Advertisement

Chemical and Biological Aspects of the Inhibition of Red Blood Cell Sickling by Cyanate

  • James M. Manning
  • Anthony Cerami
  • Peter N. Gillette
  • Frank G. de Furia
  • Denis R. Miller
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 28)

Abstract

The underlying cause of sickle disease has been shown to be due to the presence of an abnormal hemoglobin in the red blood cell - hemoglobin S (Pauling et al., 1949). When fully oxygenated this hemoglobin behaves much like hemoglobin A, since most of the oxygenated cells from patients with sickle cell disease show normal morphology. There is a variable percentage of the cells that remain sickled even when oxygenated and these are referred to as irreversibly sickled cells.

Keywords

Sickle Cell Urea Solution Sickle Cell Anemia Patient Hemoglobin Molecule Invert Sugar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnhart, M. I., Lusher, J. M., Henry, R. L., and Nalbandian, R. M. (1970). Electron microscopic evidence of reversal of sickling in crisis by IV urea in invert sugar. Blood 36: 837.Google Scholar
  2. Cerami, A., and Manning, Jo M. (1971). Potassium cyanate as an inhibitor of the sickling of red blood cells in vitro. Proc. Nat. Acad. Sci. U.S.A. 68: 1180.CrossRefGoogle Scholar
  3. Hill, R. J., and Davis, R. W. (1967). The pK of specific groups of proteins. 1. The α-amino group of the a chain of human C0-hemoglobin. J. Biol. Chem. 242: 2005.PubMedGoogle Scholar
  4. Ingram, V. M. (1957). Gene mutations in human haemoglobin: the chemical difference between normal and sickle-cell haemoglobin. Nature 180: 326.PubMedCrossRefGoogle Scholar
  5. Kilmartin, J. V., and Rossi-Bernardi, L. (1969). Inhibition of CO2 combination and reduction of the Bohr effect in haemoglobin chemically modified at its α amino groups. Nature 222: 1243.PubMedCrossRefGoogle Scholar
  6. Kraus, L. M., and Kraus, A. P. (1971). Carbamyl phosphate mediated inhibition of the sickling of erythrocytes in vitro. Biochem. Biophys. Res. Comm. 44: 1381.PubMedGoogle Scholar
  7. Murayama, M. (1966). Molecular mechanism of red cell sickling. Science 153: 145.PubMedCrossRefGoogle Scholar
  8. Nalbandian, Ro M., Schultz, G., Lusher, J. M., Anderson, J. W., and Henry, R. L. (1971). Sickle cell crisis terminated by intravenous urea in sugar solution: A preliminary report. Amer. J. Med. Sci. 261: 309.PubMedCrossRefGoogle Scholar
  9. Pauling, L., Itano, H. A., Singer, S. J., and Wells, I. C. (1949). Sickle cell anemia, a molecular disease. Science 110: 543.PubMedCrossRefGoogle Scholar
  10. Perutz, M. F. (1970). Stereochemistry of cooperative effects in haemoglobin. Nature 228: 726.PubMedCrossRefGoogle Scholar
  11. Stark, G. R., Stein, W. H., and Moore, S. (1960). Reactions of the cyanate present in aqueous urea with amino acids and proteins. J. Biol. Chem. 235: 3177.Google Scholar
  12. Walker, J., and Hambley, F. J. (1895). Transformation of ammonium cyanate into urea. J. Chem. Soc. 67: 746.CrossRefGoogle Scholar
  13. Wohler, F. (1828). Ueber künstliche Bildung des Harnstoffs. Poff. Ann. 12: 253.Google Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • James M. Manning
    • 1
    • 2
  • Anthony Cerami
    • 1
    • 2
  • Peter N. Gillette
    • 1
    • 2
  • Frank G. de Furia
    • 1
    • 2
  • Denis R. Miller
    • 1
    • 2
  1. 1.The Rockefeller UniversityNew YorkUSA
  2. 2.Cornell University Medical CollegeThe New York HospitalNew YorkUSA

Personalised recommendations