Advertisement

General Features of Metabolic Control as Applied to the Erythrocyte

  • John R. Williamson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 6)

Abstract

The purpose of this paper is to review the background and principles used to elucidate control mechanisms in multienzyme sequences. Examples are taken from the literature to illustrate the sites of control of erythrocyte glycolysis observed under different conditions, and the possible nature of the control chemicals. Emphasis will be placed on control of the 2,3-diphosphoglycerate (DPG) level in erythrocytes and possible feedback relationships between the concentration of free DPG, as determined by its differential binding to oxy- and deoxyhemoglobin, and the regulation of glycolysis. For a more extensive treatment of erythrocyte glycolysis, the reader is referred to several recent reviews (1–3).

Keywords

Pyruvate Kinase Adenine Nucleotide Triose Phosphate Isomerase Triose Phosphate Glycolytic Intermediate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rapoport, S., in P. N. Campbell and G. D. Greville (Editors), Essays in biochemistry, Vol. 4, Academic Press, New York, 1968, p. 69.Google Scholar
  2. 2.
    Murphy, J. R., J. Lab. Clin. Med., 55, 286 (1960).PubMedGoogle Scholar
  3. 3.
    Yoshikawa, H., and Minakami, S., Folia Haemat., 89, 357 (1968).Google Scholar
  4. 4.
    De Verdier, C. H., Folia Haemat., 78, 184 (1962).Google Scholar
  5. 5.
    Tsutsui, E. A., Marks, P. A., and Reich, P., J. Biol. Chem., 237, 3009 (1962).PubMedGoogle Scholar
  6. 6.
    Kauffman, F. C., Brown, J. G., Passonneau, J. V., and Lowry, O. H., J. Biol. Chem., 244, 3647 (1969).PubMedGoogle Scholar
  7. 7.
    Rose, I. A., Warms, J. V. B., and O’Connell, E. L., Biochem. Biophys. Res. Commun., 15, 33 (1964).PubMedCrossRefGoogle Scholar
  8. 8.
    Velick, S. F., and Furfine, C., in P. D. Boyer, H. Lardy, and K. Myrback (Editors). The enzymes, Vol. 7, Academic Press, New York, 1963, p. 243.Google Scholar
  9. 9.
    Rose, I. A., and Warms, J. V. B., J. Biol. Chem., 241, 4848 (1966).PubMedGoogle Scholar
  10. 10.
    Chapman, R. G., Hennessey, M. A., Waltersdorph, A. M., Huennekens, F. M., and Gabrio, B. W., J. Clin. Invest., 41, 1249 (1962).PubMedCrossRefGoogle Scholar
  11. 11.
    Pennell, R. B., in C. Bishop and D. M. Surgenor (Editors), The red blood cell, Academic Press, New York, 1964, p. 26.Google Scholar
  12. 12.
    Hess, B., in B. Wright (Editor), Control mechanisms in respiration and fermentation, Ronald Press Company, New York, 1963, p. 333.Google Scholar
  13. 13.
    Williamson, J. R., J. Biol. Chem., 240, 2308 (1965).PubMedGoogle Scholar
  14. 14.
    Chance, B., and Williams, G. R., J. Biol. Chem., 217, 409 (1955).PubMedGoogle Scholar
  15. 15.
    Chance, B., Williams, G. R., Holmes, W. F., and Higgins, J., J. Biol. Chem., 217, 439 (1955).PubMedGoogle Scholar
  16. 16.
    Chance, B., Holmes, W. F., Higgins, J., and Connelly, C. M., Nature, 182, 1190 (1958).PubMedCrossRefGoogle Scholar
  17. 17.
    Holmes, W. F., Trans. Farad. Soc., 55, 1122 (1959).CrossRefGoogle Scholar
  18. 18.
    Higgins, J. In preparation.Google Scholar
  19. 19.
    Asakura, T., Sato, Y., Minakami, S., and Yoshikawa, H., J. Biochem. (Tokyo), 59, 524 (1966).Google Scholar
  20. 20.
    Bohr, C., Hasselbalch, K., and Krogh, A., Skand. Arch. Physiol., 16, 402 (1904).Google Scholar
  21. 21.
    Asakura, T., Sato, Y., Minakami, S., and Yoshikawa, H., Clin. Chim. Acta, 14, 840 (1966).CrossRefGoogle Scholar
  22. 22.
    Minakami, S., and Yoshikawa, H., J. Biochem. (Tokyo), 59, 145 (1966).Google Scholar
  23. 23.
    Rose, I. A. Unpublished observations.Google Scholar
  24. 24.
    Eckel, R. E., Rizzo, S. C., Lodish, H., and Berggrem, A. B., Amer. J. Physiol., 210, 737 (1966).PubMedGoogle Scholar
  25. 25.
    Rose, Z. A., J. Biol. Chem., 243, 4810 (1968).PubMedGoogle Scholar
  26. 26.
    Rose, Z. A. This monograph.Google Scholar
  27. 27.
    Reich, J. G., Europ. J. Biochem., 6, 395 (1968).PubMedCrossRefGoogle Scholar
  28. 28.
    Saito, T., and Minakami, S., J. Biochem. (Tokyo), 61, 211 (1967).Google Scholar
  29. 29.
    Asakura, T., Adachi, K., Minakami, S., and Yoshikawa, H., J. Biochem. (Tokyo), 62, 184 (1967).Google Scholar
  30. 30.
    Larrson-Razhkiewicz, M., Biochim. Biophys. Acta, 132, 33 (1967).Google Scholar
  31. 31.
    Melchior, J. B., Biochemistry, 4, 1518 (1965).PubMedCrossRefGoogle Scholar
  32. 32.
    Rose, I. A., Proc. Nat. Acad. Sci. U.S.A., 61, 1079 (1968).CrossRefGoogle Scholar
  33. 33.
    Benesch, R., and Benesch, R. E., Nature, 221, 618 (1969).PubMedCrossRefGoogle Scholar
  34. 34.
    Benesch, R. E., Benesch, R., and Yu, C. I., Biochemistry, 8, 2567 (1969).PubMedCrossRefGoogle Scholar
  35. 35.
    Benesch, R., Benesch, R. E., and Yu, C. I., Proc. Nat. Acad. Sci. U.S.A., 59, 526 (1968).CrossRefGoogle Scholar
  36. 36.
    Lo, H. H., and Schimmel, P. R., J. Biol. Chem., 244, 5084 (1969).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • John R. Williamson
    • 1
  1. 1.Johnson Research FoundationUniversity of Penna.PhiladelphiaUSA

Personalised recommendations