The Effect and Mode of Action of Tetracycline on Bone Development in Vitro

  • Lauri Saxén
  • Ilkka Kaitila
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 27)


Antibiotics of the tetracycline group are known to pass the placental barrier in both experimental animals and man (1,2), and to become selectively incorporated into the developing fetal skeleton (3,4). Moreover, these antibiotics have been reported to interfere with the mineralization of fetal bone and teeth, and so lead to growth retardation and hypoplasia of the enamel (5,6,7). Yet the mode of action of the drugs is unknown and one can speculate on a variety of target sites in the chain of events, starting with determination and proliferation of the chondroblasts and ending with the formation of bone mineral (7). To analyze these questions, an in vitro method was applied for several reasons: in vivo experiments of classic type are hampered by a variety of difficulties. The role of the placental barrier is not fully understood, the pharmacokinetics of tetracycline in various experimental animals is not clarified, and the sensitive period of the drug is not known. In an organotypic culture of fetal bones at least some of these difficulties could, as we believe, be avoided.


Bone Development Organotypic Culture Placental Barrier Collagen Biosynthesis Fetal Bone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    CHARLES, D. J. Obstetr. GynaecoZ. Br. Emp. 61: 750, 1954.CrossRefGoogle Scholar
  2. 2.
    SIMPSON, D.M., BURNETTE, J.C. BAWDEN, J.W. J. Oral 2her. PharmacoZ. 3: 403, 1967.Google Scholar
  3. 3.
    MILCH, R.A., RALL, D.P. $ TOBIE, J. E. J. Nat. Cancer Inst. 19: 87, 1957.PubMedGoogle Scholar
  4. 4.
    BEVELANDER, G., ROLLE, G.K. G COHLAN, S.Q. J. Dent. Res. 40: 1020, 1961.CrossRefGoogle Scholar
  5. 5.
    SAXEN, L. J. Exp. Zool. 162: 269, 1966.CrossRefGoogle Scholar
  6. 6.
    SAXÉN, L. In: Pigments in Pathology ( M. Wollman, ed.), p. 75 Acad. Press, New York, 1969.Google Scholar
  7. 7.
    KAITILA, I., WARTIOVAARA, J., LAITINEN, O. G. SAXEN, L. J. Embryol. Exp. Morphol. 23: 185, 1970.PubMedGoogle Scholar
  8. 8.
    SAXEN, L. Science 149: 870, 1965.PubMedCrossRefGoogle Scholar
  9. 9.
    BIGGERS, J.D., GWATKIN, R.B.L. G. HEYNER, S. Exp. Cell Res. 25: 41, 1961.PubMedCrossRefGoogle Scholar
  10. 10.
    WADKINS, C.L. CaZc. Tiss. Res. 2: 214, 1968.CrossRefGoogle Scholar
  11. 11.
    KAITILA, I. Biochim. Biophys. Acta 244: 584, 1971.PubMedCrossRefGoogle Scholar
  12. 12.
    BENNET, J.C., PROFFIT, W.R. NORTON, L.A. Nature 216: 176, 1967.CrossRefGoogle Scholar
  13. 13.
    PROCKOP, D.J., PETTENGILL, O. HOLTZER, H. Biochim. Biophys. Acta 83: 189, 1964.PubMedGoogle Scholar
  14. 14.
    HALME, J., KIVIRIKKO, K.I., KAITILA, I. F SAXEN, L. Biochem. Pharmacol. 18: 827, 1969.CrossRefGoogle Scholar
  15. 15.
    KAITILA, I. CaZc. Tiss. Res. 7: 46, 1971.CrossRefGoogle Scholar
  16. 16.
    KATZ, E.P. Biochim. Biophys. Acta 194: 121, 1969.PubMedGoogle Scholar
  17. 17.
    SAXEN, L. Science 153: 1384, 1966.PubMedCrossRefGoogle Scholar
  18. 18.
    FRASER, F.C. In: Congenital Malformations (M. Fischbein, ed.) p. 277. International Medical Congress Ltd., New York, 1964.Google Scholar
  19. 19.
    SAXÉN, L. G. RAPOLA, J. Congenital Defects. Holt, Rinehart and Winston, New York, 1969.Google Scholar
  20. 20.
    LASH, J. G SAXEN, L. Nature 232: 634, 1971.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • Lauri Saxén
    • 1
  • Ilkka Kaitila
    • 1
  1. 1.Third Department of Pathology and Children’s HospitalUniversity of HelsinkiHelsinkiFinland

Personalised recommendations