Advertisement

Effects of Cyanate in Rabbits

  • D. R. Harkness
  • S. Roth
  • P. Goldman
  • M. Goldberg
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 28)

Abstract

Cerami and Manning have proposed that cyanate be used in the treatment of persons with sickle cell disease (1). These investigators have shown that this compound inhibits sickling in vitro (1); that cells treated with cyanate in vitro have a prolonged survival in vivo when reinfused into the donor (2); and that cyanate has no adverse effects upon red cell metabolism (3). Although it was first reported that sickle cells treated with cyanate were rendered incapable of sickling, it has now been shown that these cells do sickle but lower oxygen tensions are required (4,5). Cyanate reacts with hemoglobin primarily by carbamylation of the α-amino group of both the α and β chains (6). The carbamylated hemoglobin has an increased affinity for oxygen (6) probably resulting from its inability to react with DPG (7) which is normally bound by the N-terminal amino groups of the β chain (8).

Keywords

Sickle Cell Abnormal Hemoglobin Oxygen Dissociation Curve Hemoglobin Electrophoresis Oxyhemoglobin Dissociation Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cerami, A. and Manning, J. M., Proc. Nat. Acad. Sci. U.S.A. 68: 1180, 1971.CrossRefGoogle Scholar
  2. 2.
    Gilette, P.N., Manning, J. M., and Cerami, A., Proc. Nat. Acad Sci. U.S.A. 68: 2791, 1971.CrossRefGoogle Scholar
  3. 3.
    de Furia, F. G., Miller, D. R., Cerami, A., and Manning, J. M. J. Clin. Invest. 51: 566, 1972.CrossRefGoogle Scholar
  4. 4.
    Diederich, D., Biochem. Biophys. Res. Commun. 46: 1255, 1972.PubMedCrossRefGoogle Scholar
  5. 5.
    May, A., Bellingham, A.J., Huehns, E. R., and Beaver, G. H., Lancet, 1: 658, 1972.PubMedCrossRefGoogle Scholar
  6. 6.
    Kilmartin, J. V. and Rossi-Bernardi, L., Nature 222: 1243, 1969PubMedCrossRefGoogle Scholar
  7. 7.
    Caldwell, P. R. B., Nagel, R. L., and Jaffe, E. R., Biochem. Biophys. Res. Commun. 44: 1504, 1971.PubMedCrossRefGoogle Scholar
  8. 8.
    Bunn, H. F. and Briehl, R. W., J. Clin. Invest., 49: 1088, 1970PubMedCrossRefGoogle Scholar
  9. 9.
    Stark, G. R., Biochem. 4: 1039, 1965.Google Scholar
  10. 10.
    Longmuir, I. S. and Chow, J., J. Appl. Physiol. 28: 343, 1970.PubMedGoogle Scholar
  11. 11.
    Rose, Z. and Liebowitz, J., Anal. Biochem. 34: 177, 1970.CrossRefGoogle Scholar
  12. 12.
    Lamprecht, W. and Trautschold, I., in, Burgemeyer, H. V. ed., “Methods of Enzymatic Analysis”, New York, Academic Press. p. 543, 1965.Google Scholar
  13. 13.
    Stark, G. R. and Smyth, D. G., J. Biol. Chem. 238: 214, 1963.PubMedGoogle Scholar
  14. 14.
    Rose, Z., J. Biol. Chem. 243: 4810, 1968.PubMedGoogle Scholar
  15. 15.
    Rapoport, S. and Guest, G. M., J. Biol. Chem., 129: 781, 1939.Google Scholar
  16. 16.
    Rapoport, S., Forsvarsmedicin 5: 168, 1969.Google Scholar
  17. 17.
    Unpublished observationsGoogle Scholar
  18. 18.
    Weatherall, D. J., New England J. Med. 280: 604, 1969.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • D. R. Harkness
    • 1
    • 2
  • S. Roth
    • 1
    • 2
    • 3
  • P. Goldman
    • 1
    • 2
    • 3
  • M. Goldberg
    • 1
    • 2
    • 3
  1. 1.Department of MedicineUniversity of MiamiMiamiUSA
  2. 2.Department of BiochemistryUniversity of MiamiMiamiUSA
  3. 3.Veterans Administration HospitalMiamiUSA

Personalised recommendations