Advertisement

Methods of Separating the Subcellular Components of Brain Tissue

  • S. Spanner
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 25)

Abstract

It was in the early 1950s that the first great advances were made in our knowledge of the structure of the cell. This came about as a result of the development of the electron microscope and of the high-speed refrigerated centrifuge. The former gave an insight into the high degree of complexity of the components of the cell, and the latter made possible the separation of some of these components from each other and consequently the study of their metabolism and interaction.

Keywords

Sucrose Gradient Brain White Matter Synaptosomal Fraction Discontinuous Gradient Subcellular Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Hydén, H., in The Cell, vol. 4 (Ed. J. Brachet and A. E. Mirsky) p. 215 (1960).Google Scholar
  2. (2).
    Roots, B. I. and Johnston, P. V., Ultrastruct. Res. 10: 350 (1964).CrossRefGoogle Scholar
  3. (3).
    Korey, S., in Biology of Neuroglia (Ed. W. F. Windle) p. 203 (1958).Google Scholar
  4. (4).
    Rose, S. P. R., Nature, Lond. 206: 621 (1965).CrossRefGoogle Scholar
  5. (5).
    Rose, S. P. R., Biochem. J. 102: 33 (1967).Google Scholar
  6. (6).
    Bloomstrand, C. and Hamberger, A., J. Neurochem. 16: 1401 (1969).CrossRefGoogle Scholar
  7. (7).
    Norton, W. T. and Poduslo, S. E., Science 167: 1144(1970).CrossRefGoogle Scholar
  8. (8).
    Giorgi, P.P., Biochem. J. 122: 50P (1971).Google Scholar
  9. (9).
    Brody, T. M. and Bain, J.A., J. biol. Chem. 195: 685 (1952).Google Scholar
  10. (10).
    Hebb, C.O. and Smallman, B.N., J. Physiol. 134: 385 (1956).Google Scholar
  11. (11).
    Hebb, C.O. and Whittaker, V. P., J. Physiol. 142: 187 (1958).Google Scholar
  12. (12).
    Whittaker, V. P., Progr. Biophys. Molecular Biol. 15: 39 (1965).CrossRefGoogle Scholar
  13. (13).
    de Duve, C., in Methods of Separation of Subcellular Structural Components, Biochem. Soc. Symp. 23 (Ed. J. K. Grant) p. 1 (1963).Google Scholar
  14. (14).
    de Duve, C. in Subcellular Particles (Ed. T. Hayashi) p. 128 (1958).Google Scholar
  15. (15).
    Anderson, N. G., Fractions 1: 2 (1965).Google Scholar
  16. (16).
    Gray, E.G. and Whittaker, V. P., J. Anat. Lond. 96: 79 (1962).Google Scholar
  17. (17).
    Autilio, L. A., Norton, W. T. and Terry, R. D., J. Neurochem. 11: 17 (1964).CrossRefGoogle Scholar
  18. (18).
    Kurokawa, M., Sakamoto, T. and Kato, M., Biochem. J. 97: 833 (1965).Google Scholar
  19. (19).
    Abdel-Latif, A.A., Biochim. biophys. Acta 121: 403 (1966).CrossRefGoogle Scholar
  20. (20).
    Diamond, I. and Kennedy, E. P., J. biol. Chem. 244: 3258 (1969).Google Scholar
  21. (21).
    Haga, T., J. Neurochem. 18: 781 (1971).CrossRefGoogle Scholar
  22. (22).
    Thompson, E. J., Goodwin, H. and Cumings, J. N., Nature, Lond. 215: 168 (1967).CrossRefGoogle Scholar
  23. (23).
    Kornguth, S. E., Anderson, J. W. and Scott, G., J. Neurochem. 16: 107 (1969).CrossRefGoogle Scholar
  24. (24).
    Whittaker, V. P., Biochem. J. 106: 412 (1968).Google Scholar
  25. (25).
    Koenig, H., Gaines, D., McDonald, T., Gray, R. and Scott, J., J. Neurochem. 11: 729 (1964).CrossRefGoogle Scholar
  26. (26).
    Anderson, N. G., Science 154: 103(1966).CrossRefGoogle Scholar
  27. (27).
    Anderson, N. G., The Development of Zonal Centrifuges and Ancilliary Systems for Tissue Fractionation and Analysis, Natl. Cancer Inst. Monogr. 21 (1966).Google Scholar
  28. (28).
    Reid, E., Preparations with Zonal Rotors (1971).Google Scholar
  29. (29).
    Spanner, S. and Ansell, G. B. in Separations with Zonal Rotors (Ed. E. Reid) p. V-3. 1 (1971).Google Scholar
  30. (30).
    Dekirmenjian, H. and Brunngraber, E.G., Biochim. biophys. Acta 177: 1 (1969).CrossRefGoogle Scholar
  31. (31).
    Lemkey-Johnston, N. and Dekirmenjian, H., Expt. Brain Res. 11: 392 (1970).Google Scholar
  32. (32).
    Koenig, H. in Handbook of Neurochemistry, vol. II (Ed. A. Lajtha) p. 255 (1969).Google Scholar
  33. (33).
    Marchbanks, R. M., Biochem. J. 104: 148(1967).Google Scholar
  34. (34).
    Iversen, L. L. and Snyder, S. H., Nature, Lond. 220: 796 (1968).CrossRefGoogle Scholar
  35. (35).
    Kuhar, M. J., Shaskan, E. G. and Snyder, S. H., J. Neurochem. 18: 333 (1971).CrossRefGoogle Scholar
  36. (36).
    Michaelson, I.A. and Whittaker, V. P., Biochem. Pharmacol. 12: 203 (1963).CrossRefGoogle Scholar
  37. (37).
    Rodriguez de Lores Arnaiz, G. and de Robertis, E. D. P., J. Neurochem. 9: 503 (1962).CrossRefGoogle Scholar
  38. (38).
    Ansell, G. B. and Spanner, S., Biochem. J. 110: 201 (1968).Google Scholar
  39. (39).
    Chakrin, L. W. and Shideman, F. E., Int. J. Neuropharm. 7: 337 (1968).CrossRefGoogle Scholar
  40. (40).
    Sellinger, O.Z. and Borens, R. N., Biochim. biophys. Acta 173: 176 (1969).CrossRefGoogle Scholar
  41. (41).
    Baldessarini, R. J. and Vogt, M., J. Neurochem. 18: 951 (1971).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • S. Spanner
    • 1
  1. 1.Department of Pharmacology (Preclinical)The Medical SchoolBirminghamUK

Personalised recommendations