia, P. V., and Eusebi, A. J. (1970). J. Lab & Clin. Med. 75: 244.Google Scholar
  26. Strumia, M. M. and Strumia, P. V. (1972). Transfusion 12: 68.PubMedGoogle Scholar
  27. Valeri, C. R., Hirsch, N. M. (1969). J. Lab & Clin. Med. 73: 722.Google Scholar
  28. Valtis, D. J. and Kennedy, A. C. (1953). Glasgow Med. J. 34: 521.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • R. Ben Dawson
    • 1
    • 2
    • 3
    • 4
  • Walter F. Kocholaty
    • 1
    • 2
    • 5
  1. 1.Univ. of Maryland School of MedicineBaltimoreUSA
  2. 2.Biochemistry Section, Blood Research DivisionUSAMRLFort KnoxUSA
  3. 3.Blood BankUniversity of Maryland HospitalUSA
  4. 4.Baltimore Rh Typing Lab.USA
  5. 5.Biochemistry DivisionU.S. Army Medical Research LaboratoryFort KnoxUSA

Personalised recommendations