Advertisement

Application of Water-Insoluble Complexes of Kininogenases, Inhibitors and Kininases to Kinin Research

  • T. Seki
  • H. Y. T. Yang
  • Y. Levin
  • T. A. Jenssen
  • E. G. Erdös
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 8)

Abstract

Although a variety of methods have been available for coupling proteins with water-insoluble carriers, the impetus to our experiments was given by a publication of Levin et al. (1). They coupled trypsin to the copolymer of maleic anhydride and ethylene (EMA) using hexamethylenediamine as cross-linking agent. The proposed mechanism of action involves the binding of the enzyme covalently via the ε-amino group of lysine in the protein. (Presumably the other protein binding agents used in our studies also acted this way or by linking tyrosines of proteins.) Levin’s method was successfully applied by Fritz et al. (2, 3), who used it for purification of enzymes and inhibitors. By coupling plasmin or trypsin to EMA and subsequently reacting them with inhibitors present in crude extracts, they separated and purified the inhibitors. The purification of kallikrein was achieved by adsorbing the enzyme on an EMA-Trasylol column and subsequently eluting it with guanidine solution.

Keywords

Maleic Anhydride Heated Plasma Cyanogen Bromide Colloidal Silica Particle Glandular Kallikrein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Levin, Y., M. Pecht, L. Goldstein and E. Katchalski, Biochem. 3: 1905, 1964.CrossRefGoogle Scholar
  2. 2.
    Fritz, H., M. Gebhardt, E. Fink, W. Schramm and E. Werle, Hoppe-Seyler’s Z. Physiol. Chem. 350: 129, 1969.CrossRefGoogle Scholar
  3. 3.
    Fritz, H., B. Brey, A. Schmal and E. Werle, Hoppe-Seyler’s Z. Physiol. Chem. 350: 617, 1969.CrossRefGoogle Scholar
  4. 4.
    Chiang, T. S., E. G. Erdb’s, I. Miwa, L. L. Tague and J. J. Coalson. Circ. Res. 23: 507, 1968.PubMedGoogle Scholar
  5. 5.
    Erdös, E G., T. Seki, H. Y. T. Yang and L. L. Tague. Pharmacol. Res. Commun. 1: 152, 1969.CrossRefGoogle Scholar
  6. 6.
    Axen, R., J. Porath and S. Ernback. Nature 214: 1302, 1967.PubMedCrossRefGoogle Scholar
  7. 7.
    Cuatrecasas, P., M. Wilchek and C. B. Anfinsen. Proc. Nat. Acad. Sci. 61: 636, 1968.PubMedCrossRefGoogle Scholar
  8. 8.
    Haynes, R. and K. A. Walsh. Biochem. Biophys. Res. Commun. 36: 235, 1969.PubMedCrossRefGoogle Scholar
  9. 9.
    Erdb’s, E. G., L. L. Tague and I. Miwa. Biochem. Pharmacol. 17: 667, 1968.CrossRefGoogle Scholar
  10. 10.
    Werle, E. in “Polypeptides which affect smooth muscles and blood vessels”, M. Schacter, ed., p. 199. Pergamon Press, Oxford, 1960.Google Scholar
  11. 11.
    Bar-Eli, A. and E. Katchalski. J. Biol. Chem. 238: 1690, 1963.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • T. Seki
    • 1
  • H. Y. T. Yang
    • 1
  • Y. Levin
    • 1
  • T. A. Jenssen
    • 1
  • E. G. Erdös
    • 1
  1. 1.Department of PharmacologyUniversity of Oklahoma School of MedicineOklahoma CityUSA

Personalised recommendations