Advertisement

Erythrocyte Glycolytic Intermediates and Cofactors Correlated with the Haemoglobin Concentration in Human Neonates and Adults

  • Magnus Hjelm
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 6)

Abstract

Human erythrocytes are highly specialized cells containing haemoglobin for the transport of oxygen. It seems reasonable to assume that their simplified metabolic systems, the glycolytic pathway and the pentose phosphate shunt, is essential for the maintenance of this oxygen carrying function. It has previously been reported that reduced glutathione (GSH) influences the affinity of haemoglobin to oxygen in intact erythrocytes (cf. Horejsi 1967) and it has recently been found, that several organic phosphocompounds, some of which are normally present in human erythrocytes, bind to haemoglobin in vitro (Chanutin & Curnish 1964, Benesch & Benesch 1968, Garby & de Verdier 1968). Most of the compounds investigated showed a higher affinity for deoxygenated than for oxygenated haemoglobin. The binding is correlated with an decreased affinity of the haemoglobin molecule for oxygen (Chanutin & Curnish 1967, Benesch & Benesch 1967). If these findings are relevant also for the conditions in vivo, then there should be a correlation between the average amount of deoxygenated haemoglobin and the binding of organic phosphocompounds, i.e. the molar ratio of phosphocompound to haemoglobin should increase with increasing average deoxygenation of the circulating haemoglobin. Several pieces of evidence have also been obtained, that support this concept. An increased content of phosphocompounds, mainly 2,3-diphosphoglycerate (DPG) and ATP, has been found in erythrocytes from subjects with a decrease of the oxygen saturation of the blood (Lenfant et al. 1969) or where it seems likely to assume that the time average concentration of deoxygenated haemoglobin is increased (Eaton & Brewer 1968, Hjelm 1968, 1969, Fortier & Valeri 1969).

Keywords

Haemoglobin Concentration Human Erythrocyte Haemoglobin Molecule Healthy Neonate Intact Erythrocyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, H.: ‘Adenosin-5′-triphospat und Adenosin-5′-diphosphate’ in H.-U. Bergmeyr (ed) Methoden der enzymatischen Analyse. Verlag Chemie CmnbH, Weinheim 1962, p 573.Google Scholar
  2. Andersen, O.S., Endel, K., Jörgensen, K. & Astrup, P.: Scand. J. Clin. Lab. Invest. 12, 172, 1960.PubMedCrossRefGoogle Scholar
  3. Arturson, G. & Hjelm, M.: in Symposium on intracellular regulation of hemoglobin affinity to oxygen. Forsvarsmedicin 5, 260, 1969. Swedish Goverment Publishing House, Gustaf Adolfs Torg 22-25, S-111 52 Stockholm, Sweden.Google Scholar
  4. Benesch, R. & Benesch, R.E.: Proc.Nat.Acad.Sci. 59, 526, 1968.PubMedCrossRefGoogle Scholar
  5. Benesch, R. & Benesch, R.E.: Nature 221, 618, 1969.PubMedCrossRefGoogle Scholar
  6. Bernstein, R.E.: J.Clin.Invest, 38, 1572, 1959.PubMedCrossRefGoogle Scholar
  7. Bunn, H.P., May, M.H., Kocholaty, W.F. & Shields, C.E.: J.Clin.Invest. 48, 311, 1969.PubMedCrossRefGoogle Scholar
  8. Busch, D.: Blut 13, 109, 1966.PubMedCrossRefGoogle Scholar
  9. Cernoch, M. & Malinska, J.: Clin.Chim.Acta 14, 335, 1966.PubMedCrossRefGoogle Scholar
  10. Chanutin, A. & Curnish, R.R.: Arch.Biochem.Biophys. 106, 433, 1964.PubMedCrossRefGoogle Scholar
  11. Chanutin, A. & Curnish, R.R.: Arch.Biochem.Biophys. 121, 96, 1967.PubMedCrossRefGoogle Scholar
  12. de Verdier, C.-H. & Garby, L.: Scand.J.Clin.Lab.Invest. 23, 149, 1969.PubMedCrossRefGoogle Scholar
  13. de Verdier, C.-H., Garby, L. & Hjelm, M.: Acta Soc.rfed.Upsaliensis 74, 209, 1969.Google Scholar
  14. de Verdier, C.-H. & Killander, J.: Acta Physiol.Scand. 54, 346, 1962.PubMedCrossRefGoogle Scholar
  15. Eaton, J.W. & Brewer, G.J.: Proc.Nat.Acad.Sci. 61, 756, 1968.PubMedCrossRefGoogle Scholar
  16. Portier, N.L. & Valeri, C.R.:in.Symposium on intracellular regulation of hemoglobin affinity to oxygen. Försvarsmedicin 5, 1969. Swedish Government Publishing House, Gustaf Adolfs Torg 22-25, S-111 52 Stockholm, Sweden.Google Scholar
  17. Garby, L. & Hjelm, M.: Blut 9, 284, 1963.PubMedCrossRefGoogle Scholar
  18. Garby, L. & de Verdier, C.-H.: Fol.Haemat. 89, 421, 1963.Google Scholar
  19. Garby, L., Gerber, G. & de Verdier, C.-H.: Eur.J.Biochem. 10, 110, 1969.PubMedCrossRefGoogle Scholar
  20. Garby, L. & Vuille, J.-C.: Scand.J.Clin.Lab.Invest. 13, 642, 1961.PubMedCrossRefGoogle Scholar
  21. Kill, J.R. & Robinson, D.C.: J.Physiol. 199, 685, 1968.Google Scholar
  22. Hjelm, M.: Fol.Haemat. 89, 392, 1963.Google Scholar
  23. Hjelm, M.: Communication in November 1968 at the national meeting of the Swedish Medical Society.Google Scholar
  24. Hjelm, M.: Scand.J.Haemat. 6, 56, 1969 (a).PubMedCrossRefGoogle Scholar
  25. Hjelm, M. in Symposium on intracellular regulation of haemoglobin affinity to oxygen. Forsvarsmedicin 5, 195, 1969, (b 1). Swedish Government Publishing House, Gustaf Adolfs Torg 22-25 S-lll 52 Stockholm, Sweden.Google Scholar
  26. Hjelm, M. in Symposium on intracellular regulation of haemoglobin affinity to oxygen. Forsvarsmedicin 5, 219, 1969 (b 2). Swedish Goverment Publishing House, Gustaf Adolfs Torg 22-25 S-ll 52 Stockholm, Sweden.Google Scholar
  27. Hohorst, H.-J.: ‘D-Glucose-6-phosphat und D-fructose-6-phospate’ in H.-U. Bergmeyer (ed.) Methoden der enzymatischen Analyse, Verlag Chemie GmbH, Weinheim 1962, p 134.Google Scholar
  28. Horejsi, J.: Iiaematologia 1, 35, 1967.Google Scholar
  29. Koch, G.: (Thesis) Acta Paediat.Scand. suppl. 181, 1960.Google Scholar
  30. Lenfant, C., Torrance, J., English, E., Finch, C.A., Reynafarje, C., Ramos, J & Faura, J.: J.Clin.Invest. 47, 2652, 1963.CrossRefGoogle Scholar
  31. Nathan, D.G., Oski, F.A., Sidel, V.W. & Diamond, L.K.: New.Engl. J.Med. 272, 118, 1965.PubMedCrossRefGoogle Scholar
  32. Oski, F.A. & Naiman, J.L.: Hematological problems in the newborn. W.B. Saunders Company, Philadelphia and London 1966.Google Scholar
  33. Prankerd, T.A.J.: J.Physiol. 143, 325, 1958.PubMedGoogle Scholar
  34. Racher, E.: J.Biol.Chem. 190, 685, 1951.Google Scholar
  35. Rall, T.W. & Lehninnger, A.L.: J.Biol.Chem. 194, 119, 1952.PubMedGoogle Scholar
  36. Rodman, T., Close, H.P. ScPurcell, M.K.: Ann. Internal Med. 52, 295, 1960.Google Scholar
  37. Rose, J.A. & O’Connell, E.L.: J. Biol.Chem. 239, 12, 1964.PubMedGoogle Scholar
  38. Shojana, A.N., Israels, L.C. & Zipursky, A.: J.Lab. & Clin.Med. 71, 41, 1968.Google Scholar
  39. Srivastava, S.K. & Beutler, E.: Anal.Biochem. 25, 70, 1968.PubMedCrossRefGoogle Scholar
  40. Tanaka, K.R. & Valentine, W.N. in Hereditary Disorders of erythrocyte metabolism (ed.Beutler). Grune & Stratton, New York and London 1968 p.229.Google Scholar
  41. Tomia, S.: Acta Med.Univ. Kioto 37, 393, 1961.Google Scholar
  42. Wade, O.L. & Bishop, J.M. Blackwell Scientific publications, Oxford, 1962, p. 185.Google Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • Magnus Hjelm
    • 1
  1. 1.Department of Clinical ChemistryUniversity HospitalUppsalaSweden

Personalised recommendations