Comparative Cardiovascular Adaptation to Exercise in Animals and Man and its Relevance to Coronary Heart Disease

  • Arthur S. Leon
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 241)


Coronary heart disease is the leading cause of death in the United States and is currently responsible for over 600,000 deaths per year (1). The average risk of developing a myocardial infarction before age 60 for an apparently healthy man is approximately one in five. In addition the acute mortality following an initial myocardial infarction is about 35% with most of these acute fatalities occurring within 3 hours of onset of symptoms. It is thus evident that strategy in coping with this disease must go beyond treatment and must deal with primary prevention.


Physical Activity Coronary Heart Disease Exercise Training Ischemic Heart Disease Angina Pectoris 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stamler, J., Beard, R.R., Connor, W.E., et al: Report of inter-society commission for heart disease resources: Primary prevention of the atherosclerotic disease. Circulation 42:A–55, 1970.Google Scholar
  2. 2.
    Kannel, W.B.: Physical exercise and lethal atherosclerotic disease. New. Eng. J. Med. 282: 1153, 1970.PubMedCrossRefGoogle Scholar
  3. 3.
    Morris, J.N. and Gardner, M.J.: Epidemiology of ischemic heart disease. Amer. J. Med. 46: 674, 1969.CrossRefGoogle Scholar
  4. 4.
    Risk Factory and Coronary Heart Disease: A Statement for Physicians. New York, American Heart Association, 1968.Google Scholar
  5. 5.
    Rose, G.: Physical activity and coronary heart disease. Proc. Roy. Soc. Med. 62: 1183, 1969.PubMedGoogle Scholar
  6. 6.
    Haskell, W.L. and Fox, S.M., III: Exercise and heart disease. Postgrad. Med. 44: 177, 1968.PubMedGoogle Scholar
  7. 7.
    Fox, S.M., III and Haskell, W.L.: Physical activity and the prevention of coronary heart disease. Bull. N.Y. Acad. Med. 44: 950, 1968.PubMedGoogle Scholar
  8. 8.
    Fox, S.M., III and Haskell, W.L.: Population studies. Canad. Med. Assoc. J. 96: 806, 1967.PubMedGoogle Scholar
  9. 9.
    Morris, J.N., Heady, J.A., Raffle, P.A.B., et al: Coronary heart disease and physical activity of work. Lancet 2: 1053, 1953.CrossRefGoogle Scholar
  10. 10.
    Morris, J.N., Kagan, A., Pattison, D.C., et al: Incidence and prediction of ischemic heart disease in London busmen. Lancet 2: 553, 1966.PubMedCrossRefGoogle Scholar
  11. 11.
    Zukel, W.J., Lewis, R.H., Enterline, P.E., et al: A short-term community study of the epidemiology of coronary heart disease. A preliminary report on the North Dakota study. Amer. J. Public Health. 49: 1630, 1959.PubMedCrossRefGoogle Scholar
  12. 12.
    Haskell, W.L.: Physical activity and the prevention of coronary heart disease: what type of exercise might be effective. J. So. Carolina Med. Assoc. 65 (Suppl. 1): 41, 1969.Google Scholar
  13. 13.
    Manelis, G., Eschchar, J., Altman, S., et al: Physical activity at work, liporoteins and the incidence of angina pectoris, myocardial infarction, and death due to ischemic heart disease. Israel J. Med. Sci. 5: 786, 1969.Google Scholar
  14. 14.
    McDonough, J., Hames, C., Stulb, S., et al: Coronary heart disease among Negroes and whites in Evans County, Georgia. J. Chronic Dis. 18: 443, 1965.CrossRefGoogle Scholar
  15. 15.
    Karvonen, M.J., Rautaharju, P.M., Orma, E., et al: Heart disease and employment. Cardiovascular studies on lumberjacks. J. Occup. Med. 3: 49, 1961.PubMedGoogle Scholar
  16. 16.
    Sarvotham, S.G. and Berry, J.N.: Prevalence of coronary heart disease in Northern India. Circulation 37: 939, 1965.Google Scholar
  17. 17.
    Shapiro, S., Weinblatt, E., Frank, C.W., et al: Incidence of coronary heart disease in a population insured for medical care (HIP). Myocardial infarction, angina pectoris, and possible myocardial infarction. Amer. J. Public Health 59 (Suppl. 2): 1, 1969.PubMedGoogle Scholar
  18. 18.
    Frank, C.W.: The course of coronary heart disease factor relating to prognosis. Bull. N.Y. Acad. Med. 44: 900, 1968.PubMedGoogle Scholar
  19. 19.
    Shapiro, S., Weinblatt, E., Frank, C.W., et al: The H.I.P. study of incidence and prognosis of coronary heart disease. Preliminary findings on incidence of myocardial infarction and angina. J. Chron. Dis. 18: 526, 1965.CrossRefGoogle Scholar
  20. 20.
    Kannel, W.B.: Habitual level of physical activity and risk of coronary heart disease. The Framingham Study. Canad. Med. Assoc. J. 96: 811, 1967.PubMedGoogle Scholar
  21. 21.
    Brown, R., Davidson, L., McKeown, T., et al: Coronary artery disease - influences affecting its incidence in males in the seventh decade. Lancet 2: 1073, 1957.CrossRefGoogle Scholar
  22. 22.
    Chapman, J., Goerke, L., Dixon, W., et al: The clinical status of a population group in Los Angeles under observation for two to three years. Amer. J. Public Health 47: 33, 1957.PubMedCrossRefGoogle Scholar
  23. 23.
    Stamler, J., Lindberg, H.A., Berkson, A.M., et al: Prevalence and incidence of coronary heart disease in strata of the labor force of a Chicago industrial corporation. J. Chron. Dis. 11: 405, 1960.PubMedCrossRefGoogle Scholar
  24. 24.
    Pell, S. and DT Alonzo, C.A.: A three year study of myocardial infarction in a large employed population. J.A.M.A. 175: 139, 1961.CrossRefGoogle Scholar
  25. 25.
    Paul, O., Lepper, M., II, Phelan, W.H., et al: A longitudinal study of coronary heart disease. Circulation 28: 20, 1963.PubMedGoogle Scholar
  26. 26.
    Acheson, R.M.: The etiology of coronary heart disease. A review from the epidemiological standpoint. Yale J. Biol. Med. 35: 143, 1962.Google Scholar
  27. 27.
    Taylor, H.L., Blackburn, H., Keys, A., et al: Five year follow-up of employees of selected U.S. railroad companies. Circulation 41 (Suppl. 4): 1 - 20, 1970.Google Scholar
  28. 28.
    Taylor, H.L., Menotti, A., Puddu, V., et al: Five year follow- up of railroad men in Italy. Circulation 41 (Suppl. 4)1–113, 1970.Google Scholar
  29. 29.
    Hedley, O.F.: Analysis of 5, 116 deaths reported as due to acute coronary occlusion in Philadelphia, 1933-1937. U.S. Weekly Pub. Health. Rep. 54: 972, 1939.Google Scholar
  30. 30.
    Kahn, H.A.: The relationship of reported coronary heart disease mortality to physical activity of work. Amer. J. Pub. Health 53: 1058, 1963.CrossRefGoogle Scholar
  31. 31.
    Paffenbarger, R.S., Laughlin, E., Gima, A.S., et al: Work activity of longshoremen as related to death from coronary heart disease and stroke. New Eng. J. Med. 282: 1109, 1970.PubMedCrossRefGoogle Scholar
  32. 32.
    Taylor, H.L., Slepetar, E., Keys, A., et al: Death rates among physically active and sedentary employees of the railroad industry. Amer. J. Public Health 52: 1697, 1962.PubMedCrossRefGoogle Scholar
  33. 33.
    Breslow, L. and Buell, L.: Mortality from coronary heart disease and physical activity of work in California. J. Chron. Dis. 11: 921, 1960.CrossRefGoogle Scholar
  34. 34.
    Frank, C.W., Weinblatt, E.S., Shapiro, S., et al: Physical inactivity as a lethal factor in myocardial infarction among men. Circulation 34: 1022, 1966.PubMedGoogle Scholar
  35. 35.
    Hammond, E.C.: Smoking in relationship to morbidity and mortality. Findings in first thirty-four months of follow-up in a prospective study started in 1959. J. Nat. Cancer Inst. 32: 1161, 1964.PubMedGoogle Scholar
  36. 36.
    Montoye, H.J.: Participation in athletics. Canad. Med. Assoc. J. 96: 813, 1967.PubMedGoogle Scholar
  37. 37.
    Montoye, H.J., Van Huss, W.D., Olson, H., et al: Study of longevity and morbidity of college athletes. J.A.M.A. 162: 1132, 1956.CrossRefGoogle Scholar
  38. 38.
    Pomeroy, W.C., and White, P.D.: Coronary heart disease in former football players. J.A.M.A. 167: 711, 1958.CrossRefGoogle Scholar
  39. 39.
    Rook, A.: Investigation into longevity of Cambridge sportsmen. Brit. Med. J. 1: 773, 1954.PubMedCrossRefGoogle Scholar
  40. 40.
    Karvonen, M., Kilhberg, J., Maata, J., et al: Longevity of champion skiers. Duodecim. 72: 893, 1956.PubMedGoogle Scholar
  41. 41.
    Blackburn, H.: Role of exercise in patients with coronary disease. Geriatrics 26: 89, 1971.PubMedGoogle Scholar
  42. 42.
    Detry, J.M., Rousseau, R., Vanden Broucke, M., et al: Increased arteriovenous oxygen difference after physical training in coronary heart disease. Circulation 44: 109, 1971.PubMedGoogle Scholar
  43. 43.
    Kattus, A.A. and MacAlpin, R.N.: Role of exercise in discovery, evaluation, and management of ischemic heart disease. In: Coronary Heart Disease. Cardiovascular Clinics Vol. 1, No. 2, A.N. Brest (Ed.), Philadelphia, F.A. Davis, 1969, p. 256.Google Scholar
  44. 44.
    Brusis, O.A. Rehabilitation of coronary patients through exercise. Postgrad. Med. 44: 131, 1968.PubMedGoogle Scholar
  45. 45.
    Brunner, D. and Meshulam, N.: Prevention of recurrent myocardial infarction by physical exercise. Israel J. Med. Sci. 5: 783, 1969.Google Scholar
  46. 46.
    Hellerstein, H.K.: Exercise therapy in coronary disease. Bull, N.Y. Acad. Med. 44: 1028, 1968.Google Scholar
  47. 47.
    Gottheiner, V.: Long-range strenuous sports training for cardiac reconditioning and rehabilitation. Amer. J. Cardiol. 22: 426, 1968.PubMedCrossRefGoogle Scholar
  48. 48.
    Clausen, J.P., Larsen, O.A., and Trap-Jensen, J.: Physical training in the management of coronary heart disease. Circulation 40: 143, 1969.PubMedGoogle Scholar
  49. 49.
    Frick, M.H. and Katila, M.: Hemodynamic consequences of physical training after myocardial infarction. Circulation 37: 192, 1968.Google Scholar
  50. 50.
    Barry, A.J., Daly, J.W., Pruett, E.D.R., et al: Effects of physical training in patients who have had myocardial infarction. Amer. J. Cardiol. 17: 1, 1966.PubMedCrossRefGoogle Scholar
  51. 51.
    Kattus, A.A., Macalpan, R., Longmire, W.P., et al: Coronary angiograms and the study of angina pectoris. Amer. J. Med. 34: 19, 1963.CrossRefGoogle Scholar
  52. 52.
    Spain, D.M. and Bradess, V.A.: Sudden death from coronary atherosclerosis. Age, race, sex, physical activity, and alcohol. Arch. Intern. Med. 100: 228, 1957.CrossRefGoogle Scholar
  53. 53.
    Spain, D.M. and Bradess, V.A.: Occupational physical activity and the degree of coronary atherosclerosis in “normal” men.A postmortem study. Circulation 22: 239, 1960PubMedGoogle Scholar
  54. 54.
    Morris, J.N. and Crawford, M.D.: Coronary heart disease and physical activity of work. Brit. Med. J. 2: 1485, 1958.PubMedCrossRefGoogle Scholar
  55. 55.
    Rose, G., Prineas, R.J., and Mitchell, J.R.A.: Myocardial infarction and the intrinsic calibre of coronary arteries. Brit. Heart J. 29: 548, 1967.PubMedCrossRefGoogle Scholar
  56. 56.
    Currens, J.H. and White, P.D.: Half a century of running. Clinical, physiologic, and autopsy findings in the case of Clarence DeMar (“Mr. Marathon”). New Eng. J. Med. 265: 988, 1961.PubMedCrossRefGoogle Scholar
  57. 57.
    Detweiler, D.K., Ratcliffe, H.L., and Luginbiihl, H.: The significance of naturally occurring coronary and cerebral arterial disease in animals. Ann. N.Y. Acad. Sci. 149: 868, 1968.PubMedCrossRefGoogle Scholar
  58. 58.
    Wissler, R.W. and Vesselinovitch, D.: Experimental models of human atherosclerosis. Ann. N.Y. Acad. Sci. 149: 907, 1968.PubMedGoogle Scholar
  59. 59.
    Hill, E.G., Lundberg, W.O. and Titus, J.L.: Experimental atherosclerosis in swine. I. A comparison of menhaden-oil supplements in tallow and coconut oil diets. Mayo Clin. Proc. 46: 613, 1971.PubMedGoogle Scholar
  60. 60.
    Strong, J.P., Eggen, D.A., Newman, W.P.,111, et al: Naturally occurring and experimental atherosclerosis in primates. Ann. N.Y. Acad. Sci. 149: 882, 1968.PubMedCrossRefGoogle Scholar
  61. 61.
    Wolfe, J.B., Digilio, V.A., Dale, A.D., et al; Experimental atheromatosis and athero-hepatosis in ducks and geese: the reversibility and the clinical implication. Amer. Heart J. 38: 467, 1949.Google Scholar
  62. 62.
    Orma, E.J.: Effect of physical activity on atherogenesis. An experimental study in cockerels. Acta Physiol. Scand. 41 (Suppl. 142): 1, 1957.Google Scholar
  63. 63.
    Brown, C.E., Huang, T.C., Bortz, E.L., et al: Observations on blood vessels and exercise. J. Geront. 11: 292, 1956.PubMedGoogle Scholar
  64. 64.
    Kobernick, S.D., Niwayama, G., and Zuchlewski, A.C.: Effect of physical activity on cholesterol atherosclerosis in rabbits. Proc. Soc. Exper. Biol. Med. 96: 623, 1957.Google Scholar
  65. 65.
    Myasnikov, A.L.: Influence of some factor on development of experimental cholesterol atherosclerosis. Circulation 17: 99, 1958.PubMedGoogle Scholar
  66. 66.
    Warnock, N.H., Clarkson, T.B., and Stevenson, R.: Effect of exercise on blood coagulation time and atherosclerosis in cholesterol-fed cockerels. Circ. Res. 5: 478, 1957.PubMedGoogle Scholar
  67. 67.
    Wong, H.Y.C., Simmons, R.L., and Hawthorne, E.W.: Effects of controlled exercise on experimental atherosclerosis in androgen-treated chicks. Fed. Proc. 15: 203, 1956.Google Scholar
  68. 68.
    Selye, H.: The role of stress in the production and prevention of experimental cardiomyopathies. In: Prevention of Ischemic Heart Disease. W. Raab (Ed.), Springfield, C.C. Thomas, 1966, p163.Google Scholar
  69. 69.
    Papadopoulos, N.M., Leon, A.S., and Bloor, C.M.: Effects of exercise on plasma lactate dehydrogenase and isoenzyme activities in trained and untrained rats. Proc. Soc. Exper. Biol. Med. 129: 232, 1968.Google Scholar
  70. 70.
    Highman, B. and Altman, P.D.: Effect of exercise and training on serum enzyme and tissue changes in rats. Amer. J. Physiol. 205: 162, 1963.PubMedGoogle Scholar
  71. 71.
    Hellerstein, H.K., Hornstein, J.R., Baker, R.A., et al: Cardiac performance during postprandial lipemia and heparin-induced lipolysis. Amer. J. Cardiol. 20: 525, 1967.PubMedCrossRefGoogle Scholar
  72. 72.
    Exercise and cholesterol catabolism. Nutr. Rev. 28: 211, 1970.Google Scholar
  73. 73.
    Malinow, M.R., McLaughlin, P. and Perley, A.: Effect of muscular contraction on cholesterol oxidation. J. Appl. Physiol. 25: 733, 1968.PubMedGoogle Scholar
  74. 74.
    Grell, D. and Mayer, J.: Low blood cholesterol associated with high caloric, high saturated fat intakes in a Swiss Alpine village population. Amer. J. Clin. Nutr. 10: 471, 1962.Google Scholar
  75. 75.
    Fulmer, H.S. and Roberts, R.W.: Coronary heart disease among the Navajo Indians. Ann. Intern. Med. 59: 740, 1963.PubMedGoogle Scholar
  76. 76.
    Mann, G.V., Munoz, J.A., and Scrimshaw, N.S.: Serum lipoprotein and cholesterol concentrations of Central and North Americans with different dietary habits. Amer. J. Med. 19: 25, 1955.PubMedCrossRefGoogle Scholar
  77. 77.
    Holloszy, J.O., Skinner, J.S., Toro, G., et al: Effect of a six-month program of endurance exercise on the serum lipids of middle-aged men. Amer. J. Cardiol. 14: 753, 1964.PubMedCrossRefGoogle Scholar
  78. 78.
    Shane, S.R.: Relation between serum lipids and physical conditioning. Amer. J. Cardiol. 18: 540, 1966.PubMedCrossRefGoogle Scholar
  79. 79.
    Cantone, A.: Physical effort and its effect in reducing alimentary hyperlipidemia. J. Sport Med. 4: 32, 1964.Google Scholar
  80. 80.
    Nikkila, E.A. and Knoittinen, A.: Effect of physical activity on postprandial levels of fat in serum. Lancet 1: 1151, 1962.PubMedCrossRefGoogle Scholar
  81. 81.
    Mann, G.V., Teel, K., Hayes, O., et al: Exercise in the disposition of dietary calories. Regulation of serum lipoprotein and cholesterol levels in human subjects. New Eng. J. Med. 253: 350, 1955.CrossRefGoogle Scholar
  82. 82.
    Cash, J.D.: Effect of moderate exercise on the fibrinolytic system in normal young men and women. Brit. Med. J. 2: 502, 1966.PubMedCrossRefGoogle Scholar
  83. 83.
    Guest, M. and Celander, D.: Fibrinolytic activity in exercise. Physiologist, 3: 69, 1960.Google Scholar
  84. 84.
    Astrup, T. and Brakman, P.: Responder and non-responder in exercise-induced blood fibrinolysis. In: Coronary Heart Disease and Physical Fitness, O.A. Larsen and R.O. Malmberg (Eds.) Baltimore, University Park Press, 1970, p130.Google Scholar
  85. 85.
    Keys, A. and Buzina, R.: Blood coagulability effects of meals and differences between populations. Circulation 14: 469, 1956.Google Scholar
  86. 86.
    DeVries, H.A.: Physiologic effects of exercise training regimen on men aged 52 to 88. J. Geront. 25: 325, 1970.PubMedGoogle Scholar
  87. 87.
    Frick, M.J.: Coronary implications of hemodynamic changes caused by physical training. Amer. J. Cardiol. 22: 417, 1968.PubMedCrossRefGoogle Scholar
  88. 88.
    Mann, G.V., Garrett, H.L., Billings, F.T., et al: Exercise and coronary risk factors: The response. Circulation 36 (Suppl. 2): 67, 1967.Google Scholar
  89. 89.
    Berkson, D., Whipple, I., Sime, D., et al: Experience with a long-term supervised ergometric exercise program for middle- aged sedentary men. Circulation 36 (Suppl. 2): 67, 1967.Google Scholar
  90. 90.
    Naughton, J. and Nagle, F.J.: Peak oxygen intake during physical fitness program for middle-aged men. J.A.M.A. 191: 103, 1965.CrossRefGoogle Scholar
  91. 91.
    Frick, M.H., Kioittinen, A., and Sarajas, H.S.S.: Effects of physical training on circulation at rest and during exercise. Amer. J. Cardiol. 22: 142, 1963.CrossRefGoogle Scholar
  92. 92.
    Naughton, J., Shanbour, K., Armstrong, R., et al: Cardio-vascular responses to exercise following myocardial infarction. Arch. Intern. Med. 117: 541, 1966.PubMedCrossRefGoogle Scholar
  93. 93.
    Boyer, J.L. and Kasch, F.W.: Exercise therapy in hypertensive men. J.A.M.A. 211: 1668, 1970.PubMedCrossRefGoogle Scholar
  94. 94.
    Krai, J., Chrastek, J. and Adamirova, J.: The hypotensive effect of physical activity in hypertensive subjects. In: Prevention of Ischemic Heart Disease. Principles and Practice. W. Raab (Ed.), Springfield, C.C. Thomas, 1966, p. 359.Google Scholar
  95. 95.
    Leon, A.S. and Abrams, W.B.: The role of catecholamines in producing arrhythmias. Amer. J. Med. Sci. 262: 9, 1971.PubMedCrossRefGoogle Scholar
  96. 96.
    Naughton, J. and Bruhn, J.: Emotional stress, physical activity and ischemic heart disease. DM, July, 1971.Google Scholar
  97. 97.
    Naughton, J., Bruhn, J.G. and Lategola, M.T.: Effects of physical training on physiologic and behavioral characteristics of cardiac patients. Arch. Phys. Med. 49: 131, 1968.PubMedGoogle Scholar
  98. 98.
    Kannel, W.B., LeBauer, E.J., Dawber, T.R., et al: Relation of body weight to development of coronary heart disease. The Framingham study. Circulation 35: 734, 1967.PubMedGoogle Scholar
  99. 99.
    Pollock, M.L., Cureton, T.K., and Greninger, L.: Effects of training on working capacity, cardiovascular function and body composition of adult men. Med. and Sci. in Sports 1:20, 1969.Google Scholar
  100. 100.
    Moody, D. L., Kollias, J., and Buskirk, E.R.: The effect of a moderate exercise program on body weight and skinfold thickness in overweight college women. Med. and Sci. in Sports 1:75, 1969.Google Scholar
  101. 101.
    Mayer, J.N., Marshall, N.B., Vitalae, J.J., et al: Exercise, food intake and body weight in normal rats and genetically obese adult mice. Amer. J. Physiol. 177: 544, 1954.PubMedGoogle Scholar
  102. 102.
    Stevenson, J.A.F.: Exercise, food intake and health in experimental animals. Canad. Med. Assoc. J. 96: 862–867, 1967PubMedGoogle Scholar
  103. 103.
    Bloor, C.M., Leon, A.S., and Pasyk, S.: The effects of exercise on organ and cellular development in rats. Lab. Invest. 19: 675, 1968.PubMedGoogle Scholar
  104. 104.
    Bloor, C.M., Pasyk, S., and Leon, A.S.: Interaction of age and exercise on organ and cellular development. Amer. J. Pathol. 58: 185, 1970.Google Scholar
  105. 105.
    Naughton, J. and Wulff, J.: Effect of physical activity on carbohydrate metabolism. J. Lab. Clin. Med. 70: 996, 1967.Google Scholar
  106. 106.
    Hall, A.P., Barry, P.E., Dawber, T.R., et al: Epidemiology of gout and hyperuricemia. A Long-term population study. Amer. J. Med. 42: 27, 1967.PubMedCrossRefGoogle Scholar
  107. 107.
    Montoye, H.J., Faulkner, J.A., Dodge, H.J. et al: Serum uric acid concentration among business executives. With observations on other coronary heart disease risk factors. Ann. Intern. Med. 66: 838, 1967.PubMedGoogle Scholar
  108. 108.
    Bosco, J.S., Greenleaf, J.E., Kaye, R.L., et al: Reduction of serum uric acid in young men during physical training. Amer. J. Cardiol. 25: 46, 1969.CrossRefGoogle Scholar
  109. 109.
    Mann, G.V., Garrett, H.L., Farhi, A. et al: Exercise to prevent coronary heart disease. An experimental study of the effects of training on risk factors for coronary heart disease. Amer. J. Med. 46: 12, 1969.PubMedCrossRefGoogle Scholar
  110. 110.
    Seyle, H.: Chemical Prevention of Cardiac Necrosis. New York, Ronald, 1958, p143.Google Scholar
  111. 111.
    Raab, W.J., Chaplin, P. and Bajusz, E.: Myocardial necrosis produced in domesticated rats and in wild rats by sensory and emotional stresses. Proc. Soc. Exptl. Biol. Med. 116: 665, 1964.Google Scholar
  112. 112.
    Groover, M.E., Jr. and Stout, C.: Neurogenic myocardial necrosis. In: Prevention of Ischemic Heart Disease. Principles and Practice. W. Raab (ed.) Springfield, C.C. Thomas 1966, p57.Google Scholar
  113. 113.
    Leon, A.S., White, F.C., Bloor, C.M., et al: Reduced myocardial fibrosis after dimethylsulfoxide treatment of isoproterenol-induced myocardial necrosis in rats. Amer. J. Med. Sci. 261: 41, 1971.PubMedCrossRefGoogle Scholar
  114. 114.
    Rona, G., Chappel, C.I., Balazs, T. et al: An infarct-like myocardial lesion and other toxic manifestations produced by isoproterenol in the rat. A.M.A. Arch. Pathol. 67: 443, 1959.Google Scholar
  115. 115.
    Michielli, D.W.: Stresses. In: Encyclopedia of Sports Sciences and Medicine. New York, MacMillan, 1970, pp 1367, 1407.Google Scholar
  116. 116.
    Massie, J.F. and Shepard, R.J.: Physiological and psychological effects of training-a comparison of individual and gymnasium programs with a characterization of the exercise “drop-out”. Med. and Sci. in Sports 3:110, 1971.Google Scholar
  117. 117.
    Morgan, W.P., Roberts, J.A., Brand, F.R. et al: Physiological effect of chronic physical activity. Med. and Sci. Sports 2: 213, 1970.Google Scholar
  118. 118.
    Richardson, J.A.: Plasma catecholamines in angina pectoris and myocardial infarction. In: Prevention of Ischemic Heart Disease. Principles and Practice. W. Raab (Ed.), Springfield, C.C. Thomas, 1966, p96.Google Scholar
  119. 119.
    Starcich, R.: Plasma catecholamines and coronary vanillyl mandelic acid in clinical ischemic heart disease. In: Prevention of Ischemic Heart Disease. Principles and Practice. W. Raab (Ed.) Springfield, C.C. Thomas, 1966, p103.Google Scholar
  120. 120.
    Kaplinsky, E., Hood, W.B., McCarthy, B.,II, et al: Effect of physical training in dogs with coronary artery ligation. Circulation 37: 556, 1968.PubMedGoogle Scholar
  121. 121.
    Raab, W. and Krzywanek, H.J.: Cardiac sympathetic tone and stress reponse related to personality patterns and exercise habits (a potential cardiac risk and screening test). In: Prevention of Ischemic Heart Disease. Principles and Practice. W. Raab (Ed.) Springfield, C.C. Thomas, 1966, p121.Google Scholar
  122. 122.
    Frick, M.H.: The effect of physical training in manifest ischemic heart disease. Circulation 40: 443, 1969.Google Scholar
  123. 123.
    Frick, M.H., Elovainio, R.O., and Somer, T.: The mechanism of bradycardia evoked by physical training. Cardiologia 51: 46, 1967.PubMedCrossRefGoogle Scholar
  124. 124.
    DeSchryver, C., DeHerdt, P. and Lammerant, J.: Effect of physical training on cardiac catecholamine concentrations. Nature (London) 214: 907, 1967.CrossRefGoogle Scholar
  125. 125.
    DeSchryver, C., Mertens-Strythangen, I., Becsei, I., et al: Effect of training on heart and skeletal muscle catecholamine concentration in rats. Amer. J. Physiol. 217: 1589, 1969.PubMedGoogle Scholar
  126. 125A.
    Östman, I. and Sjöstrand, N.O.: Effect of prolonged physical training on the catecholamine levels of the heart and the adrenals of the rat. Acta Physiol. Scand. 82: 202, 1971.PubMedCrossRefGoogle Scholar
  127. 126.
    Folkow, B.: Role of sympathetic nervous system. In: Coronary Heart Diseases and Physical Fitness. O.A. Larsen and Malmborg (Eds.), Baltimore, University Park Press, 1970, p68.Google Scholar
  128. 127.
    Holloszy, J.O.: Morphological and enzymatic adaptation to training: A review. In: Coronary Heart Disease and Physical Fitness. O.A. Larsen, and R.O. Malmborg, (Eds.) Baltimore, University Park Press, 1970, p147.Google Scholar
  129. 128.
    Gollnick, P.D. and King, D.W.: Effect of exercise and training on mitochondria of rat skeletal muscle. Amer. J. Physiol. 216: 1502, 1969.PubMedGoogle Scholar
  130. 129.
    Holloszy, J.O.: Biochemical adaptation in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J. Biol. Chem. 242: 2278, 1967.PubMedGoogle Scholar
  131. 130.
    Kiessling, K.H., Piehl, K. and Lundquist, C-G.: Number and size of skeletal muscle mitochondria in trained sedentary men. In: Coronary Heart Disease and Physical Fitness. O.A. Larsen and R.O. Malmborg (Eds.) Baltimore, University Park Press, 1970, p143.Google Scholar
  132. 131.
    Short, F.A., Ross, R., Cobb, L.A. et al: The induction of human muscle mitochondrial proliferation and increased glycogen and trigylceride synthesis by long-term exercise. J. Clin. Invest. 49: 88a, 1970.Google Scholar
  133. 132.
    Hermansen, L. and Wachtlova, M.: Capillary density in well- trained and untrained men. Acta Physiol. Scand. 79: 16A, 1970.Google Scholar
  134. 133.
    Saltin, B.: Central circulation after physical conditioning in young and middle-aged men. In: Coronary Heart Disease and Physical Fitness. O.A. Larsen and R.O. Malmborg (Eds.), Baltimore, University Park Press, 1970, p21.Google Scholar
  135. 134.
    Petren, T., Sjöstrand, T. and Sylven, B.: Der einfluss der trainings auf die haofigkeit der kapillaren in herz-und skeletmuskulatur: Arbeit Physiologie 9: 376, 1936.Google Scholar
  136. 135.
    Varnauskas, E., Bergman, H., Houk, P., et al: Haemodynamic effects of physical training in coronary patients. Lancet 2: 8, 1966.PubMedCrossRefGoogle Scholar
  137. 136.
    Shappell, S.D., Murray, J.A., Bellingham, A.J., et al: Adaptation to exercise: role of hemoglobin affinity for oxygen and 2,3-diphosphoglycerate. J. Appl. Physiol. 30: 827, 1971.PubMedGoogle Scholar
  138. 137.
    Clausen, J.P. and Trap-Jensen, J.: Regulation and distribution of cardiac output during exercise in patients with coronary artery disease and the effects of training. In: Coronary Heart Disease and Physical Fitness. O.A. Larsen and R.O. Malmborg, (Eds.) Baltimore, University Park Press, 1970, p74.Google Scholar
  139. 138.
    Sternberg, J.: Muscle blood flow during exercise. Effects of training. ibid. p. 80.Google Scholar
  140. 139.
    Eisner, R.W. and Carlson, L.D.: Postexercise hyperemia in trained and untrained subjects. J. Appl. Physiol. 17: 436, 1962.Google Scholar
  141. 140.
    Reeves, T.J. and Sheffield, L.T.: The influence of age and athletic training on maximal heart rate during exercise. In: Coronary Heart Disease and Physical Fitness. O.A. Larsen and R.O. Malmborg (Eds.), Baltimore, University Park Press, 1970, p209.Google Scholar
  142. 141.
    Lester, M., Sheffield, L.T., Trammel, P., et al: The effect of age and athletic training on maximal heart rate during muscular exercise. Amer. Heart J. 76: 370, 1968.PubMedCrossRefGoogle Scholar
  143. 142.
    Clark, A.J.: Comparative Physiology of the Heart. New York, MacMillan, 1927, p71.Google Scholar
  144. 143.
    Andersen, K.L. and Hermansen, L.: Aerobic work capacity in middle-aged Norwegian men. J. Appl. Physiol. 20: 432, 1965.PubMedGoogle Scholar
  145. 144.
    Tipton, C.M., Barnard, R.J. and Tcheng, T.K.: Resting heart rate investigations with trained and untrained hypophysectomized rats. J. Appl. Physiol. 26: 585, 1969.PubMedGoogle Scholar
  146. 145.
    Tipton, C.M.: Training and bradycardia in rats. Amer. J. Physiol. 209: 1089, 1965.PubMedGoogle Scholar
  147. 146.
    Saltin, B. and Grimby, G.: Physiological analysis of middle-aged and old former athletes. Comparison with still active athletes of the same ages. Circulation 38: 1104, 1968.PubMedGoogle Scholar
  148. 147.
    Andrew, G.M., Guzman, I.A., and Becklake, M.R.: Effect of athletic training on exercise cardiac output. J. Appl. Physiol. 21: 603, 1966.PubMedGoogle Scholar
  149. 148.
    Crews, J. and Aldinger, E.E.: Effects of chronic exercise on myocardial function. Amer. Heart J. 74: 536, 1967.PubMedCrossRefGoogle Scholar
  150. 149.
    Whitehorn, W.V., and Grimmenga, A.S.: Effect of exercise on properties of the myocardium. J. Lab. Clin. Med. 48: 959, 1956.Google Scholar
  151. 150.
    Penpargul, S. and Scheirer, J.: The effects of physical training upon the mechanical and metabolic performance of the rat heart. J. Clin. Invest. 49: 1859, 1970.CrossRefGoogle Scholar
  152. 150A.
    Bhan, A. and Scheuer, J.: Effect of physical conditioning on cardiac actomyosin ATPase. Circulation 44 (Suppl.2): 132, 1971.Google Scholar
  153. 151.
    Holloszy, J.O., Skinner, J.S., Barry, A.J., et al: Effect of physical conditioning on cardiovascular function. A ballistocardiographic study. Amer. J. Cardiol. 14: 761, 1964.PubMedCrossRefGoogle Scholar
  154. 152.
    Jokl, E. and Wells, J.B., Jr.: Exercise training and cardiac stroke force. In: Prevention of Ischemic Heart Disease. Principles and Practice. W. Raab (Ed.), Springfield, C.C. Thomas, 1966, p135.Google Scholar
  155. 153.
    Whitsett, T.L. and Naughton, J.: The effect of exercise on systolic time intervals in sedentary and active individuals and rehabilitated patients with heart disease. Amer. J. Cardiol. 27: 352, 1971.PubMedCrossRefGoogle Scholar
  156. 154.
    Leon, A.S. and Bloor, C.M.: Effects of exercise and its cessation on the heart and its blood supply. J. Appl. Physiol. 24: 485, 1968.PubMedGoogle Scholar
  157. 155.
    Bloor, C.M. and Leon, A.S.. Interaction of age and exercise on the heart and its blood supply. Lab. Invest. 22: 160, 1970.PubMedGoogle Scholar
  158. 156.
    Aldinger, E.E.: Effects of digitoxin on the development of cardiac hypertrophy in the rat subjected to chronic exercise. Amer. J. Cardiol. 25: 359, 1970.CrossRefGoogle Scholar
  159. 157.
    Oscai, L.B., Mole, P.A., and Holloszy, J.O.: Effect of exercise on cardiac weight and mitochondria in male and female rats. Amer. J. Physiol. 220: 1944, 1971.PubMedGoogle Scholar
  160. 158.
    Scheirer, J.L., Kapner, C. Stringfellow, C.L., et al: Glycogen, lipid and high energy phosphate stores in hearts from conditioned rats. J. Lab. Clin. Med. 75: 924, 1970.Google Scholar
  161. 159.
    Poland, J.L. and Blount, D.H.: The effects of training on myocardial metabolism. Proc. Soc. Exptl. Biol. Med. 75: 924, 1970.Google Scholar
  162. 160.
    Gollnick, P.D., Struck, P.J., and Bogyo, T.P.: Lactic dehydrogenase activities of rat heart and skeletal muscle after exercise and training. J. Appl. Physiol. 22: 623, 1967.PubMedGoogle Scholar
  163. 161.
    Badeer, H.S.: The stimulus to hypertrophy of the myocardium. Circulation 30: 128, 1964.PubMedGoogle Scholar
  164. 162.
    Linzbach, A.J.: Heart failure from the point of view of quantitative anatomy. Amer. J. Cardiol. 5: 370, 1960.PubMedCrossRefGoogle Scholar
  165. 163.
    Wilkens, S.L., Dische, M.R., and Henderson, D.: The low incidence of terminal myocardial infarctions and the reversibility of cardiac hypertrophy in cachexia. Amer. J. Med. Sci. 253: 651, 1967.CrossRefGoogle Scholar
  166. 164.
    Andrew, G.M., Guzman, C.A., and Becklake, M.R.: Effect of athletic training on exercise cardiac output. J. Appl. Physiol. 21: 603, 1966.PubMedGoogle Scholar
  167. 165.
    Skinner, J.S., Benson, J., McDonough, J.R., et al: Social status, physical activity, and coronary proneness. J. Chron. Dis. 19: 773, 1966.PubMedCrossRefGoogle Scholar
  168. 166.
    Leon, A.S.: The Coronary Circulation. In: The Clinical Pharmacology of Cardiovascular Drugs. Nutley, Hoffmann-LaRoche, 1970, p21.Google Scholar
  169. 167.
    Scott, J.C.: Physical activity and the coronary circulation. Canad. Med. Assoc. J. 96: 853, 1967.PubMedGoogle Scholar
  170. 168.
    Gregg, D.E., and Fischer, L.D.: Blood supply to the heart. In; Handbook of Physiology, Vol. 2. Section 2., Chap. 44. Baltimore, Amer. Physiologic Soc. 1963. P1517.Google Scholar
  171. 169.
    Bloor, C.M. and Liebow, A.A.: Coronary collateral circulation. Amer. J. Cardiol. 16: 238, 1965.PubMedCrossRefGoogle Scholar
  172. 170.
    Elliot, E.C., Bloor, C.M., Jones, E.L., et al: Effect of controlled coronary occlusion on collateral circulation in conscious dogs. Amer. J. Physiol. 220: 857, 1971.PubMedGoogle Scholar
  173. 171.
    Elliot, E.C., Jones, E.L., Leon, A.S., et al: Day-to-day changes in coronary hemodynamics secondary to constriction of circumflex branch of left coronary artery in conscious dogs. Circ. Res. 22: 237, 1968.PubMedGoogle Scholar
  174. 172.
    Schaper, W., Schaper, J., and Xhonneux, R., et al: The morphology of intercoronary anastomoses in chronic coronary artery occlusion. Cardiovasc. Res. 3: 315, 1969.PubMedCrossRefGoogle Scholar
  175. 173.
    Eckstein, R.W.: Effect of exercise and coronary artery narrowing on coronary collateral circulation. Circ. Res. 5: 230, 1957.PubMedGoogle Scholar
  176. 174.
    Zoll, P.M., Wessler, S. and Schlesinger, M.J.: Interarterial coronary anastomoses in the human heart, with particular reference to anemia and relative cardiac anoxia. Circulation 4: 797, 1951.PubMedGoogle Scholar
  177. 175.
    Baroldi, G. and Scomazzoni, G.: Coronary Circulation in the Normal and the Pathologic Heart. Washington, D.C. Office of the Surgeon General, Dept. of the Army, 1967, p245.Google Scholar
  178. 176.
    Tepperman, J. and Pearlman, D.: Effects of exercise and anemia on coronary arteries of small animals as revealed by the corrosion-cast technique. Circ. Res. 9: 576, 1961.PubMedGoogle Scholar
  179. 177.
    Stevenson, J.A.F., Feleki, V., Rechnitzer, P., et al: Effect of exercise on coronary tree size in the rat. Circ. Res. 15: 265, 1965.Google Scholar
  180. 178.
    Denenberg, D.L.: The effect of exercise on the coronary collateral circulation. J. Sports Med. (Torino) In press, 1971.Google Scholar
  181. 179.
    Kerr, A., Jr., Diasio, R.B., and Bommer, W.J.: Effects of altitude (hypoxia) on coronary artery size in the white rat. Amer. Heart J. 69: 841, 1965.PubMedCrossRefGoogle Scholar
  182. 180.
    Tomanek, R.J.: Effects of age and exercise on the extent of the myocardial capillary bed. Anat. Ree. 167: 55, 1970.CrossRefGoogle Scholar
  183. 181.
    Petren, T. and Sylven, B.: Weitere intersuchungen über den einfluss des trainings auf die kapillarisierung der hermuskulstur. Gegenbaur Morph. Jahrb. 80: 439, 1937.Google Scholar
  184. 182.
    Wachtlovâ, M., Rakusan, L. and Poupa, O.: The coronary terminal vascular bed in the heart of the hare (Lepus Europeus) and the rabbit (Oryctolacus Domesticus). Physiol. Bohemoslov. 14: 328, 1965.PubMedGoogle Scholar
  185. 183.
    Rakusan, K. and Poupa, O.: Differences in capillary supply of hypertrophic and hyperplastic hearts. Cardiologia 49: 293, 1966.PubMedCrossRefGoogle Scholar
  186. 184.
    Burt, J.J. and Jackson, R.: The effects of physical exercise on the coronary collateral circulation of dogs. J. Sports Med. (Torino) 5: 203, 1965.Google Scholar
  187. 185.
    Kaplinsky, E., Hood, W.B., Jr., McCarthy, B., et al: Effects of physical training in dogs with coronary artery ligation. Circulation 37: 556, 1968.PubMedGoogle Scholar
  188. 186.
    Helefant, R.H., Vokonas, P.S., and Gorlin, R.: Functional importance of the human coronary collateral circulation. New Eng. J. Med. 284: 303, 1971.Google Scholar
  189. 187.
    Helefant, R.H., Kemp, H.C., and Gorlin, R.: Coronary atherosclerosis, coronary collaterals, and their relation to cardiac function. Ann. Intern. Med. 73: 189, 1970.Google Scholar
  190. 188.
    Bjork, L.: Angiographic demonstration of collaterals to the coronary arteries in patients with angina pectoris. Acta Radiol. (Diagn.)(Stockh) 8: 305, 1969.Google Scholar
  191. 189.
    Gensini, G.G. and daCosta, B.C.B.: The coronary collateral circulation in living man. Amer. J. Cardiol. 24: 393, 1969.PubMedCrossRefGoogle Scholar
  192. 190.
    Hellerstein, H.K., Hornstein, T.R., Goldbarg, A., et al: The influence of active conditioning upon subjects with coronary artery disease: cardiorespiratory changes during training in 67 patients. Canad. Med. Assoc. J. 96: 758, 1967.PubMedGoogle Scholar
  193. 191.
    Kattus, A.A.: Exercise therapy for angina pectoris. Circulation 32 (Suppl. 2): 110, 1965.Google Scholar
  194. 192.
    Kattus, A.A.: Exercise testing and therapy for ischemic heart disease. J. So. Carolina Med. Assoc. 65 (Suppl. 1): 57, 1969.Google Scholar
  195. 193.
    Mason, D., Amsterdam, E.A., Miller, R.R., et al: Consideration of the therapeutic roles of pharmacologic agents, collateral circulation and saphenous vein bypass in coronary artery disease. Amer. J. Cardiol. 28: 608, 1971.PubMedCrossRefGoogle Scholar
  196. 194.
    Roskamm, H.: Optimum patterns of exercise for healthy adults. Canad. Med. Assoc. J. 96: 895, 1967.PubMedGoogle Scholar
  197. 195.
    Karvonen, M., Kentalia, E., and Mustala, O.: The effects of training on the heart. Ann. Med. Exper. Biol. Fenniae 35: 307, 1957.Google Scholar
  198. 196.
    DeVries, H.A.: Exercise intensity threshold for improvement of cardiovascular-respiratory function in older men. Geriatrics 26: 94, 1971.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • Arthur S. Leon
    • 1
    • 2
  1. 1.Department of Medical PharmacologyHoffmann-LaRoche Inc.NutleyUSA
  2. 2.Special Treatment UnitNewark Beth Israel Medical Cent.USA

Personalised recommendations