The Enzymes of 2,3-Diphosphoglycerate Metabolism in the Human Red Cell

  • Zelda B. Rose
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 6)


2,3-Diphosphoglycerate is synthesized in red cells by a specific mutase and hydrolyzed by a specific phosphatase. Diphosphoglycerate mutase catalyzes the synthesis of 2,3-diphosphoglycerate from 1,3-diphosphoglycerate and 3-phosphoglycerate. The maximum activity of the enzyme in the mature human erythrocyte is 4 μmoles per minute per ml of cells at 37°. Studies with the purified enzyme showed activation by 2-phosphoglycerate and glycolate 2-P. 2,3-Diphosphoglycerate is a competitive inhibitor of 1,3-diphosphoglycerate (Km 0.5 μM) with a K1. of 0.8 μM. Due to the high level of 2,3-diphosphoglycerate in the mature red cell (4–6 mM), the rate of the diphosphomutase will be described by the equation for competitive inhibition:
$$ \frac{v}{V} = 1/1 + \frac{{0.5\mu {\text{M}}}}{{\left[ {1,3 - {\text{diPGA}}} \right]}}\left( {1 + \frac{{\left[ {2,3 - {\text{diPGA}}} \right]}}{{0.8\mu {\text{M}}}}} \right) $$
The activity of 2,3-diphosphoglycerate phosphatase in human red cells is 1 m¼mole per minute per ml of red cells at 37°. The rate is increased in the presence of certain activators. The system activated by phosphate and chloride (0.1 M) has a maximal velocity 14 times higher. Glycolate 2-P activates 1350-fold and does not require chloride. Since the Ka for phosphate, 0.7 mM, is higher than the normal intracellular level of 0.4 mM, changes in inorganic phosphate in the cell will change the rate. The data are compatible with the following velocity equation:
$$ \frac{{\text{v}}}{{\text{V}}}{\text{ = 0}}{\text{.07 + }}\left( {\frac{{{\text{0}}{\text{.93}}}}{{{\text{1 + }}\frac{{{\text{0}}{\text{.7mM}}}}{{\left[ {{\text{Pi}}} \right]}}}}} \right) $$


Pyruvate Kinase Pyridine Nucleotide Magnesium Salt Phosphoglycerate Mutase Specific Phosphatase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chanutin, A. and Curnish, R. R., Arch. Biochem. Biophys. 121, 96 (1967).PubMedCrossRefGoogle Scholar
  2. 2.
    Benesch, R. and Benesch, R. E., Biochem. Biophys. Res. Commun. 26, 162 (1967).PubMedCrossRefGoogle Scholar
  3. 3.
    Benesch, R., Benesch, R. E. and Yu, C. I., Proc. Natl. Acad. Sci. 59, 526 (1968).PubMedCrossRefGoogle Scholar
  4. 4.
    Askari, A. and Rao, S. N., Biochim. Biophys. Acta 151, 198 (1968).PubMedGoogle Scholar
  5. 5.
    Hershko, A., Razin, A. and Mager, J., Biochim. Biophys. Acta 184, 64 (1969).PubMedCrossRefGoogle Scholar
  6. 6.
    Dische, Z. In: The Red Blood Cell, edited by C. Bishop and D. M. Surgenor. New York: Academic Press, 1964, p. 208.Google Scholar
  7. 7.
    Rapoport, S. and Luebering, J., J. Biol. Chem. 183, 507 (1950).Google Scholar
  8. 8.
    Rapoport, S. and Luebering, J., J. Biol. Chem. 189, 683 (1951).PubMedGoogle Scholar
  9. 9.
    Rapoport, S. and Luebering, J., J. Biol. Chem. 196, 583 (1952).Google Scholar
  10. 10.
    Rose, I. A. and Warms, J. V. B., J. Biol. Chem. 241, 4848 (1966).PubMedGoogle Scholar
  11. 11.
    Rose, Z. B., J. Biol. Chem. 243, 4810 (1968).PubMedGoogle Scholar
  12. 12.
    Bartlett, G. R., J. Biol. Chem. 234, 449 (1959).PubMedGoogle Scholar
  13. 13.
    Oski, F. A., Gottlieb, A., Miller, W. W. and Delivoria-Papadopoulos, M. J. Clin. Invest., in press.Google Scholar
  14. 14.
    Rose, Z. B. Fed. ProC., Symposium: Control Mechanisms for Oxygen Release by Hemoglobin, 1969, in press.Google Scholar
  15. 15.
    Mányai, S. and Várady, Zs., Biochim. Biophys. Acta 20, 594 (1956).PubMedCrossRefGoogle Scholar
  16. 16.
    Harkness, D. R. and Roth, S., Biochem. Biophys. Res. Commun. 34, 849 (1969).PubMedCrossRefGoogle Scholar
  17. 17.
    Zancan, G. T., Recondo, E. F. and Leloir, L. F., Biochim. Biophys. Acta 110, 348 (1965).PubMedGoogle Scholar
  18. 18.
    Rose, I. A. and Rose, Z. B., In Comp. Biochem. 17, 93 (1969), edited by M. Florkin and E. H. Stotz.Google Scholar
  19. 19.
    Orstrom, A., Arch. Biochem. Biophys. 33, 484 (1951).PubMedCrossRefGoogle Scholar
  20. 20.
    Eckel, R. E., Rizzo, S. C., Lodish, H. and Berggren, A. B., Am. J. Physiol. 210, 737 (1966).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • Zelda B. Rose
    • 1
  1. 1.The Institute for Cancer ResearchFox Chase, PhiladelphiaUSA

Personalised recommendations