Meristematic Activity in Relation to Wound Xylem Differentiation

  • D. E. Fosket
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 18)


Many plant tissues and organs display a biphasic growth response. During the first phase, growth is brought about primarily by an increase in cell number, with little change in the average cell size. As the rate of cell division declines, the second mode of growth is exhibited in which the average cell size increases as many of the derivatives become characteristically differentiated, but these changes are accompanied by a comparatively small increase in cell number, if any. This developmental pattern is typical of root growth,6,15,23 wnere the two growth processes tend to be spatially separated, and of leaf growth,9,28,33 where the two processes tend to be separated in time.


Vascular Bundle Stem Segment Tracheary Element Cambial Activity Vascular Cambium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bischoff, R. and Holtzer, H. (1969) Mitosis and the processes of differentiation of myogenic cells in vitro. J. Cell Biol. 41: 188.PubMedCrossRefGoogle Scholar
  2. 2.
    Bischoff, R. and Holtzer (1970) Inhibition of myoblast fusion after one round of DNA synthesis in 5-bromodeoxyuridine. J. Cell Biol. 44: 134.PubMedCrossRefGoogle Scholar
  3. 3.
    Bopp, M. (1968) Hemmung des Streckungswachstums etiolierter Sprossachen durch FUDR. Z. Pflanzenphysiol. 57: 173.Google Scholar
  4. 4.
    Bopp, M. (1970) Synthese d’ADN et croissance en longueur des cellules. Physiol. Veg. 8: 215.Google Scholar
  5. 5.
    Brown, D. D. and David, I. B. (1968) Specific gene amplification in oocytes. Science 160: 272.PubMedCrossRefGoogle Scholar
  6. 6.
    Brown, R. and Broadbent, D. (1950) The development of cells in the growing zones of the root. J. Exptl. Bot. 1: 249.CrossRefGoogle Scholar
  7. 7.
    Chen, D. and Osborne, D. J. (1970) Replication in germinating wheat embryos. Nature 225: 336.PubMedCrossRefGoogle Scholar
  8. 8.
    Cutter, E. G. and Feldman, L. J. (1970) Trichoblasts in Hydrochoris. II. Nucleic acids, proteins and a consideration of cell growth in relation to endopolyploidy. Amer. J. Bot. 27: 202.Google Scholar
  9. 9.
    Dale, J. E. (1964) Leaf growth in Phaseolus vulgaris. I. Growth of the first pair of leaves under constant conditions. Ann. Bot. N. S. 28: 579.Google Scholar
  10. 10.
    D’Amato, F. (1952) Polyploidy in the differentiation and function of tissues and cells in plants. Caryologia 4: 311.Google Scholar
  11. 11.
    D’Amato, F. (1964) Endopolyploidy as a factor in plant tissue development. Caryologia 17: 41.Google Scholar
  12. 12.
    Degani, Y. and Atsmon, D. (1970) Enhancement of non-nuclear DNA synthesis associated with hormone-induced elongation in the cucumber hypocotyl. Exptl. Cell Res. 61: 226.PubMedCrossRefGoogle Scholar
  13. 13.
    Degani, Y., Atsmon, D. and Halevy, A. (1970) DNA synthesis and hormone induced elongation in cucumber hypocotyl. Nature 228: 554.PubMedCrossRefGoogle Scholar
  14. 14.
    Eisenberg, S. and Yamada, T. (1966) A study of DNA synthesis during the transformation of the iris into lens in the lentectomized newt. J. Exptl. Zool. 162: 353.CrossRefGoogle Scholar
  15. 15.
    Erickson, R. O. and Goddard, D. R. (1951) An analysis of root growth in cellular and biochemical terms. Growth 10: 89.Google Scholar
  16. 16.
    Flamm, W. G. and Birnstiel, M. L. (1964) Inhibition of DNA replication and its effect on histone synthesis. Exptl. Cell Res. 33: 616.PubMedCrossRefGoogle Scholar
  17. 17.
    Fosket, D. E. (1968) Cell division and the differentiation of wound-vessel members in cultured stem segments of Coleus. Proc. Natl. Acad. Sci. (U.S.) 59: 1089.CrossRefGoogle Scholar
  18. 18.
    Fosket, D. E. (1970) The time course of xylem differentiation and its relation to deoxyribonucleic acid synthesis in cultured Coleus stem segments. Plant Physiol. 46: 64.PubMedCrossRefGoogle Scholar
  19. 19.
    Fosket, D. E. and Roberts, L. W. (1964) Induction of wound-vessel differentiation in isolated Coleus stem segments in vitro. Amer. J. Bot. 51: 19.CrossRefGoogle Scholar
  20. 20.
    Hartman, K. V. and Heidelberger, C. (1961) Studies on fluorinated pyrimidines XII. Inhibition of thymidylate synthetase. J. Biol. Chem. 236: 3006.Google Scholar
  21. 21.
    Hepler, P. K. and Fosket, D. E. (1971) The role of microtubules in vessel member differentiation in Coleus. Protoplasma (In press).Google Scholar
  22. 22.
    Jacobs, W. P. (1952) The role of auxin in differentiation of xylem around a wound. Amer. J. Bot. 39: 301.CrossRefGoogle Scholar
  23. 23.
    Jensen, W. A. (1955) A morphological and biochemical analysis of the early phases of cellular growth in the root tip of Vicia faba. Exptl. Cell Res. 8: 506.PubMedCrossRefGoogle Scholar
  24. 24.
    Kahl, G., Rosenstock, G. and Lang, H. (1969) Die Trennung von Zellteilung und Suberinsynthese in deteprimiertem pflanzlichem Speichergewebe durch Tris-(hydroxymethyl) aminomethane. Planta 87: 365.CrossRefGoogle Scholar
  25. 25.
    Kafatos, F. C. and Feder, N. (1968) Cytodifferentiation during insect metamorphoses: The galea of silkmoths. Science 161: 470.PubMedCrossRefGoogle Scholar
  26. 26.
    List, A., Jr. (1963) Some observations on DNA content and cell nuclear volume growth in the developing xylem cells of certain higher plants. Amer. J. Bot. 50: 320.CrossRefGoogle Scholar
  27. 27.
    Makeshwari, M. G. and Nooden, L. D. (1971) A requirement for DNA synthesis during auxin induction of cell enlargement in tobacco pith tissue. Physiol. Plant. 24: 282.CrossRefGoogle Scholar
  28. 28.
    Maksymowych, R. and Kettrick, M. A. (1970) DNA synthesis, cell division, and cell differentiation during leaf development of Xanthium pennsylvanicum. Amer. J. Bot. 57: 844.CrossRefGoogle Scholar
  29. 29.
    Nitsan, J. and Lang, A. (1965) Inhibition of cell division and cell elongation in higher plants by inhibition of DNA synthesis. Develop. Biol. 12: 358.PubMedCrossRefGoogle Scholar
  30. 30.
    Nitsan, J. and Lang, A. (1966) DNA synthesis in the elongating, mondividing cells of the lentil epicotyl and its promotion by gibberellin. Plant Physiol. 41: 965.PubMedCrossRefGoogle Scholar
  31. 31.
    Roberts, L. W. and Baba, S. (1968) IAA-induced xylem differentiation in the presence of colchicine. Plant and Cell Physiol. 9: 315.Google Scholar
  32. 32.
    Stockdale, F. E. and Topper, Y. J. (1966) The role of DNA synthesis and mitosis in hormone-dependent differentiation Proc. Natl. Acad. Sci. (U.S.) 56: 1283.CrossRefGoogle Scholar
  33. 33.
    Sunderland, N. (1960) Cell division and expansion in the growth of the leaf. J. Exptl. Bot. 11: 68.CrossRefGoogle Scholar
  34. 34.
    Torrey, J. G. and Fosket, D. E. (1970) Cell division in relation to cytodifferentiation in cultured pea root segments. Amer. J. Bot. 57: 1072.CrossRefGoogle Scholar
  35. 35.
    Vöchting, H. (1878) Uber Organbildung im Pflanzenreich. Max Cohen, Bonn.Google Scholar
  36. 36.
    Voytovich, A. E. and Topper, Y. J. (1967) Hormone-dependent differentiation of immature mouse mammary gland in vitro. Science 158: 1326.PubMedCrossRefGoogle Scholar
  37. 37.
    Zeevaart, J. A. D. (1962) DNA multiplication as a requirement for expression of floral stimulus in Pharbitis nil. Plant Physiol. 37: 296.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • D. E. Fosket
    • 1
  1. 1.Department of Developmental and Cell BiologyUniversity of CaliforniaIrvineUSA

Personalised recommendations