Advertisement

On Determination of Leaf Primordia in Osmunda Cinnamomea L

  • Charles Carroll Kuehnert
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 18)

Abstract

Leaf primordia in the vascular plants are formed at regular intervals at the flanks of the shoot apex. The primordia arise as the result of divisions in groups of cells of the surface and subsurface cell layers at the flanks of the apex. In the ferns, the primordium develops a leaf apical cell characteristic of the species, assumes a dorsiventral symmetry, and by rapid growth quickly overtops the apical meristem.

Keywords

Shoot Apex Shoot Apical Meristem Developmental Phase Leaf Primordia Mitotic Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ames, I. H. and Mitra, J. (1966) The mitotic cycle time of Haplopappus gracilis root tip cells as measured with tritiated thymidine. Nucleus, 9: 61.Google Scholar
  2. 2.
    Arber, A. (1950) The natural philosophy of plant form. Cambridge University Press.Google Scholar
  3. 3.
    Burholt, D. R. and Van’t Hof, J. (1971) Quantitative thermalinduced changes in growth and cell population kinetics of Helianthus roots. Am. J. Bot., 58: 386–393.CrossRefGoogle Scholar
  4. 4.
    Clowes, F. A. L. (1961) Duration of the mitotic cycle in a meristem. J. Expt. Bot., 12: 283–293.CrossRefGoogle Scholar
  5. 5.
    Clowes, F. A. L. (1965) The duration of the G 1 phase of the mitotic cycle and its relation to radiosensitivity. New Phytol. 64: 355–359.CrossRefGoogle Scholar
  6. 6.
    Cutter, E. G. (1956) Experimental and analytical studies of pteridophytes. XXXIII. The experimental induction of buds from leaf primordia in Diyopteris aristata Druce. Ann. Botany (NS), 20: 143–165.Google Scholar
  7. 7.
    Cutter, E. G. (1965) Recent experimental studies of the shoot apex and shoot morphogenesis. Botan. Rev., 31: 7–113.CrossRefGoogle Scholar
  8. 8.
    Haight, T. H. and Kuehnert, C. C. (1969) Developmental potentialities of leaf primordia of Osmunda cinnamomea. V. Toward greater understanding of the final morphogenetic expression of isolated set I cinnamon fern leaf primordia. Can. J. Botany, 47: 481–488.Google Scholar
  9. 9.
    Haight, T. H. and Kuehnert, C. C. (1971) Developmental potentialities of leaf primordia of Osmunda cinnamomea. VI. The expression of P1. Can. J. Botany, (in press).Google Scholar
  10. 10.
    Jacqmard, A. (1970) Duration of the mitotic cycle in the apical bud of Rudbeckia bicolor. New Phytol., 69: 269–271.CrossRefGoogle Scholar
  11. 11.
    Jensen, W. A. (1962) Botanical Histochemistry. W. H. Freeman and Co., San Francisco.Google Scholar
  12. 12.
    Johansen, D. A. (1940) Plant Microtechnique. McGraw-Hill, New York.Google Scholar
  13. 13.
    Kuehnert, C. C. (1967) Developmental potentialities of leaf primordia of Osmunda cinnamomea. I. The influence of determined leaf primordia on undetermined leaf primordia. Can. J. Botany, 45: 2109–2113.Google Scholar
  14. 14.
    Kuehnert, C. C. (1969a) Developmental potentialities of leaf primordia of Osmunda cinnamomea. II. Further studies of the influence of determined leaf primordia on undetermined leaf primordia. Can. J. Botany, 47: 59–63.Google Scholar
  15. 15.
    Kuehnert, C. C. (1969b) Developmental potentialities of leaf primordia of Osmunda cinnamomea. III. Studies of the effects of homogenized, determined leaf primordia on expression-potential of undetermined leaf primordia. Can. J. Botany, 47: 65–68.Google Scholar
  16. 16.
    Kuehnert, C. C. (1969c) Developmental potentialities of leaf primordia of Osmunda cinnamomea. IV. Expression potential of undetermined primordia separated by a barrier membrane from undetermined or determined primordia. Can. J. Botany, 47: 69–72.Google Scholar
  17. 17.
    Kuehnert, C. C. and Haight, T. H. (1969) The shoot forming capacity of cinnamon fern leaf primordia: A reevaluation. (XI International Botanical Congress; Abstracts, p. 117).Google Scholar
  18. 18.
    Kuehnert, C. C. and Steeves, T. A. (1962) Capacity of fragments of leaf primordia to produce whole leaves. Nature, 196: 187–189.CrossRefGoogle Scholar
  19. 19.
    Quastler, H. and Sherman, F. G. (1959) Cell population kinetics in the intestinal epithelium of the mouse. Exptl. Cell Res., 17: 420–438.PubMedCrossRefGoogle Scholar
  20. 20.
    Steeves, T. A. (1961a) The development of leaves in sterile nutrient culture. In: Recent Advances in Botany, 1: 823-827. Univ. of Toronto Press.Google Scholar
  21. 21.
    Steeves, T. A. (1961b) A study of the developmental potentialities of excised leaf primordia in sterile culture. Phytomorphology, 11: 346–359.Google Scholar
  22. 22.
    Steeves, T. A. (1962) Morphogenesis in isolated fern leaves. In: Regeneration, (ed.) D. Rudnick (20th Growth Symp.), 117–151, Ronald Press, New York.Google Scholar
  23. 23.
    Steeves, T. A. (1966) On the determination of leaf primordia in ferns. In: Trends in Plant Morphogenesis. Edited by: E.G. Cutter. Longmans, Green and Co. Ltd., London. pp. 200–219.Google Scholar
  24. 24.
    Steeves, T. A. and Sussex, I. M. (1957) Studies on the development of excised leaves in sterile culture. Am. J. Bot., 44: 665–673.CrossRefGoogle Scholar
  25. 25.
    Steeves, T. A., Sussex, I. M. and Partanen, C. R. (1955) In vitro studies on abnormal growth of prothalli of the bracken fern. Am. J. Bot., 42: 232–245.CrossRefGoogle Scholar
  26. 26.
    Steeves, T. A. and Wetmore, R. H. (1953) Morphogenetic studies on Osmunda cinnamomea L. Some aspects of the general morphology. Phytomorphology, 3: 339–354.Google Scholar
  27. 27.
    Thompson, J. and Clowes, F. A. L. (1968) The quiescent centre and rates of mitosis in the root meristem of Allium sativum. Ann. Bot. (NS), 32: 1–13.Google Scholar
  28. 28.
    Thorpe, T. A. and Murashige, T. (1970) Some histochemical changes underlying shoot initiation in tobacco callus cultures. Can. J. Botany, 48: 277–285.CrossRefGoogle Scholar
  29. 29.
    Van’t Hof, J. (1965) Relationships between mitotic cycle duration, S period duration and the average rate of DNA synthesis in the root meristem cells of several plants. Exptl. Cell. Res., 39: 48.CrossRefGoogle Scholar
  30. 30.
    Van’t Hof, J. (1967) Studies on the relationships between cell population and growth kinetics of root meristems. Exptl. Cell Res., 4: 335–347.Google Scholar
  31. 31.
    Van’t Hof, J. (1968) Experimental procedures for measuring cell population kinetic parameters in plant root meristems. In: Methods in Cell Physiology, Vol. III, pp. 95–117. D.M. Prescott (ed.), Academic Press, New York.Google Scholar
  32. 32.
    Van’t Hof, J. and McMillan, B. (1969) Cell population kinetics in callus tissues of cultured pea root segments. Am. J. Bot., 56: 42–51.CrossRefGoogle Scholar
  33. 33.
    Van’t Hof, J. and Ying, H. K. (1964) Relationship between the duration of the mitotic cycle, the rate of cell production and the rate of growth of Pisurn roots at different temperatures. Cytologia, 29: 399–406.CrossRefGoogle Scholar
  34. 34.
    Wimber, D. E. (1960) Duration of the mitotic cycle in Tradescantia paludosa root tips as measured with H3-thymidine. Am. J. Bot., 47: 828.CrossRefGoogle Scholar
  35. 35.
    Wimber, D. E. (1966) Prolongation of the cell cycle in Tradescantia root tips by continuous gamma irradiation. Exptl. Cell Res., 42: 296–301.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • Charles Carroll Kuehnert
    • 1
  1. 1.Department of BiologySyracuse UniversityUSA

Personalised recommendations