Amine Hypotheses of Affective Disorders

  • H. M. van Praag


In 1958 a new therapy for depressions was introduced: medication with antidepressants. Almost simultaneously, but independendy, two types of compounds with an antidepressant effect were discovered: the tricyclic antidepressants (prototype: imipramine) and the monoamine oxidase inhibitors (MAOIs*) prototype: iproniazide). Previously, only amphetamine derivatives and opiates had been available for antidepressant medication. The effect of amphetamines on affective life was variable and brief, and often followed by a hangover; opiates actually acted mainly on anxiety and agitation. The antidepressants, with an effect on mood regulation which in suitable cases was primary and lasting, represented a new pharmacothera-peutic principle.


Affective Disorder Bipolar Depression Fusaric Acid Suicide Victim Depressive Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations used in this chapter









cyclic AMP

cyclic adenosine monophosphate








electroconvulsive therapy


5-hydroxyindoleacetic acid




homovanilic acid






monoamine oxidase


monoamine oxidase inhibitor


3-meth-oxy-4-hydroxyphenyl glycol










thyrotropin releasing hormone


vanilylmandelic acid (3-methoxy-4-hydroxymandelic acid).


  1. Abdullah, Y. H., and Hamadah, K., 1970. 3′5′-Cyclic adenosine monophosphate in depression and mania, Lancet1:378–381.CrossRefGoogle Scholar
  2. Alarcon, R. de, and Carney, M. W. P., 1969, Severe depressive mood changes following slow-release intramuscular fluphenazine injection, Br. Med. J.3:564–567.PubMedCrossRefGoogle Scholar
  3. Altman, K., and Greengard, O., 1966, Correlation of kynurenine excretion with liver tryptophan pyrrolase levels in disease and after hydrocortisone induction, J. Clin. Invest.45:1527–1534.PubMedCrossRefGoogle Scholar
  4. Andén, N. E., Rubenson, A., Fuxe, K., and Hökfelt, T., 1967, Evidence for dopamine receptor stimulation by apomorphine, J. Pharm. Pharmacol.19:627–629.PubMedCrossRefGoogle Scholar
  5. Andén, N. E., Corrodi, H., Fuxe, K., and Hökfelt, T., 1968, Evidence for a central 5-hydroxytryptamine receptor stimulation by lysergic acid diethylamine, Br. J. Pharmacol.34:1–7.PubMedGoogle Scholar
  6. Andén, N. E., Butcher, S. G., Corrodi, H., Fuxe, K., and Ungerstedt, U., 1970, Receptor activity and turnover of dopamine and noradrenaline after neuroleptics, Eur. J. Pharmacol.11:303–314.PubMedCrossRefGoogle Scholar
  7. Andén, N. E., Corrodi, H., and Fuxe, K., 1972a, Effect of neuroleptic drugs on central catecholamine turnover assessed using tyrosine- and dopamine-β-hydroxylase inhibitors, J. Pharm. Pharmacol.24:177–182.PubMedCrossRefGoogle Scholar
  8. Andén, N. E., Engel, J., and Rubensson, A., 1972b, Central decarboxylation and uptake of l-dopa, Naunyn-Schmiedebergs Arch. Pharmakol.273:11–26.CrossRefGoogle Scholar
  9. Andersson, H., and Roos, B.-E., 1968, 5-Hydroxyindoleacetic acid in ventricular cerebrospinal fluid and brain of normal and hydrocephalic dogs after administration of 5-hydroxytryptophan, Acta Pharmacol.26:531–538.CrossRefGoogle Scholar
  10. Andersson, H., and Roos, B.-E., 1969, 5-Hydroxyindoleacetic acid in cerebrospinal fluid of hydrocephalic children, Acta Paediatr.58:601–608.CrossRefGoogle Scholar
  11. Angel, C., Deluca, D. C., and Murphree, O. D., 1976, Probenecid-induced accumulation of cyclic nucleotides, 5-hydroxyindoleacetic acid, and homovanillic acid in cisternal spinal fluid of genetically nervous dogs, Biol. Psychiatry11:743–753.PubMedGoogle Scholar
  12. Angst, J., 1966, Zur Äetiologie und Nosologie endogener depressiver Psychosen: Eine genetische, soziologische und klinische Studie, Springer-Verlag, Berlin.Google Scholar
  13. Angst, J., Baastrup, P., Grof, P., Hippius, H., Pöldinger, W., and Weis, P., 1973, The course of monopolar depression and bipolar psychoses, Psychiatr. Neurol. Neurochir.76:489–500.PubMedGoogle Scholar
  14. Anton-Tay, F., and Wurtman, R. J., 1971, Brain monoamines and endocrine function, in: Frontiers in Neuroendocrinology (L. Martini and W. F. Ganong, eds.), pp. 45–66, Oxford University Press, New York.Google Scholar
  15. Åsberg, M., Bertilsson, L., Tuck, D., Cronholm, B., and Sjöqvist, F., 1972, Indolamine metabolites in the cerebrospinal fluid of depressed patients before and during treatment with nortriptyline, Clin. Pharmacol. Ther.14:277–286.Google Scholar
  16. Åsberg, M., Thorén, P., Träskman, L., Bertilsson, L., and Ringberger, V., 1976, Serotonin depression—A biochemical subgroup within the affective disorders? Science191:478–480.PubMedCrossRefGoogle Scholar
  17. Ashcroft, G. W., and Sharman, D. F., 1960, 5-Hydroxyindoles in human cerebrospinal fluids, Nature (London)186:1050–1051.CrossRefGoogle Scholar
  18. Ashcroft, G. W., Crawford, T. B. B., Eccleston, D., Sharman, D. F., NcDougall, E. J., Stanton, J. B., and Binns, J. K., 1966, 5-Hydroxyindole compounds in the cerebrospinal fluid of patients with psychiatric or neurological diseases, Lancet2:1049–1052.PubMedCrossRefGoogle Scholar
  19. Ashcroft, G. W., Dow, R. C., and Moir, A. T. B., 1968, The active transport of 5-hydroxyindole-3-acetic acid and 3-methoxy-4-hydroxypheny1acetic acid from a recircu-latory perfusion system of the cerebral ventricles of the unanaesthetized dog, J. Physiol.199:397–424.PubMedGoogle Scholar
  20. Ashcroft, G. W., Crawford, T. B. B., Dow, R. C., and Moir, A. T. B., 1969, Release of amine metabolite into ventricular perfusion fluid as an index for turnover, in: Metabolism of Amines in the Brain (G. Hooper, ed.), pp. 65–69, MacMillan, London.Google Scholar
  21. Ashcroft, G. W., Eccleston, D., Murray, L. G., Glen, A. I. M., Crawford, T. B. B., Pullar, I. A., Shields, P. J., Walter, D. S., Blackburn, I. M., Connechan, J., and Lonergan, M., 1972, Modified amine hypothesis for the etiology of affective illness, Lancet2:573–577.Google Scholar
  22. Ashcroft, G. W., Blackburn, I. M., Eccleston, D., Glen, A. I. M., Hartley, W., Kinloch, N. E., Lonergan, M., Murray, L. G., and Pullar, I. A., 1973a, Changes on recovery in he concentrations of tryptophan and the biogenic amine metabolites in the cerebrospinal fluid of patients with affective illness, Psychol. Med.3:319–325.PubMedCrossRefGoogle Scholar
  23. Ashcroft, G. W., Crawford, T. B. B., Cundall, R. L., Davidson, D. L., Dobson, J., Dow, R. C., Eccleston, D., Loose, R. W., and Pullar, I. A., 1973b, 5-Hydroxytryptamine metabolism in affective illness: The effect of tryptophan administration, Psychol. Med.3:326–332.PubMedCrossRefGoogle Scholar
  24. Axelrod, J., 1966, Methylation reactions in the formation and metabolism of catecholamines and other biogenic amines, Pharmacol. Rev.18:95–113.PubMedGoogle Scholar
  25. Axelrod, J., 1972, Dopamine-β-hydroxylase: Regulation of its synthesis and release from nerve terminals, Pharmacol. Rev.24:233–243.PubMedGoogle Scholar
  26. Axelrod, J., and Cohn, C. K., 1971, Methyl transferase enzymes in red blood cells, J. Pharmacol. Exp. Ther.176:650–654.PubMedGoogle Scholar
  27. Baldessarini, R. J., and York, C., 1970, Effects of lithium and pH on synaptosomal metabolism of noradrenaline, Nature (London)228:1301–1303.CrossRefGoogle Scholar
  28. Banki, C. M., 1977, Correlation between cerebrospinal fluid amine metabolites and psychomotor activity in affective disorders, J. Neurochem.28:255–257.PubMedCrossRefGoogle Scholar
  29. Barkai, A., Glusman, M., and Rapport, M. M., 1972, Serotonin turnover in the intact cat brain, J. Pharmacol. Exp. Ther.181:28–35.PubMedGoogle Scholar
  30. Bartholini, G., and Pletscher, A., 1968, Cerebral accumulation and metabolism of C14-dopa after selective inhibition of peripheral decarboxylase, J. Pharmacol. Exp. Ther.161:14–20.PubMedGoogle Scholar
  31. Bartholini, G., Pletscher, A., and Tissot, R., 1966, On the origin of homovanillic acid in the cerebrospinal fluid, Experientia22:609–610.PubMedCrossRefGoogle Scholar
  32. Becker, J., 1974, Depression: Theory and Research, Winston, Washington, D.C.Google Scholar
  33. Beckmann, H., and Goodwin, F. K., 1975, Antidepressant response to tricyclics and urinary MHPG in unipolar patients, Arch. Gen. Psychiatry32:17–21.PubMedCrossRefGoogle Scholar
  34. Beckmann, H., St.-Laurent J., and Goodwin, F. K., 1975, The effect of lithium on urinary MHPG in unipolar and bipolar depressed patients, Psychopharmacologia42:277–282.PubMedCrossRefGoogle Scholar
  35. Benkert, O., Renz, A., Marano, C., and Matussek, N., 1971, Altered tyrosine daytime plasma levels in endogenous depressive patients, Arch. Gen. Psychiatry25:359–363.PubMedCrossRefGoogle Scholar
  36. Benkert, O., Martschke, D., and Gordon, A., 1974, Comparison of TRH, L.H.-R.H. and placebo in depression, Lancet2:1146.PubMedCrossRefGoogle Scholar
  37. Berg, G. R., and Glinsmann, W. H., 1970, Cyclic AMP in depression and mania, Lancet1:834.PubMedCrossRefGoogle Scholar
  38. Bernheimer, H., and Hornykiewicz, O., 1964, Das Verhalten des Dopamine Metaboliten Homovanillinsäure im Gehirn von Normalen und Parkinsonkranken Menschen, Arch. Exp. Pathol. Pharmakol247:305–306.CrossRefGoogle Scholar
  39. Bernheimer, H., Birkmayer, W., and Hornykiewicz, O., 1966, Homovanillinsäure in Liquor cerebrospinalis: Untersuchungen beim Parkinson-Syndrom und anderen Erkrankungen des ZNS, Wien. Klin. Wochenschr.78:417–419.PubMedGoogle Scholar
  40. Bertaccini, G., 1959, Effect of convulsant treatment on the 5-hydroxytryptamine content of brain and other tissues of the rat, J. Neurochem.4:217–222.PubMedCrossRefGoogle Scholar
  41. Bertilsson, L., Åsberg, M., and Thorén, P., 1974, Differential effect of chlorimipramine and nortriptyline on metabolites of serotonine and noradrenaline in the cerebrospinal fluid of depressed patients, Eur. J. Clin. Pharmacol.7:365–368.PubMedCrossRefGoogle Scholar
  42. Bindler, E. H., Wallach, M. B., and Gershon, S., 1971, Effect of lithium on the release of 14C-norepinephrine by nerve stimulation from the perfused cat spleen, Arch. Int. Pharmacodyn. Ther.190:150–154.PubMedGoogle Scholar
  43. Birkmayer, W., and Hornykiewicz, O., 1962, Der L-dioxyphenylalanin(-L-Dopa)-effekt beim Parkinson-Syndrom des Menschen: Zur Pathogenese und Behandlung der Parkinson-Akinese, Arch. Psychiatr. Nervenkrankh.203;560–574.CrossRefGoogle Scholar
  44. Birkmayer, W., and Linauer, W., 1970, Störung des Tyrosin- und Tryptophanmetabolismus bei Depression, Arch. Psychiatr. Nervenkrankh.213:377–387.CrossRefGoogle Scholar
  45. Blaschko, H., Burn, J. H., and Langemann, H., 1950, The formation of noradrenaline from dihydroxyphenylderine, Br. J. Pharmacol.5:431–437.Google Scholar
  46. Bliss, E. L., Thatcher, W., and Ailion, J., 1972, Relationship of stress to brain serotonin and 5-hydroxyindoleacetic acid, J. Psychiatr. Res.9:71–80.PubMedCrossRefGoogle Scholar
  47. Bockar, J., Roth, R., and Heninger, G., 1974, Increased human platelet monoamine oxidase activity during lithium carbonate therapy, Life Sci.15:2109–2118.PubMedCrossRefGoogle Scholar
  48. Bohacek, N., 1973, Depression-inducing potential of neuroleptics, in: Aspects of Depression (M. Lader and R. Garcia, eds.), pp. 225–231, World Psychiatric Association, Madrid.Google Scholar
  49. Bond, P. A., Jenner, F. A., and Sampson, G. A., 1972, Daily variations of the urine content of 3-methoxy-4-hydroxyphenylglycol in two manic depressive patients, Psychol. Med.2:81–85.PubMedCrossRefGoogle Scholar
  50. Bourne, H. R., Bunney, W. E., Jr., Colburn, R. W., Davis, J. M., Davis, J. N., Shaw, D. M., and Coppen, A. J., 1968, Noradrenaline, 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in hindbrain of suicidal patients, Lancet2:805–808.PubMedCrossRefGoogle Scholar
  51. Bowers, M. B., Jr., 1969, Deficient transport mechanism for the removal of acid monoa mine metabolites from cerebrospinal fluid, Brain Res.15:522–524.PubMedCrossRefGoogle Scholar
  52. Bowers, M. B., Jr., 1972a, Cerebrospinal fluid 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA) following probenecid in unipolar depressives treated with amitriptyline, Psychopharmacologia23:26–33.PubMedCrossRefGoogle Scholar
  53. Bowers, M. B., Jr., 1972b, Acute psychosis induced by psychomimetic drug abuse. II. Neurochemical findings, Arch. Gen. Psychiatry27:440–442.PubMedCrossRefGoogle Scholar
  54. Bowers, M. B., Jr., 1972c, Clinical measurements of central dopamine and 5-hydroxytryptamine metabolism: Reliability and interpretation of cerebrospinal fluid acid monoamine metabolite measures, Neuropharmacology11:101–111.PubMedCrossRefGoogle Scholar
  55. Bowers, M. B., Jr., 1973, 5-Hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA) following probenecid in acute psychotic patients treated with phenothiazines, Psychopharmacologia28:309.PubMedCrossRefGoogle Scholar
  56. Bowers, M. B., Jr., and Gerbode, F., 1968a, Relationship of monoamine metabolites in human cerebrospinal fluid to age, Nature (London)219:1256–1257.CrossRefGoogle Scholar
  57. Bowers, M. B., Jr., and Gerbode, F., 1968b, CSF 5-HIAA. Effects of probenecid and parachlorophenylalanine, Life Sci.7:773–776.CrossRefGoogle Scholar
  58. Bowers, M. B., Jr., Heninger, G. R., and Gerbode, F., 1969, Cerebrospinal fluid 5-hydroxyindoleacetic acid and homovanillic acid in psychiatric patients, Int. J. Neuropharmacol.8:255–262.PubMedCrossRefGoogle Scholar
  59. Boyland, E., 1958, The biochemistry of cancer of the bladder, Br. Med. Bull. 14: 153–158.PubMedGoogle Scholar
  60. Boyland, E.British Medical Journal, 1966, Methyldopa in hypertension, 1:119–120.Google Scholar
  61. Brodie, H. K. H., Murphy, D. L., Goodwin, F. K., and Bunney, W. E., Jr., 1971, Catecholamines and mania: The effect of alpha-methyl-para-tyrosine on manic behavior and catecholamine metabolism, Clin. Pharmacol. Ther.12:219–224.Google Scholar
  62. Brodie, H. K. H., Sack, R., and Siever, L., 1973, Clinical studies of 5-hydroxytryptophan in depression, in: Serotonin and Behavior (J. Barchas and E. Usdin, eds.), pp. 549–559. Academic Press, New York.Google Scholar
  63. Brown, G. W., Sklair, F., Harris, T. O., and Birley, J. L. T., 1973, Life-events and psychiatric disorder. Part I. Some methodological issues, Psychol. Med.3:74–87.PubMedCrossRefGoogle Scholar
  64. Bruinvels, J., 1972, Inhibition of the biosynthesis of 5-hydroxytryptamine in rat brain by imipramine, Eur. J. Pharmacol.20:231–237.PubMedCrossRefGoogle Scholar
  65. Bulat, M., and Zivkovic, B., 1971, Origin of 5-hydroxyindoleacetic acid in the spinal fluid, Science173:738–740.PubMedCrossRefGoogle Scholar
  66. Bulat, M., and Zivkovic, B., 1973, Penetration of 5-hydroxyindoleacetic acid across the blood-cerebrospinal fluid barrier, J. Pharm. Pharmacol.25:178–179.PubMedCrossRefGoogle Scholar
  67. Bullpitt, C. J., and Dollery, C. T., 1973, Side effects of hypotensive agents evaluated by a self-administered questionnaire, Br. Med. J.3:485–490.CrossRefGoogle Scholar
  68. Bunney, W. E., Jr., and Davis, J. M., 1965, Norepinephrine in depressive reactions: A review, Arch. Gen. Psychiatry13:483–494.PubMedCrossRefGoogle Scholar
  69. Bunney, W. E., Jr., Murphy, D. L., and Goodwin, F. K., 1970, The switch process from depression to mania: Relationship to drugs which alter brain amines, Lancet1:1022–1027.PubMedCrossRefGoogle Scholar
  70. Bunney, W. E., Jr., Brodie, H. K. H., Murphy, D. L., and Goodwin, F. K., 1971, Studies of alpha-methyl-para-tyrosine, L-dopa and L-tryptophan in depression and mania, Am. J. Psychiatry127:872–881.PubMedGoogle Scholar
  71. Bunney, W. E., Jr., Walters, J. R., Roth, R. H., and Aghajanian, G. K., 1973, Dopaminergic neurons: Effect of antipsychotic drugs and amphetamine on single cell activity, J. Pharmacol. Exp. Ther.185:560–571.PubMedGoogle Scholar
  72. van den Burg, W., van Praag, H. M., Bos, E. R. H., van Zanten, A. K., Piers, D. A., and Doorenbos, H., 1975, TRH as a possible quick-acting but short-lasting antidepressant, Psychol. Med.5:404–412.PubMedCrossRefGoogle Scholar
  73. van den Burg, W., van Praag, H. M., Bos, E. R. H., van Zanten, A. K., Piers, D. A., and Doorenbos, H., 1976, TRH by slow, continuous infusion: An antidepressant? Psychol. Med.6:393–397.PubMedCrossRefGoogle Scholar
  74. Butcher, L. L., and Engel, J., 1969, Behavioral and biochemical effects of L-dopa after peripheral decarboxylase inhibition, Brain Res.15:233–242.PubMedCrossRefGoogle Scholar
  75. Calne, D. B., Karoum, F., Ruthven, C. R. J., and Sandler, M., 1969, The metabolism of orally administered L-dopa in parkinsonism, Br. J. Pharmacol.37:57–68.PubMedGoogle Scholar
  76. Campanini, T., Catalano, A., Derisio, C., and Mardighian, G., 1970, Vanilmandelic aciduria in the different clinical phases of manic depressive psychoses, Br. J. Psychiatry116:435–436.PubMedCrossRefGoogle Scholar
  77. Carlsson, A., Falck, B., Fuxe, K., and Hillarp, N. A., 1964, Cellular localization of monoamines in the spinal cord, Acta Physiol. Scand.60:112–119.PubMedCrossRefGoogle Scholar
  78. Carlsson, A., Fuxe, K., Hamberger, B., and Lindqvist, M., 1966, Biochemical and histochemical studies on effects of imipramine-like drugs and (+) amphetamine on central and peripheral catecholamine neurons. Acta Physiol. Scand.67:481–497.PubMedCrossRefGoogle Scholar
  79. Carlsson, A., Corrodi, H., Fuxe, K., and Hökfelt, T., 1969a, Effect of antidepressant drugs on the depletion of intraneuronal brain 5-hydroxytryptamine stores caused by 4-methyl-α-ethyl-meta-tyramine. Eur. J. Pharmacol.5:357–366.PubMedCrossRefGoogle Scholar
  80. Carlsson, A., Corrodi, H., Fuxe, K., and Hökfelt, T., 1969b, Effects of some antidepressant drugs on the depletion of intraneuronal brain catecholamine stores caused by 4,α-dimethyl-meta-tyramine. Eur. J. Pharmacol.5:367–373.PubMedCrossRefGoogle Scholar
  81. Carman, J. S., Post, R. M., Teplitz, T. A., and Goodwin, F. K., 1974, Divalent cautions in predicting antidepressant response to lithium, Lancet2:1454.PubMedCrossRefGoogle Scholar
  82. Carney, M. W. P., and Sheffield, B. F., 1974, The effects of pulse ECT in neurotic and endogenous depression, Br. J. Psychiatry125:91–94.PubMedCrossRefGoogle Scholar
  83. Carney, M. W. P., Thakurdas, H., and Sebastian, J., 1969, Effects of imipramine and reserpine in depression, Psychopharmacologia14:349–350.PubMedCrossRefGoogle Scholar
  84. Carroll, B. J., 1971, Monoamine precursors in the treatment of depression, Clin. Pharmacol. Ther.12:743–761.PubMedGoogle Scholar
  85. Carroll, B. J., and Dodge, J., 1971, L-Tryptophan as an antidepressant, Lancet1:915.PubMedCrossRefGoogle Scholar
  86. Carroll, B. J., Mowbray, R. M., and Davies, B. M., 1970, Sequential comparison of l-tryptophan with E.C.T. in severe depression, Lancet1:967–969.PubMedCrossRefGoogle Scholar
  87. Cazzullo, C. L., Mangoni, A., and Mascherpa, G., 1966, Tryptophan metabolism in affective psychoses, Br. J. Psychiatry112:157–162.PubMedCrossRefGoogle Scholar
  88. Charalampous, K. D., and Brown, S., 1967, A clinical trial of alpha-methyl-para-tyrosine in mentally ill patients, Psychopharmacologia11:422–429.PubMedCrossRefGoogle Scholar
  89. Chase, T. N., 1972, Serotonergic mechanisms in Parkinson’s disease, Arch. Neurol.27:354–356.PubMedCrossRefGoogle Scholar
  90. Chase, T. N., Gordon, E. K., and Ng, L. K. Y., 1973, Norepinephrine metabolism in the central nervous system of man: Studies using 3-methoxy-4-hydroxyphenylethylene glycol levels in cerebrospinal fluid, J. Neurochem.21:581–587.PubMedCrossRefGoogle Scholar
  91. Chodoff, P., 1972, The depressive personality. A critical review, Arch. Gen. Psychiatry27:666–673.PubMedCrossRefGoogle Scholar
  92. Claveria, L. E., Curzon, G., Harrison, M. J. G., and Kantamaneni, B. D., 1974, Amine metabolites in the cerebrospinal fluid of patients with disseminated sclerosis, J. Neurol. Neurosurg. Psychiatry37:715–718.PubMedCrossRefGoogle Scholar
  93. Cohn, C. K., Dunner, D. L., and Axelrod, J., 1970, Reduced catechol-O-methyltransferase activity in red blood cells of women with primary affective disorder, Science170:1323–1324.PubMedCrossRefGoogle Scholar
  94. Constantinides, J., Geissbühler, F., Gaillard, J. M., Hovaguimian, T., and Tissot, R., 1974, Enhancement of cerebral noradrenaline turnover by thyrotropin-releasing hormone: Evidence by fluorescence histochemistry, Experientia30:1182.CrossRefGoogle Scholar
  95. Coppen, A., 1967, Biochemistry of affective disorders, Br. J. Psychiatry113:1237–1264.PubMedCrossRefGoogle Scholar
  96. Coppen, A., Shaw, D. M., and Farrell, J. P., 1963, Potentiation of the antidepressive effects of a monoamine oxidase inhibitor by tryptophan, Lancet1:79–81.PubMedCrossRefGoogle Scholar
  97. Coppen, A., Shaw, D. M., and Malleson, A., 1965a, Changes in 5-hydroxytryptophan metabolism in depression, Br. J. Psychiatry11:105–107.CrossRefGoogle Scholar
  98. Coppen, A., Shaw, D. M., Malleson, A., Eccleston, E., and Gundy, G., 1965b, Tryptamine metabolism in depression, Br. J. Psychiatry111:996–998.Google Scholar
  99. Coppen, A., Shaw, D. M., Herzberg, B., and Maggs, R., 1967, Tryptophan in treatment of depression, Lancet2:1178–1180.PubMedCrossRefGoogle Scholar
  100. Coppen, A., Prange, A. J., Whybrow, P. C., Noguera, R., and Paez, J. M., 1969, Methysergide in mania, Lancet2:338–340.PubMedCrossRefGoogle Scholar
  101. Coppen, A., Prange, A. J., Whybrow, P. C., and Noguera, R., 1972a, Abnormalities of indolamines in affective disorders, Arch. Gen. Psychiatry26:474–478.PubMedCrossRefGoogle Scholar
  102. Coppen, A., Brooksbank, B. W. L., and Peet, M., 1972b, Tryptophan concentration in the cerebrospinal fluid of depressive patients, Lancet1:1393.PubMedCrossRefGoogle Scholar
  103. Coppen, A., Eccleston, E. G., and Peet, M., 1973, Total and free tryptophan concentration in the plasma of depressive patients, Lancet2:60–63.PubMedCrossRefGoogle Scholar
  104. Coppen, A., Brooksbank, B. W. G., and Eccleston, E., 1974a, Tryptophan metabolism in depressive illness, Psychol. Med.4:164–173.PubMedCrossRefGoogle Scholar
  105. Coppen, A., Montgomery, S., Peet, M., Bailey, J., Marks, V., and Woods, P., 1974b, Thyrotropin-releasing hormone in the treatment of depression, Lancet2:433–435.PubMedCrossRefGoogle Scholar
  106. Corrodi, H., and Fuxe, K., 1969, Decreased turnover in central 5-HT nerve terminals induced by antidepressant drugs of the imipramine type, Eur. J. Pharmacol.7:56–59.PubMedCrossRefGoogle Scholar
  107. Corrodi, H., Fuxe, K., Hökfelt, T., and Schou, M., 1967, Effect of lithium on cerebral monoamine neurons, Psychopharmacologia11:345–353.PubMedCrossRefGoogle Scholar
  108. Corrodi, H., Fuxe, K., and Schou, M., 1969, The effect of prolonged lithium administration on cerebral monoamine neurons in the rat, Life Sci.8:643–651.PubMedCrossRefGoogle Scholar
  109. Cotzias, M., Woert, M. H. van, and Schiffer, L. M., 1967, Aromatic amino acids and modifications of parkinson, N. Engl. J. Med.276:374–379.PubMedCrossRefGoogle Scholar
  110. Cramer, H., Goodwin, F. K., Post, R. M., and Bunney, W. E., Jr., 1972, Effects of probenecid and exercise on cerebrospinal fluid cyclic AMP in affective illness, Lancet1:1346–1347.PubMedCrossRefGoogle Scholar
  111. Cremata, V. Y., and Koe, B. K., 1966, Clinical-pharmacological evaluation of p-chlorophenylalanine: New serotonin-depleting agent, Clin. Pharmacol. Ther.7:768–776.PubMedGoogle Scholar
  112. Creveling, C. R., Daly, J., Tokuyama, T., and Witkop, B., 1968, The combined use of α-methyltyrosine and threo-dihydroxyphenylserine. Selective reduction of dopamine levels in the central nervous system, Biochem. Pharmacol.7:65–70.CrossRefGoogle Scholar
  113. Crout, J. R., and Sjoerdsma, A., 1959, Clinical and laboratory significance of serotonin and catecholamine in bananas, N. Engl. J. Med.261:23–26.PubMedCrossRefGoogle Scholar
  114. Curzon, G., 1969, Tryptophan pyrrolase—a biochemical factor in depressive illness?, Br. J. Psychiatry115:1367–1374.PubMedCrossRefGoogle Scholar
  115. Curzon, G., and Green, A. R., 1968, Effect of hydrocortisone on rat brain 5-hydroxytrypt-amine, Life Sci.7:657–663.CrossRefGoogle Scholar
  116. Curzon, G., Gumpert, E. J. W., and Sharpe, D. M., 1971, Amine metabolite in the lumbar cerebrospinal fluid of humans with restricted flow of cerebrospinal fluid, Nature (London) New Biol.231:189–191.Google Scholar
  117. Curzon, G., Friedel, J., and Knott, P. J., 1973, The effect of fatty acids on the binding of tryptophan to plasma protein, Nature (London)242:198–200.CrossRefGoogle Scholar
  118. Davson, H., 1967, Physiology of the Cerebrospinal Fluid, Churchill, London.Google Scholar
  119. Deleon-Jones, F., Maas, J. W., Dekirmenjian, H., and Sanchez, J., 1975, Diagnostic subgroups of affective disorders and their urinary excretion of catecholamine metabolites, Am. J. Psychiatry132:1141–1148.PubMedGoogle Scholar
  120. Denker, S. J., Malm, U., Roos, B.-E., and Werdinius, B., 1966, Acid monoamine metabolites of cerebrospinal fluid in mental depression and mania, J. Neurochem.13:1545–1548.CrossRefGoogle Scholar
  121. Despopoulos, A., and Weissbach, H., 1957, Renal metabolism of 5-hydroxyindoleacetic acid, Am. J. Physiol.189:548–550.Google Scholar
  122. Dewhurst, W. G., 1968, Methysergide in mania, Nature (London)219:506–507.CrossRefGoogle Scholar
  123. Doepfner, W., 1962, Biochemical observations on LSD-25 and Deseril, Experientia18:256–257.PubMedCrossRefGoogle Scholar
  124. Doepfner, W., and Cerletti, A. M. S., 1958, Comparison of lysersic acid derivatives and antihistamines as inhibitors of the edema provoked in the rat’s paw by serotonin, Int. Arch. Allerg.12:89–97.PubMedCrossRefGoogle Scholar
  125. Dousa, T., and Hechter, O., 1970, Lithium and brain adenylcyclase, Lancet1:834–835.PubMedGoogle Scholar
  126. Dunner, D. L., and Fieve, R. R., 1975, Affective disorder. Studies with amine precursors, Am. J. Psychiatry132:180–183.PubMedGoogle Scholar
  127. Dunner, D. L., and Goodwin, F. K., 1972, Effect of L-tryptophan on brain serotonin metabolism in depressed patients, Arch. Gen. Psychiatry26:364–366.PubMedCrossRefGoogle Scholar
  128. Dunner, D. L., Cohn, C. K., Gershon, E. S., and Goodwin, F. K., 1971, Differential catechol-O-methyltransferase activity in unipolar and bipolar affective illness, Arch. Gen. Psychiatry25:348–353.PubMedCrossRefGoogle Scholar
  129. Duvoisin, R. C., Yahr, M. D., and Cote, L. D., 1969, Pyridoxine reversal of l-DOPA effects in parkinsonism, Trans. Am. Neurol. Assoc.94:81–84.PubMedGoogle Scholar
  130. Ebert, M. H., Baldessarini, R. J., Lipinski, J. F., and Berv, K., 1973, Effects of electroconclusive seizures on amine metabolism in the rat brain, Arch. Gen. Psychiatry29:397–401.PubMedCrossRefGoogle Scholar
  131. Eccleston, D., Ashcroft, G. W., Moir, A. T. B., Parker-Rhodes, A., Lutz, W., and O’Mahoney, D. P., 1968, A comparison of 5-hydroxyindoles in various regions of dog brain and cerebrospinal fluid, J. Neurochem.15:947–957.PubMedCrossRefGoogle Scholar
  132. Eccleston, D., Loose, R., Pullar, J. A., and Sugden, R. F., 1970a, Exercise and urinary excretion of cyclic AMP, Lancet2:612–613.PubMedCrossRefGoogle Scholar
  133. Eccleston, D., Ashcroft, G. W., Moir, A. T. B., Parker-Rhodes, A., Lutz, W., and O’Mahoney, D. P., 1968, A comparison of 5-hydroxyindoles in various regions of dog brain and cerebrospinal fluid, J. Neurochem.15:947–957.PubMedCrossRefGoogle Scholar
  134. Edwards, D. J., and Burns, M. O., 1974, Effects of tricyclic antidepressants upon human platelet monoamineoxidase, Life Sci.15:2045–2048.PubMedCrossRefGoogle Scholar
  135. Ehringer, H., and Hornykiewicz, O., 1960, Verteilung von Noradrenalin und Dopamine (3-hydroxytryptamine) im Gehirn des Menschen und Ihr Verhalten bei Erkrankungen des extrapyramidalen Systems, Klin. Wochenschr.38:1236–1239.PubMedCrossRefGoogle Scholar
  136. Eleftherion, B. E., and Boehlke, K. W., 1967, Brain monoamine oxidase in mice after exposure to agression and defeat, Science155:1693–1694.CrossRefGoogle Scholar
  137. El-Yousef, M. K., Janowski, D. S., Davis, J. M., and Sekerke, H. J., 1973, Induction of severe depression by physostigmine in marijuana intoxicated individuals, Br. J. Addict.68:321–326.CrossRefGoogle Scholar
  138. Engel, J., Hanson, L. C. F., and Roos, B.-E., 1971, Effect of electroshock on 5-HT metabolism in rat brain, Psychopharmacologia20:197–200.PubMedCrossRefGoogle Scholar
  139. Engelman, K., Lovenberg, W., and Sjoerdsma, A., 1967, Inhibition of serotonin synthesis by para-chlorophenylalanine in patients with the carcinoid syndrome, N. Engl. J. Med. 277:1103–1108.PubMedCrossRefGoogle Scholar
  140. Erspamer, V., 1966, Occurrence of indolealkylamines in nature, in: 5-Hydroxytryptamine and Related Indolealkylamines (V. Erspamer, ed.), pp. 132–181, Springer-Verlag, Berlin—Heidelberg—New York.Google Scholar
  141. Everett, G. M., and Borcherding, J. W., 1970, L-Dopa: Effect on concentrations of dopamine, norepinephrine and serotonin in brains of mice, Science168:849–850.PubMedCrossRefGoogle Scholar
  142. Extein, I., Korf, J., Roth, R. H., and Bowers, M. B., Jr., 1973, Accumulation of 3-methoxy-4-hydroxyphenylglycol-sulphate in rabbit cerebrospinal fluid following probenecid, Brain Res. 54:403–407.PubMedCrossRefGoogle Scholar
  143. Fann, W. E., Davis, J. M., Janowski, D. S., Cavanaugh, J. H., Kaufman, J. S., Griffith, J. D., and Oates, J. A., 1972, Effects of lithium on adrenergic function in man, Clin. Pharmacol. Ther. 13:71–77.PubMedGoogle Scholar
  144. Fernando, J. C., Joseph, M. H., and Curzon, G., 1975, Tryptophan plus a pyrrolase inhibitor for depression?, Lancet1:171.PubMedCrossRefGoogle Scholar
  145. Fernström, J. D., and Wurtman, R. J., 1971, Brain serotonin content: Physiological dependence on plasma tryptophan levels, Science173:149–152.PubMedCrossRefGoogle Scholar
  146. Fernström, J. D., and Wurtman, R. J., 1972, Brain serotonin content: Physiological regulation by plasma neutral amino acids, Science178:414–416.PubMedCrossRefGoogle Scholar
  147. Fieve, R. R., Platman, S. R., and Fliess, J. L., 1969, A clinical trial of methysergide and lithium in mania, Psychopharmacologia15:425–429.PubMedCrossRefGoogle Scholar
  148. Fischer, E., Heller, B., and Miro, A. N., 1968, β-Phenylethylamine in human urine, Arzneim.-Forsch. 18:1486.Google Scholar
  149. Fischer, E., Spatz, H., Saavedra, J. M., Reggiani, H., Mior, A. H., and Heller, B., 1972a, Urinary elimination of phenylethylamine, Biol. Psychiatry5:139–147.PubMedGoogle Scholar
  150. Fischer, E., Spatz, H., Heller, B., and Reggiani, H., 1972b, Phenylethylamine content of human urine and rat brain: Its alteration in pathological conditions and after drug administration, Experientia28:307–308.PubMedCrossRefGoogle Scholar
  151. Flentge, F., and Klaver, M. M., 1975, An investigation into the origin of choline in cerebrospinal fluid, Proceedings of the Federal Meetings, Utrecht, The NetherlandsGoogle Scholar
  152. Forn, J., and Valdecasas, F. G., 1971, The effects of lithium on brain adenyl cyclase activity, Biochem. Pharmacol. 20:2773–2779.PubMedCrossRefGoogle Scholar
  153. Friedman, E., and Gershon, S., 1973, Effects of lithium on brain dopamine, Nature (London)243:520–521.CrossRefGoogle Scholar
  154. Frey, H. H., and Magnussen, M. P., 1968, Different central mediation of the stimulant effects of amphetamine and its p-chloroanalogue, Biochem. Pharmacol. 17:1299–1308.PubMedCrossRefGoogle Scholar
  155. Fuller, R. W., and Molloy, B. B., 1974, Recent studies with 4-chloroamphetamine and some analogues, Adv. Biochem. Psychopharmacol. 10:195–205.PubMedGoogle Scholar
  156. Fuller, R. W., Hines, C. W., and Mills, J., 1965, Lowering of brain serototonin level by chloroamphetamines, Biochem. Pharmacol. 14:483–488.PubMedCrossRefGoogle Scholar
  157. Fuller, R. W., Perry, K. W., and Molloy, B. B., 1974, Effect of an uptake inhibitor on serotonin metabolism in rat brain: Studies with 3-(p-trifluoromethylphenoxy)-N-methyl-3-phenyl-propylamine (Lilly 110140), Life Sci. 15:1161–1171.PubMedCrossRefGoogle Scholar
  158. Fuxe, K., Butcher, L. L., and Engel, J., 1971, DL-5-Hydroxytryptophan-induced changes in central monoamine neurons after peripheral decarboxylase inhibition, J. Pharm. Pharmacol. 23:420–424.PubMedCrossRefGoogle Scholar
  159. Fyrö, B., Petterson, U., and Sedvall, G., 1975, The effect of lithium treatment on manic symptoms and levels of monoamine metabolites in cerebrospinal fluid of manic depressive patients, Psychopharmacologia44:99–103.PubMedCrossRefGoogle Scholar
  160. Garattini, S., Kato, R., Lamesta, L., and Valzelli, L., 1960, Electroshock, brain serotonin and barbiturate narcosis, Experientia16:156–157.PubMedCrossRefGoogle Scholar
  161. Garelis, E., and Sourkes, T. L., 1973, Sites of origin in the central nervous system of monoamine metabolites measured in human cerebrospinal fluid, J. Neurol. Neurosurg. Psychiatry4:625–629.CrossRefGoogle Scholar
  162. Garelis, E., Young, S. N., Lal, S., and Sourkes, T. L., 1974, Monoamine metabolites in lumbar CSF: The question of their origin in relation to clinical studies, Brain Res. 79:1–8.PubMedCrossRefGoogle Scholar
  163. Garside, R. F., Kay, D. W. K., Wilson, I. C., Deaton, I. D., and Roth, M., 1971, Depressive syndromes and the classification of patients, Psychol. Med. 1:333–338.PubMedCrossRefGoogle Scholar
  164. Genefke, I. K., 1972, The concentration of 5-HT in hypothalamus, grey and white brain substance in the rat after prolonged oral lithium administration, Acta Physiol. Scand. 48:400–404.CrossRefGoogle Scholar
  165. Gershon, S., Hekimian, L. J., Floyd, A., Jr., and Hollister, L. E., 1967, α-Methyl-p-tyrosine (AMT) in schizophrenia, Psychopharmacologia11:189–194.PubMedCrossRefGoogle Scholar
  166. Gershon, S., Goodwin, F. K., and Gold, P., 1970, Effect of L-tyrosine and L-dopa on norepinephrine (NE) turnover in rat brain in vivo, Pharmacologist12:268.Google Scholar
  167. Glassman, A., 1969, Indoleamines and affective disorders, Psychosom. Med. 31:107–114.Google Scholar
  168. Glassman, A., and Platman, S. R., 1969, Potentiation of a monoamine oxidase inhibitor by tryptophan, J. Psychiatr. Res. 7:83–88.PubMedCrossRefGoogle Scholar
  169. Godwin-Austen, R. B., Kantamaneni, B. D., and Curzon, G., 1971, Comparison of benefit from L-dopa in Parkinsonism with increase of amine metabolites in the CSF, J. Neurol. Neurosurg. Psychiatry34:219–223.PubMedCrossRefGoogle Scholar
  170. Goldstein, M., and Gerber, H., 1963, Phenolic alcohols in the brain after administration of dopa C14, Life Sci. 2:97–100.PubMedCrossRefGoogle Scholar
  171. Goodwin, F. K., 1972, Behavioral effects of l-DOPA in man, in: Psychiatric Complications of Medical Drugs (R. T. Shader, ed.), pp. 149–174, Raven Press, New York.Google Scholar
  172. Goodwin, F. K., 1976, Discussion remarks, in: Neuroregulators and Psychiatric Disorders (E. Usdin, D. A. Hamburg, and Y. D. Barchas, eds.), p. 192, Oxford University Press, New York.Google Scholar
  173. Goodwin, F. K., and Post, R. M., 1973, The use of probenecid in high doses for the estimation of central serotonin turnover in affective illness and addicts of methadone, in: Serotonin and Behavior (J. Barchas and E. Usdin, eds.), pp. 469–480, Academic Press, New York.Google Scholar
  174. Goodwin, F. K., and Post, R. M., 1974, Cerebrospinal fluid amine metabolites in affective illness, J. Psychiatr. Res. 10:320.CrossRefGoogle Scholar
  175. Goodwin, F. K., Brodie, H. K. H., Murphy, D. L., and Bunney, W. E., Jr., 1970, L-Dopa, catecholamines and behavior: A clinical and biochemical study in depressed patients, Biol. Psychiatry2:341–366.PubMedGoogle Scholar
  176. Goodwin, F. K., Dunner, D. L., and Gershon, S., 1971, Effect of l-dopa treatment on brain serotonin metabolism in depressed patients, Life Sci. 10:751–759.CrossRefGoogle Scholar
  177. Goodwin, F. K., Ebert, M. H., and Bunney, W. E., Jr., 1972a, Mental effects of reserpine in man: A review, in: Psychiatric Complications of Medical Drugs (R. I. Shader, ed.), pp. 73–101, Raven Press, New York.Google Scholar
  178. Goodwin, F. K., Murphy, D. L., Dunner, D. L., and Bunney, W. E., Jr., 1972b, Lithium response in unipolar versus bipolar depression, Am. J. Psychiatry129:44–47.PubMedGoogle Scholar
  179. Goodwin, F. K., Post, R. M., Dunner, D. L., and Gordon, E. K., 1973, Cerebrospinal fluid amine metabolism in affective illness: The probenecid technique, Am. J. Psychiatry130:73–79.PubMedGoogle Scholar
  180. Gordon, E. K., and Oliver, J., 1971, 3-Methoxy-4-hydroxy-phenylethylene glycol in human cerebrospinal fluid, Clin. Chim. Acta. 35:145–150.PubMedCrossRefGoogle Scholar
  181. Gordon, E. K., Oliver, J., Goodwin, F. K., Chase, T. N., and Post, R. M., 1973, Effect of probenecid on free 3-methoxy-4-hydroxyphenylethylene glycol (MHPG) and its sulphate in human cerebrospinal fluid, Neuropharmacology12:391–396.PubMedCrossRefGoogle Scholar
  182. Gottfries, C. G., and Roos, B.-E., 1969, Homovanillic acid and 5-hydroxyindoleacetic acid in the cerebrospinal fluid of patients with senile dementia, presenile dementia and parkinsonism, J. Neurochem. 16:1341–1345.PubMedCrossRefGoogle Scholar
  183. Gottfries, C. G., and Roos, B.-E., 1970, Homovanillic acid and 5-hydroxyindoleacetic acid in cerebrospinal fluid related to rated mental and motor impairment in senile and presenile dementia, Acta Psychiatr. Scand. 46:99–105.PubMedGoogle Scholar
  184. Gottfries, C. G., and Roos, B.-E., 1973, Acid monoamine metabolites in cerebrospinal fluid from patients with presenile dementia (Alzheimer’s disease), Acta Psychiatr. Scand. 49:257–263.CrossRefGoogle Scholar
  185. Gottfries, C. G., Oreland, L., and Wiberg, A., 1974, Brain-levels of monoamine oxidase in depression, Lancet2:360.PubMedCrossRefGoogle Scholar
  186. Gottfries, C. G., Oreland, L., Wiberg, Å., and Wimblad, B., 1975, Lowered monoamine oxidase activity in brains from alcoholic suicides, J. Neurochem.25:667–673.PubMedCrossRefGoogle Scholar
  187. Grabowska, M., Antkiewicz, L., and Michaluk, J., 1974, The influence of quipanzine on the turnover rate of serotonin, Biol. Pharmacol. 23:3211–3212.Google Scholar
  188. Grahame-Smith, D. G., 1971, Studies in vivo on the relationship between brain tryptophan, brain 5-HT synthesis and hyperactivity in rats treated with a monoamine oxidase inhibitor and L-tryptophan, J. Neurochem. 18:1053–1066.PubMedCrossRefGoogle Scholar
  189. Grahame-Smith, D. G., and Green, A. R., 1974, The role of brain 5-hydroxytryptamine in the hyperactivity produced in rats by lithium and monoamine oxidase inhibition, Br. J. Pharmacol. 52:19–26.PubMedGoogle Scholar
  190. Green, A. R., and Curzon, G., 1968, Decrease of 5-hydroxytryptamine in the brain provoked by hydrocortisone and its prevention by Allopurinol, Nature (London)220:1095–1097.CrossRefGoogle Scholar
  191. Green, A. R., and Grahame-Smith, D. G., 1974, TRH potentiates behavioral changes following increased brain 5-hydroxy-tryptamine accumulation in rats, Nature (London)251:524–526.CrossRefGoogle Scholar
  192. Green, H., Greenberg, S. M., and Erickson, R. W., 1962, Effect of dietary phenylalanine and tryptophan upon the rat brain amine levels, J. Pharmacol. Exp. Ther. 136:174–178.PubMedGoogle Scholar
  193. Greenspan, K., Schildkraut, J. J., Gordon, E. K., Levy, B., and Durell, J., 1969, Catecholamine metabolism in affective disorders. II. Norepinephrine, normetane-phrine, epinephrine, metanephrine and VMA excretion in hypomanic patients, Arch. Gen. Psychiatry21:710–716.PubMedCrossRefGoogle Scholar
  194. Greenspan, K., Schildkraut, J. J., Gordon, E. K., Baer, L., Aranoff, M. S., and Durell, J., 1970, Catecholamine metabolism in affective disorders. III. MHPG and other catecholamine metabolites in patients treated with lithium carbonate, J. Psychiatr. Res. 7:171–183.PubMedCrossRefGoogle Scholar
  195. Grof, P., and Foley, P., 1971, The superiority of lithium over methysergide in treating manic patients, Am. J. Psychiatry127:1573–1574.PubMedGoogle Scholar
  196. Grote, S. S., Moses, S. G., Robins, E., Hudgens, R. W., and Croninger, A. B., 1974, A study of selected catecholamine-metabolizing enzymes: A comparison of depressive suicides and alcoholic suicides with controls, J. Neurochem. 23:791–802.PubMedCrossRefGoogle Scholar
  197. Gruen, P. H., Sacher, E. J., Altman, N., and Sassin, J., 1975, Growth hormone responses to hypoglycemia in postmenopausal depressed women, Arch. Gen. Psychiatry32:31–33.PubMedCrossRefGoogle Scholar
  198. Guldberg, H. C., Ashcroft, G. W., and Crawford, T. B. B., 1966, Concentrations of 5-hydroxyindoleacetic acid and homovanillic acid in the cerebrospinal fluid of the dog before and during treatment with probenecid, Life Sci. 5:1571–1575.PubMedCrossRefGoogle Scholar
  199. Hamadah, K., Holmes, H., Barker, G. B., Hartman, G. C., and Parke, D. V. W., 1972, Effect of electric convulsion therapy on urinary cyclic adenosine monophosphate, Br. Med. J. 111:439–441.CrossRefGoogle Scholar
  200. Hamilton, M., 1968, Some aspects of the long-term treatment of severe hypertension with methyldopa, Postgrad. Med. J. 44:66–69.PubMedCrossRefGoogle Scholar
  201. Harper, A. E., Benevenga, N. J., and Wolhueter, R. M., 1970, Effects of ingestion of disproportionate amounts of amino acids, Physiol. Rev. 50:428–558.PubMedGoogle Scholar
  202. Haskovec, L., 1969, Methysergide in mania, Lancet2:902.PubMedCrossRefGoogle Scholar
  203. Haskovec, L., and Rysanek, K., 1967, The action of reserpine in imipramine-resistant depressive patients, Psychopharmacologia11:18–30.PubMedCrossRefGoogle Scholar
  204. Haskovec, L., and Soucek, K., 1968, Trial of methysergide in mania, Nature (London)219:507–508.CrossRefGoogle Scholar
  205. Hassler, R., Bak, I. J., and Kim, J. S., 1970, Unterschiedliche Endeerung des Speicheorte für Noradrenalin, Dopamine, und Serotonin als Wirkungsprinzip des Oxypertins, Nervenarzt. 41:105–118.PubMedGoogle Scholar
  206. Hendley, E. D., and Welch, B. L., 1975, Electroconvulsive shock: Sustained decrease in norepinephrine uptake affinity in a reserpine model of depression, Life Sci. 16:45–54.PubMedCrossRefGoogle Scholar
  207. Herrington, K. N., Bruce, A., Johnstone, E. C., and Lader, M. H., 1974, Comparative trial of L-tryptophan and E.C.T. in severe depressive illness, Lancet2:731–734.PubMedCrossRefGoogle Scholar
  208. Hertting, G., and La Brosse, H., 1962, Bilary and urinary excretion of metabolites of 7 H3-epinephrine in the rat, J. Biol. Chem. 237:2291–2295.PubMedGoogle Scholar
  209. Hertz, D., and Sulman, F. G., 1968, Preventing depression with tryptophan, Lancet1:531–532.PubMedCrossRefGoogle Scholar
  210. Hinsley, R. K., Norton, J. A., and Aprison, M. H., 1968, Serotonin, norepinephrine and 3,4-dihydroxyphenylethylamine in rat brain parts following electroconvulsive shock, J. Psychiatr. Res. 6:143–152.CrossRefGoogle Scholar
  211. Hirsch, S. R., Gaind, R., Rohde, P. D., Stevens, B. C., and Wing, J. K., 1973, Outpatient maintenance of chronic schizophrenic patients with long-acting fluphenazine: Double-blind placebo trial, Br. Med. J. 192:633–637.CrossRefGoogle Scholar
  212. Ho, A. K. S., Loh, H. H., Craves, F., Hitzeman, R. J., and Gershon, S., 1970, The effect of prolonged lithium treatment on the synthesis rat and turn-over of monoamines in brain regions of rats, Eur. J. Pharmacol. 10:72–78.CrossRefGoogle Scholar
  213. Hollister, L. E., Berger, P., Ogie, F. L., Arnold, R. C., and Johnson, A., 1974, Protirelin (TRH) in depression, Arch. Gen. Psychiatry31:468–470.PubMedCrossRefGoogle Scholar
  214. Horst, W. D., and Spirt, N., 1974, A possible mechanism for the antidepressant activity of thyrotropin releasing hormone, Life Sci. 15:1073–1082.PubMedCrossRefGoogle Scholar
  215. Hullin, R. P., Bailey, A. D., McDonald, R., Dransfield, G. A., and Milne, H. B., 1967, Variations in 11-hydroxycorticosteroids in depression and manic-depressive psychosis, Br. J. Psychiatry113:593–600.PubMedCrossRefGoogle Scholar
  216. Hunter, K. R., Boakes, A. J., Laurence, D. R., and Stern, G. M., 1970, Monoamine oxidase inhibitors and L-dopa, Br. Med. J. 3:388.PubMedCrossRefGoogle Scholar
  217. Janowski, D. S., El-Yousef, M. K., Davis, J. M., and Sekerke, H. J., 1972, A cholinergic adrenergic hypothesis of mania and depression, Lancet2:632–635.CrossRefGoogle Scholar
  218. Janowski, D. S., El-Yousef, M. K., Davis, J. M., and Sekerke, H. J., 1973, Parasympathetic suppression of manic symptoms by physostigmine, Arch. Gen. Psychiatry28:542–552.CrossRefGoogle Scholar
  219. Janowski, D. S., El-Yousef, M. K., and Davis, J. M., 1974, Acetylcholine and depression, Psychosom. Med. 36:248–257.Google Scholar
  220. Jensen, K., Fruensgaard, K., Ahlfors, U. G., Pihkanen, T. A., Tuomikoski, S., Ose, E., Dencker, S. J., Lindberg, D., and Nagy, A., 1975, Tryptophan/imipramine in depression, Lancet2:920.PubMedCrossRefGoogle Scholar
  221. Jepson, J. B., Lovenberg, W., and Zaltzman, P., 1960, Amine metabolism studied in normal and Phenylketonuric humans by monoamine oxidase inhibition, Biochem. J. 74:5.Google Scholar
  222. Jéquir, E., Lovenberg, W., and Sjoerdsma, A., 1967, Tryptophan hydroxylase inhibition: The mechanism by which p-chlorophenylalanine depletes rat brain serotonin, Mol. Pharmacol. 3:274–278.Google Scholar
  223. Jimerson, D. C., Gordon, E. K., Post, R. M., and Goodwin, F. K., 1975, Central noradrenergic function in man: Vanillylmandelic acid in CSF, Brain Res. 99:434–439.PubMedCrossRefGoogle Scholar
  224. Johnson, P., Kitchin, A. H., Lowther, C. P., and Turner, R. W. D., 1966, Treatment of hypertension with methyldopa, Br. Med. J. 1:133–137.PubMedCrossRefGoogle Scholar
  225. Jonsson, L. E., Angard, E., and Gunne, L. M., 1971, Blockade of intravenous amphetamine euphoria in man, Clin. Pharmacol. Ther. 12:889–896.PubMedGoogle Scholar
  226. Kane, F. J., 1970, Treatment of mania with cinanserin, an antiserontonin agent, Am. J. Psychiatry126:1020–1023.PubMedGoogle Scholar
  227. Kansal, P. C., Buse, J., Talbert, O. R., and Buse, M. G., 1972, Effect of L-dopa on plasma growth hormone, insulin, and thyroxine, J. Clin. Endocrinol. Metab. 34:99–105.PubMedCrossRefGoogle Scholar
  228. Karki, N. T., 1956, Urinary excretion of noradrenaline and adrenaline in different age groups. Its diurnal variation and effect of muscular work on it, Acta Physiol. Scand. 39(Supl. 132): 5–96.Google Scholar
  229. Kastin, A. J., Ehrensing, R. H., Schalch, D. S., and Anderson, M. S., 1972, Improvement in mental depression with decreased thyrotropin response after administration of thyrotropin-releasing hormone, Lancet2:740–742.PubMedCrossRefGoogle Scholar
  230. Katz, R. I., Chase, T. N., and Kopin, I. J., 1968, Evoked release of norepinephrine and serotonin from brain slices: Inhibition by lithium, Science162:466–467.PubMedCrossRefGoogle Scholar
  231. Keller, H. H., Bartholini, G., and Pletscher, A., 1973, Increase of 3-methoxy-4-hydroxyphenylethylene glycol in rat brain by neuroleptic drugs, Eur. J. Pharmacol. 23:183–186.PubMedCrossRefGoogle Scholar
  232. Keller, H. H., Bartholini, G., and Pletscher, A., 1974, Enchancement of noradrenaline turnover in rat brain by L-dopa, J. Pharm. Pharmacol. 26:649–651.PubMedCrossRefGoogle Scholar
  233. Kety, S. S., 1971, Brain amines and affective disorders, in: Brain Biochemistry and Mental Disease (B. T. Ho and W. M. McIsaac, eds.), pp. 237–263, Plenum Press, New York.Google Scholar
  234. Kety, S. S., Javoy, F., Thierry, A. M., Julou, L., and Glowinski, J., 1967, A sustained effect of electroconvulsive shock on the turnover of norepinephrine in the central nervous system of the rat, Proc. Natl. Acad. Sci. U.S.A. 58:1249–1254.PubMedCrossRefGoogle Scholar
  235. Klaiber, E. L., Kobayashi, Y., Broverman, D. M., and Hall, F., 1971, Plasma monoamine oxidase activity in regularly menstruating women and in amenorrheic women receiving cyclic treatment with estrogenes and a progestin, J. Clin. Endocrinol. 33:630–638.CrossRefGoogle Scholar
  236. Klaiber, E. L., Broverman, D. M., Vogel, W., Kobayashi, Y., and Moriarty, D., 1972, Effects of estrogen therapy on plasma MAO activity and EEG driving responses of depressed women, Am. J. Psychiatry128:42–48.Google Scholar
  237. Kleinberg, D. L., Noel, G. L., and Frantz, A. G., 1971, Chlorpromazine stimulation and L-dopa suppression of plasma prolactin in man, J. Clin. Endocrinol. Metab. 33:873–876.CrossRefGoogle Scholar
  238. Klerman, G. L., Schildkraut, J. J., Hasenbush, L. L., Greenblatt, M., and Friend, D. G., 1963, Clinical experience with dihydroxyphenylalanine (dopa) in depression, J. Psychiatr. Res. 1:289–297.CrossRefGoogle Scholar
  239. Kline, N. S., Sacks, W., and Simpson, G. M., 1964, Further studies on one day treatment of depression with 5-HTP, Am. J. Psychiatry121:379–381.PubMedGoogle Scholar
  240. Knox, W. E., 1951, Two mechanisms which increase in vivo the liver tryptophan peroxidase activity: Specific enzyme adaption and stimulation of the pituitary adrenal system, Br. J. Exp. Pathol. 32:462–469.PubMedGoogle Scholar
  241. Knox, W. E., and Auerbach, V. H., 1955, The hormonal control of tryptophan peroxidase in the rat, J. Biol. Chem. 214:307–313.PubMedGoogle Scholar
  242. Koe, B. K., and Weissman, A., 1966, Marked depletion of brain serotonin by p-chlorophenylalanine, Fed. Proc. Fed. Am. Soc. Exp. Biol. 25:452.Google Scholar
  243. Korf, J., and van Praag, H. M., 1970, The intravenous probenecid test: A possible aid in evaluation of the serotonin hypothesis on the pathogenesis of depression, Psychopharmacologia18:129–132.PubMedCrossRefGoogle Scholar
  244. Korf, J., van Praag, H. M., 1971, Amine metabolism in human brain: Further evaluation of the probenecid test, Brain Res. 35:221–230.PubMedCrossRefGoogle Scholar
  245. Korf, J., van Praag, H. M., 1972, Action of p-chloramphetamine on cerebral serotonin metabolism: An hypothesis, Neuropharmacology11:141–144.PubMedCrossRefGoogle Scholar
  246. Korf, J., van Praag, H. M., and Sebens, J. B., 1971, Effect of intravenously administered probenecid in humans on the levels of 5-hydroxy-indole-acetic acid, homovanillic acid and 3-methoxy-4-hydroxy-phenyl-glycol in cerebrospinal fluid, Biochem. Pharmacol. 20:659–668.PubMedCrossRefGoogle Scholar
  247. Korf, J., van Praag, H. M., and Sebens, J. B., 1972, Serum tryptophan decreased, brain tryptophan increased and brain serotonin synthesis unchanged after probenecid loading, Brain Res.42:239–242.PubMedCrossRefGoogle Scholar
  248. Korf, J., Schutte, H. H., and Venema, K., 1973, A semi-automated fluorometric determination of 5-hydroxyindoles in the nanogram range, Anal. Biochem.53:146–153.PubMedCrossRefGoogle Scholar
  249. Korf, J., Venema, K., and Postema, F., 1974, Decarboxylation of exogenous L-5-hydroxy-tryptophan after destruction of the cerebral raphe system, J. Neurochem.23:249–252.PubMedCrossRefGoogle Scholar
  250. Kupfer, D. Y., and Bowers, M. B., Jr., 1972, REM sleep and central monoamine oxidase inhibition, Psychopharmacologia27:183–190.PubMedCrossRefGoogle Scholar
  251. Kuriyama, K., and Speken, R., 1970, Effect of lithium on content and uptake of norepinephrine and 5-hydroxytryptamine in mouse brain synaptosomes and mitochondria, Life Sci. 9:1213–1220.CrossRefGoogle Scholar
  252. Lackroy, G. H., and van Praag, H. M., 1971, Lithium salts as sedatives. An investigation into the possible effects of lithium on acute anxiety, Acta Psychiatr. Scand.47:163–173.PubMedCrossRefGoogle Scholar
  253. Ladisisch, W., Steinhauff, N., and Matussek, N., 1969, Chronic administration of electroconvulsive shock and norepinephrine metabolism in the rat brain, Psychopharmacologia15:296–304.CrossRefGoogle Scholar
  254. Lakke, J. P. W. F., Korf, J., van Praag, H. M., and Schut, T., 1972, The predictive value of the probenecid test for the effect of levodopa therapy in Parkinson’s disease, Nature (London) New Biol. 236:208–209.Google Scholar
  255. Lamprecht, F., Ebert, M. H., Turek, I., and Kopin, I. J., 1974, Serum dopamine-beta-hydroxylase in depressed patients and the effect of electroconvulsive shock treatment, Psychopharmacologia40:241–248.PubMedCrossRefGoogle Scholar
  256. Lapin, I. P., and Oxenkrug, G. F., 1969, Intensification of the central serotonergic process as a possible determinant of the thymoleptic effect, Lancet1:132–136.PubMedCrossRefGoogle Scholar
  257. Levitt, M., Spector, S., Sjoerdsma, A., and Udenfriend, S., 1965, Elucidation of the rate-limiting step in norepinephrine biosynthesis in the perfused guinea pig heart, J. Pharmacol. Exp. Ther.148:1–8.PubMedGoogle Scholar
  258. Lewander, T., and Sjöström, R., 1973, Increase in the plasma concentration of free tryptophan caused by probenecid in humans. Psychopharmacologia33:81–86.PubMedCrossRefGoogle Scholar
  259. Lipsett, D., Madras, B. K., Wurtman, R. J., and Munro, H. N., 1973, Serum tryptophan level after carbohydrate ingestion: Selective decline in non-albumin-bound tryptophan coincident with reduction in serum free fatty acids, Life Sci. 12:57–64.CrossRefGoogle Scholar
  260. Lloyd, K. J., Farley, I. J., Deck, J. H. N., and Hornykiewicz, O., 1974, Serotonin and 5-hydroxyindoleacetic acid in discrete areas of the brainstem of suicide victims and control patients, Adv. Biochem. Psychopharmacol.11:387–397.PubMedGoogle Scholar
  261. Lopez-Ibor, A. J. J., Gutierrez, J. L. A., and Iglesias, M. L. M., 1973, Tryptophan and amitryptiline in the treatment of depression. A double blind study, Int. Pharmacopsychiatry8:145–151.Google Scholar
  262. Lovenberg, W., Jéquir, E., and Sjoerdsma, A., 1968, Tryptophan hydroxylation in mammalian systems, Adv. Pharmacol.6A:21–36.CrossRefGoogle Scholar
  263. Maas, J. W., Fawcett, J. A., and Dekirmenjian, H., 1968, 3-Methoxy-4-hydroxyphenylglycol (MHPG) excretion in depressive states: Pilot study, Arch. Gen. Psychiatry19:129–134.PubMedCrossRefGoogle Scholar
  264. Maas, J. W., Dekirmenjian, H., and Fawcett, J., 1971, Catecholamine metabolism, depression and stress, Nature (London)230:330–331.CrossRefGoogle Scholar
  265. Maas, J. W., Fawcett, J. A., and Dekirmenjian, H., 1972, Catecholamine metabolism, depressive illness, and drug responses, Arch. Gen. Psychiatry26:252–262.PubMedCrossRefGoogle Scholar
  266. Maas, J. W., Dekirmanjian, H., and Jones, F., 1973a, The identification of depressed patients who have a disorder of NE metabolism and/or disposition, in: Frontiers in Catecholamine Research (E. Usdin and S. Snyder, eds.), pp. 1091–1096, Pergamon Press, New York.Google Scholar
  267. Maas, J. W., Dekirmenjian, H., Garver, D., Redmon, D. E., Jr., and Landis, D. H., 1973b, Excretion of catecholamine metabolites following intraventricular injection of 6-hydroxydopamine in the Macaca speciosa, Eur. J. Pharmacol.23:121–130.PubMedCrossRefGoogle Scholar
  268. Mandell, A. J. (ed.), 1975, Neurobiological mechanisms of presynaptic metabolic adaptation and their organization: Implications for a pathophysiology of the affective disorders, in: Neurobiological Mechanism of Adaption and Behavior, pp. 219–235, Raven Press, New York.Google Scholar
  269. Mangoni, A., 1974, The “kynurenine shunt” and depression, Adv. Biochem. Psychopharmacol.11:293–298.PubMedGoogle Scholar
  270. Martin, J. B., 1973, Neural regulations of growth hormone secretion, N. Engl. J. Med.288:1384–1393.PubMedCrossRefGoogle Scholar
  271. Matussek, N., Pohlmeier, H., and Rüther, E., 1966, Die Wirkung von Dopa auf gehemmte Depressionen, Klin. Wochenschr.44:727–728.PubMedCrossRefGoogle Scholar
  272. Matussek, N., Benkert, O., Schneider, K., Otten, H., and Pohlmeier, H., 1970, Wirkung eines Decarboxylasehemmers (Ro 4–4602) in Kombination mit L-dopa auf gehemmte Depressionen, Arzneim.-Forsch.20:934–937.Google Scholar
  273. McGabe, M. S., Reich, T., and Winokur, G., 1970, Methysergide as a treatment for mania, Am. J. Psychiatry127:354–356.Google Scholar
  274. McNamee, H. B., Moody, J. P., and Naylor, G. J., 1972a, Indoleamine metabolism in affective disorders: Excretion of tryptamine, indoleacetic acid and 5-hydroxyindoleacetic acid in depressive states, J. Psychosom. Res.16:63–70.PubMedCrossRefGoogle Scholar
  275. McNamee, H. B., Le Poidevin, D., and Naylor, G. J., 1972b, Methysergide in mania: A double-blind comparison with thioridazine, Psychol. Med.2:66–69.PubMedCrossRefGoogle Scholar
  276. Meek, J. L., and Neff, N. H., 1973, Is cerebrospinal fluid the major avenue for the removal of 5-hydroxyindoleacetic acid from the brain?, Neuropharmacology12:497–499.PubMedCrossRefGoogle Scholar
  277. Meites, J., Lu, K. H., Wuttke, W., Welsch, C. W., Nagasawa, H., and Quadrie, F. K., 1972, Recent studies on function and control of prolactin secretion in rats, Recent Prog. Horm. Res.28:471–526.PubMedGoogle Scholar
  278. Mendels, J., 1971, Relationship between depression and mania, Lancet1:342.PubMedCrossRefGoogle Scholar
  279. Mendels, J., and Frazer, A. J., 1973, Intracellular lithium concentration and clinical response: Towards a membrane theory of depression, J. Psychiatr. Res.10:9–18.PubMedCrossRefGoogle Scholar
  280. Mendels, J., Frazer, A., Fitzgerald, R. G., Ramsey, T. A., and Stokes, J. W., 1972, Biogenic amine metabolites in cerebrospinal fluid of depressed and manic patients, Science175:1380–1382.PubMedCrossRefGoogle Scholar
  281. Mendels, J., Stinnet, J. L., Burns, D., and Frazer, A., 1975, Amine precursors and depression, Arch. Gen. Psychiatry32:22–30.PubMedCrossRefGoogle Scholar
  282. Messiha, F. S., Agallianos, D., and Clower, C., 1970, Dopamine excretion in affective states and following Li2CO3 therapy, Nature (London)225:868–869.CrossRefGoogle Scholar
  283. Miller, E. E., Sawano, S., and Arimura, A., 1967, Blockade of release of growth hormone by brain norepinephrine depletors, Endocrinology80:471–476.CrossRefGoogle Scholar
  284. Modigh, K., 1972, Central and peripheral effects of 5-hydroxytryptophan on motor activity in mice, Psychopharmacologia23:48–54.PubMedCrossRefGoogle Scholar
  285. Modigh, K., 1973, Effects of L-tryptophan on motor activity in mice, Psychopharmacologia30:123–134.PubMedCrossRefGoogle Scholar
  286. Moir, A. T. B., Ashcroft, G. W., Crawford, T. B. B., Eccleston, D., and Guildberg, H. C., 1970, Cerebral metabolites in cerebrospinal fluid as a biochemical approach to the brain, Brain93:357–368.PubMedCrossRefGoogle Scholar
  287. Morgan, W. W., Saldana, J. J., Yndo, C. A., and Morgan, J. F., 1975, Correlations between circadian changes in serum amino acids or brain tryptophan and the contents of serotonin and 5-hydroxyindoleacetic acid in regions of the rat brain, Brain Res. 84:75–86.PubMedCrossRefGoogle Scholar
  288. Mosnaim, A. D., Inwang, E. E., and Sabelli, H. C., 1974, The influence of psychotropic drugs on the levels of endogenous 2-phenylethylamine in rabbit brain, Biol. Psychiatry8:227–234.PubMedGoogle Scholar
  289. Mountjoy, C. Q., Price, J. S., Weller, M., Hunter, P., Hall, R., and Dewar, J. H., 1974, A double-blind cross-over sequential trial of oral thyrotropin-releasing hormone in depression, Lancet1:958–960.PubMedCrossRefGoogle Scholar
  290. Müller, E. E., Pecile, A., Felici, M., and Cocchi, D., 1970, Norepinephrine and dopamine injection into lateral brain ventricles of the rat and growth hormone releasing activity in hypothalamus and plasma, Endocrinology86:1376–1382.PubMedCrossRefGoogle Scholar
  291. Murphy, D. L., 1972, Amine precursors, amines, and false neurotransmitters in depressed patients, Am. J. Psychiatry129:141–148.PubMedGoogle Scholar
  292. Murphy, D. L., and Weiss, R., 1972, Reduced monoamine oxidase activity in blood platelets from bipolar depressed patients, Am. J. Psychiatry128:35–41.Google Scholar
  293. Murphy, D. L., Colburn, R. W., Davis, J. M., and Bunney, W. E., Jr., 1969, Stimulation by lithium of monoamine uptake in human platelets, Life Sci. 8:1187–1193.PubMedCrossRefGoogle Scholar
  294. Murphy, D. L., Brodie, H. K. H., Goodwin, F. K., and Bunney, W. E., Jr., 1971, L-Dopa: Regular induction of hypomania in “bipolar” manic depressive patients, Nature (London)229:135–136.CrossRefGoogle Scholar
  295. Murphy, D. L., Baker, M., Goodwin, F. K., Miller, H., Kotin, J., and Bunney, W. E., Jr., 1974, L-Tryptophan in affective disorders: Indoleamine changes and differential clinical effects, Psychopharmacologia34:11–20.PubMedCrossRefGoogle Scholar
  296. Musacchio, J. M., Julou, L., Kety, S. S., and Glowinski, J., 1969, Increase in rat brain tyrosine hydroxylase activity produced by electroconvulsive shock, Proc. Nat. Acad. Sci. U.S.A.63:1117–1119.CrossRefGoogle Scholar
  297. Nagatsu, T., Hidaka, H., Kuzuya, H., and Takeya, K., 1970, Inhibition of dopamines-hydroxylase by fusaric acid (5-butylpicolinic acid) in vitro and in vivo, Biochem. Pharmacol.19:35–44.PubMedCrossRefGoogle Scholar
  298. Neff, N. H., and Yand, H. Y. T., 1974, Another look at the monoamine oxidases and the monoamine oxidase inhibitor drugs, Life Sci.14:2061–2077.PubMedCrossRefGoogle Scholar
  299. Neff, N. H., Tozer, T. H., and Brodie, B. B., 1967, Application of steady-state kinetics to studies of the transfer of 5-hydroxyindoleacetic acid from brain to plasma, J. Pharmacol. Exp. Ther.158:214–218.Google Scholar
  300. Ng, K. Y., Chase, T. N., Colburn, R. W., and Kopin, I. J., 1970, L-Dopa induced release of cerebral monoamines, Science170:76–77.PubMedCrossRefGoogle Scholar
  301. Nordin, G., Ottosson, J. O., and Roos, B.-E., 1971, Influence of convulsive therapy on 5-hydroxyindoleacetic acid and homovanillic acid in cerebrospinal fluid in endogenous depression, Psychopharmacologia20:315–320.PubMedCrossRefGoogle Scholar
  302. Nybäck, H., and Sedvall, G., 1970, Further studies on the accumulation and disappearance of catecholamines formed from trysine-14C in mouse brain. Effect of some phenothiazine analogues, Eur. J. Pharmacol.10:193–205.PubMedCrossRefGoogle Scholar
  303. Olsson, R., and Roos, B.-E., 1968, Concentrations of 5-hydroxyindoleacetic acid and homovanillic acid in the cerebrospinal fluid after treatment with probenecid in patients with Parkinson’s disease, Nature (London)219:502–503.CrossRefGoogle Scholar
  304. Papeschi, R., and McClure, D. J., 1971, Homovanillic acid and 5-hydroxyindoleacetic acid in cerebrospinal fluid of depressed patients, Arch. Gen. Psychiatry25:354–358.PubMedCrossRefGoogle Scholar
  305. Papeschi, R., Sourkes, T. L., Poirier, L. J., and Boucher, R., 1971, On the intracerebral origin of homovanillic acid of the cerebrospinal fluid of experimental animals, Brain Res. 28:527–533.PubMedCrossRefGoogle Scholar
  306. Papeschi, R., Randrup, A., and Munkvad, I., 1974, Effect of ECT on dopaminergic and noradrenergic mechanisms, Psychopharmacologia35:159–168.PubMedCrossRefGoogle Scholar
  307. Pare, C. M. B., 1963, Potentiation of monoamine oxidase inhibitors by tryptophan, Lancet2:527:528.Google Scholar
  308. Pare, C. M. B., and Sandler, M., 1959, A clinical and biochemical study of a trial of iproniazid in the treatment of depression, J. Neurol. Neurosurg. Psychiatry22:247–251.PubMedCrossRefGoogle Scholar
  309. Pare, C. M. B., Yeung, D. P. H., Price, K., and Stacey, R. S., 1969, 5-Hydroxytryptamine in brainstem, hypothalamus and caudate nucleus of controls and of patients committing suicide by coal-gas poisoning, Lancet2:133–135.PubMedCrossRefGoogle Scholar
  310. Paul, M. J., Ditzion, B. R., Pauk, G. L., and Janowski, D. S., 1970, Urinary adenosine 35′-monophosphate excretion in affective disorders, Am. J. Psychiatry126:1493–1497.PubMedGoogle Scholar
  311. Paul, M. J., Cramer, H., and Goodwin, F. K., 1971, Urinary cyclic AMP excretion in depression and mania, Arch. Gen. Psychiatry24:327–333.PubMedCrossRefGoogle Scholar
  312. Paykel, E. S., 1972, Correlates of a depressive typology, Arch. Gen. Psychiatry27:203–210.PubMedCrossRefGoogle Scholar
  313. Perel, J. M., Black, N., Wjarton, R. N., and Malitz, S., 1969, Inhibition of imipramine metabolism by methylphenidate, Fed. Proc. Fed. Am. Soc. Exp. Biol.28:418.Google Scholar
  314. Perez-Cruet, J., Tagliamonte, P., Tagliamonte, A., and Gessa, G. L., 1971, Stimulation of serotonin synthesis by lithium, J. Pharmacol. Exp. Ther.178:325–330.PubMedGoogle Scholar
  315. Perris, C., 1966, A study of bipolar (manic-depressive) and unipolar recurrent depressive psychoses, Acta Psychiat. Scand.42(Suppl. 194): 1–189.Google Scholar
  316. Persson, T., and Roos, B. E., 1968, 5-Hydroxytryptophan for depression, Lancet2:987–988.Google Scholar
  317. Pflanz, G., and Palm, D., 1973, Acute enhancement of dopamine-β-hydroxylase activity in human plasma after maximum work load, Eur. J. Clin. Pharmacol.5:555–558.Google Scholar
  318. Pletscher, A., Bartholini, G., Bruderer, H., Burkard, W. P., and Grey, K. F., 1964, Chlorinated aralkylamines affecting the cerebral metabolism of 5-hydroxytryptamine, J. Pharmacol. Exp. Ther.145:344–350.PubMedGoogle Scholar
  319. Pletscher, A., da Prada, M., Burkard, W. P., Bartholini, G., Steiner, F. A., Bruderer, H., and Bigler, F., 1966, Aralkylamines with different effects on the metabolism of aromatic monoamines, J. Pharmacol. Exp. Ther.154:64–72.PubMedGoogle Scholar
  320. Pletscher, A., Bartholini, G., and Tissot, R., 1967, Metabolic fate of 1-(14C) dopa in cerebrospinal fluid and blood plasma of humans, Brain Res. 4:106–109.PubMedCrossRefGoogle Scholar
  321. Plotnikoff, N. P., Prange, A. J., Jr., Breese, G. R., Anderson, M. S., and Wilson, I. C., 1972, Thyrotropin releasing hormone: Enhancement of dopa activity by a hypothalamic hormone, Science178:417–418.PubMedCrossRefGoogle Scholar
  322. Plotnikoff, N. P., Prange, A. J., Jr., Breese, G. R., and Wilson, I. C., 1974, Thyrotropin releasing hormone: Enhancement of dopa activity in thyroidectomized rates, Life Sci.14:1271–1278.PubMedCrossRefGoogle Scholar
  323. Poitou, P., Guerinot, F., and Bohuon, C., 1974, Effect of lithium on central metabolism of 5-hydroxytryptamine, Psychopharmacologia38:75–80.PubMedCrossRefGoogle Scholar
  324. Poldinger, W., 1963, Combined administration of desipramine and reserpine or tetrabenazine in depressed patients, Psychopharmacologia4:308.CrossRefGoogle Scholar
  325. Post, R. M., and Goodwin, F. K., 1973, Stimulated behavior states: An approach to specificity in psychobiological research, Biol. Psychiatry7:237–254.PubMedGoogle Scholar
  326. Post, R. M., Goodwin, F. K., Gordon, E., and Watkins, D. M., 1973a, Amine metabolites in human cerebrospinal fluid: Effects of cord transaction and spinal fluid block, Science179:897–899.PubMedCrossRefGoogle Scholar
  327. Post, R. M., Kotin, J., Goodwin, F. K., and Gordon, E. K., 1973b, Psychomotor activity and cerebrospinal fluid amine metabolites in affective illness, Am. J. Psychiatry130:67–72.PubMedGoogle Scholar
  328. Post, R. M., Gordon, E. K., Goodwin, F. K., Bunney, W. E., Jr., 1973c, Central norepinephrine metabolism in affective illness. MHPG in the cerebrospinal fluid, Science179:1002–1003.PubMedCrossRefGoogle Scholar
  329. van Praag, H. M., 1962, A critical investigation of the importance of monoamine oxidase inhibition as a therapeutic principle in the treatment of depression, thesis, Utrecht.Google Scholar
  330. van Praag, H. M., 1967, Antidepressants, catecholamines and 5-hydroxyindoles. Trends towards a more specific research in the field of antidepressants, Psychiatr. Neurol. Neurochir.70:219–233.PubMedGoogle Scholar
  331. van Praag, H. M., 1969, Depressie en de stofwisseling van 5-hydroxytryptamine (Depression and serotonin metabolism), Ned. Tijdschr. Geneeshd.113:2245–2247.Google Scholar
  332. van Praag, H. M., 1972, Biological psychiatry in perspective. The dangers of sectarianism in psychiatry, Comp. Psychiatry13:401–410.CrossRefGoogle Scholar
  333. van Praag, H. M., 1974, Central monoamine deficiency in depressions: Causative or secundary phenomenon, Pharmakopsychiatr.8:321–326.Google Scholar
  334. van Praag, H. M., 1974a, Towards a biochemical typology of depressions? Pharmacopsychiatry7:281–292.CrossRefGoogle Scholar
  335. van Praag, H. M., 1974b, New developments in human psychopharmacology, Comp. Psychiatry15:389–401.CrossRefGoogle Scholar
  336. van Praag, H. M., 1975, Neuroleptics as a guideline to biological research in psychotic disorders, Comp. Psychiatry16:7–22.CrossRefGoogle Scholar
  337. van Praag, H. M., 1977a, Depression and Schizophrenia: A Contribution on Their Chemical Pathologies, Spectrum, New York.Google Scholar
  338. van Praag, H. M., 1977b, Evidence of serotonin-deficient depressions, Neuropsychobiology3:56–63.PubMedCrossRefGoogle Scholar
  339. van Praag, H. M., 1978, Psychotropic Drugs. A Guideline for the Practising Physician, Brunner/Masel, New York.Google Scholar
  340. van Praag, H. M., and Korf, J., 1970, L-Tryptophan in depression, Lancet2:612.PubMedCrossRefGoogle Scholar
  341. van Praag, H. M., and Korf, J., 1971a, Endogenous depressions with and without disturbances in the 5-hydroxytryptamine metabolism: A biochemical classification?, Psychopharmacologia19:148–152.PubMedCrossRefGoogle Scholar
  342. van Praag, H. M., and Korf, J., 1971b, Nieuwe ontwikkelingen op het terrein van de antidepressiva (New developments in the field of antidepressants), Ned. Tijdschr. Geneeshd.115:1963–1970.Google Scholar
  343. van Praag, H. M., and Korf, J., 1971c, Retarded depressions and the dopamine metabolism, Psychopharmacologia19:199–203.PubMedCrossRefGoogle Scholar
  344. van Praag, H. M., and Korf, J., 1973, 4-Chloramphetamines. Chance and trend in the development of new antidepressants, J. Clin. Pharmacol.13:3–14.Google Scholar
  345. van Praag, H. M., and Korf, J., 1974, 5-Hydroxytryptophan as an antidepressant, J. Nerv. Ment. Dis.158:331–337.PubMedCrossRefGoogle Scholar
  346. van Praag, H. M., and Korf, J., 1975, Neuroleptics, catecholamines and psychotic disorders. A study of their interrelation, Am. J. Psychiatry132:593–599.PubMedGoogle Scholar
  347. van Praag, H. M., and Korf, J., 1975a, 4-Chloramphetamines, in: Psychotherapeutic Drugs (E. Usdin and I. S. Forrest, eds.), pp. 1217–1250, Marcel Dekker, New York and Basel.Google Scholar
  348. van Praag, H. M., and Korf, J., 1975b, Biochemical research in schizophrenia. Results of a new research strategy, Acta Psychiatr. Scand.51:268–284.PubMedGoogle Scholar
  349. van Praag, H. M., and Leijnse, B., 1963a, Die Bedeutung der Monoaminoxydasehemmung als antidepressives Prinzip I, Psychopharmacologia4:1–14.CrossRefGoogle Scholar
  350. van Praag, H. M., and Leijnse, B., 1963b, Die Bedeutung der Psychopharmacologie für die klinische Psychiatrie. Systematik als notwendiger Ausgangspunkt, Nervenarzt34:530–537.Google Scholar
  351. van Praag, H. M., and Leijnse, B., 1965, Neubewertung des Syndromes. Skizze einer funktionellen Pathologie, Psychiatr. Neurol. Neurochir.68:50–66.Google Scholar
  352. van Praag, H. M., Uleman, A. M., and Spitz, J. C., 1965, The vital syndrome interview. A structured standard interview for the recognition and registration of the vital depressive symptom complex, Psychiatr. Neurol. Neurochir.68:329–346.PubMedGoogle Scholar
  353. van Praag, H. M., Korf, J., and Puite, J., 1970, 5-Hydroxyindoleacetic acid levels in the cerebrospinal fluid of depressive patients treated with probenecid, Nature (London)225:1259–1260.CrossRefGoogle Scholar
  354. van Praag, H. M., Korf, J., Dols, L. C. W., and Schut, T., 1972, A pilot study of the predictive value of the probenecid test in application of 5-hydroxytryptophan as an antidepressant, Psychopharmacologia25:14–21.PubMedCrossRefGoogle Scholar
  355. van Praag, H. M., Korf, J., and Schut, T., 1973a, Cerebral monoamines and depression An investigation with the probenecid technique, Arch. Gen. Psychiatry28:827–831.PubMedCrossRefGoogle Scholar
  356. van Praag, H. M., Flentge, F., Korf, J., Dols, L. C. W., and Schut, T., 1973b, The influence of probenecid in the metabolism of serotonin, dopamine and their precursors, in man, Psychopharmacologia33:141–151.PubMedCrossRefGoogle Scholar
  357. van Praag, H. M., van den Burg, W., Bos, E. R. M., and Dols, L. C. W., 1974, 5-Hydroxytryptophan in combination with clomipramine in “therapy-resistant” depressions, Psychopharmacologia30:267–269.CrossRefGoogle Scholar
  358. van Praag, H. M., Korf, J., Lakke, J. P. W. F., and Schut, T., 1975a, Dopamine metabolism in depression, psychosis and Parkinson’s disease or: The problem of the specificity of biochemical variables in behavior disorders, Psychol. Med.5:138–146.PubMedCrossRefGoogle Scholar
  359. van Praag, H. M., Dols, L. C. W., and Schut, T., 1975b, Biochemical versus psychopathological action profile of neuroleptics. A comparative study of chlorpromazine and oxypertine in acute psychotic disorders, Compr. Psychiatry16:255–263.PubMedCrossRefGoogle Scholar
  360. Prange, A. J., Jr., McCurdy, L. R., and Cochrane, C. M., 1967, The systolic blood pressure response of depressed patients to infused norepinephrine, J. Psychiatr. Res.5:1–13.PubMedCrossRefGoogle Scholar
  361. Prange, A. J., Jr., Wilson, I. C., Knox, A., McClane, T. K., and Lipton, M. A., 1970, Enhancement of imipramine by thyroid stimulating hormone: Clinical and theoretical implications, Am. J. Psychiatry127:191–199.PubMedGoogle Scholar
  362. Prange, A. J., Jr.,Wilson, I. C., Lara, P. P., Alltop, L. B., and Breese, G. R., 1972a, Effects of thyrotropin-releasing hormone in depression, Lancet2:999–1002.Google Scholar
  363. Prange, A. J., Jr., Wilson, I. C., Knox, A. E., McClane, T. K., Breese, G. R., Martin, B. R., Alltop, L. B., and Lipton, M. A., 1972b, Thyroid-imipramine clinical and chemical interaction: Evidence for a receptor deficit in depression, J. Psychiatr. Res.9:187–205.CrossRefGoogle Scholar
  364. Prange, A. J., Jr., Wilson, I. C., Lynn, C. W., Alltop, L. B., Stikeleather, R. A., and Raleigh, N. C., 1974, L-Tryptophan in mania, Arch. Gen. Psychiatry30:52–62.CrossRefGoogle Scholar
  365. Pritchard, B. N. C., Johnston, A. W., Hill, I. D., and Rosenheim, M. L., 1968, Bethanidine, guanethidine, and methyldopa in the treatment of hypertension: A within-patient comparison, Br. Med. J.1:135–144.CrossRefGoogle Scholar
  366. Prockop, L., Fahn, S., and Barbour, P., 1974, Homovanillic acid: Entry rate kinetics for transfer from plasma to cerebrospinal fluid, Brain Res. 80:435–422.PubMedCrossRefGoogle Scholar
  367. Puite, J. K., Schut, T., van Praag, H. M., and Lakke, J. P. W. F., 1973, Monoamine metabolism and depression in Parkinson patients, Psychiatr. Neurol. Neurochir. 76:61–70.PubMedGoogle Scholar
  368. Ramsden, E. N., 1970, Cyclic AMP in depression and mania, Lancet2:108.CrossRefGoogle Scholar
  369. Redmond, E. E., Jr., Maas, J. W., Kling, A., Graham, C. W., and Dekirmenjian, H., 1971, Social behavior of monkeys selectively depleted of monoamines, Science174:428–430.PubMedCrossRefGoogle Scholar
  370. Rees, J. R., Alltop, M. N. E., and Hullin, R. P., 1974, Plasma concentrations of tryptophan and other amino acids in manic-depressive patients, Psychol. Med.4:334–337.PubMedCrossRefGoogle Scholar
  371. Reigle, T. G., Avni, J., Platz, P. A., Schildkraut, J. J., and Plotnikoff, N. P., 1974, Norepinephrine metabolism in the rat brain following acute and chronic administration of thyrotropin-releasing hormone, Psychopharmacologia37:1–6.PubMedCrossRefGoogle Scholar
  372. Rimon, R., and Räkköläinen, V., 1968, Lithium iodide in the treatment of confusional states, Br. J. Psychiatry114:109–110.PubMedCrossRefGoogle Scholar
  373. Rimon, R., Roos, B.-E., Räkköläinen, V., and Alane, Y., 1971, The content of 5-hydroxyindoleacetic acid and homovanillic acid in the cerebrospinal fluid of patients with acute schizophrenia, J. Psychosom. Res.15:375–378.PubMedCrossRefGoogle Scholar
  374. Robins, E., Munoz, R. A., Martin, S., and Gentry, K. A., 1972, Primary and secondary affective disorders, in: Disorders of Mood (J. Zubin and F. A. Freyhan, eds.), pp. 33–45, John Hopkins Press, Baltimore.Google Scholar
  375. Robinson, D. S., Davis, J. M., Nies, A., Ravaris, C. G., and Sylwester, D., 1971, Relation of sex and aging to monoamine oxidase activity of human brain, plasma and platelets, Arch. Gen. Psychiatry24:536–539.PubMedCrossRefGoogle Scholar
  376. Robinson, D. S., Davis, J. M., Nies, A., Colburn, R. W., Davis, J. N., Bourne, H. R., Bunney, W. E., Jr., Shaw, D. M., and Coppen, A. J., 1972, Ageing, monoamines, and monoamine oxidase levels, Lancet1:290–291.PubMedCrossRefGoogle Scholar
  377. Robison, G. A., Coppen, A. J., Whybrow, P. C., and Prange, A. J., Jr., 1970, Cyclic AMP in affective disorders, Lancet2:1028–1029.PubMedCrossRefGoogle Scholar
  378. Roos, B.-E., and Sjöström, R., 1969, 5-Hydroxyindoleacetic acid and homovanillic acid levels in the cerebrospinal fluid after probenecid application in patients with manic-depressive psychosis, J. Clin. Pharmacol.1:153–155.Google Scholar
  379. van Rossum, J. M., 1967, The significance of dopamine receptor blockade for the action of neuroleptic drugs, in: Neuropsychopharmacology (H. Brill, ed.), pp. 321–329, Excerpta Medica, The Hague.Google Scholar
  380. Roth, J. A., and Gillis, C. N., 1974, Deamination of β-phenylethylamine by monoamine oxidase-inhibition by imipramine, Biochem. Pharmacol.23:2537–2545.PubMedCrossRefGoogle Scholar
  381. Rubin, R. T., 1967, Adrenal cortical activity changes in manic-depressive illness, Arch. Gen. Psychiatry17:671–679.PubMedCrossRefGoogle Scholar
  382. Rubin, R. T., Miller, R. G., Clark, B. R., Poland, R. E., and Arthur, R. J., 1970, The stress of aircraft carrier landings. II. 3-Methoxy-4-hydroxyphenylglycol excretion in naval aviators, Psychosom. Med.32:589–597.PubMedGoogle Scholar
  383. Rutledge, C. O., 1970, The mechanisms by which amphetamine inhibits oxidative deamination of norepinephrine in brain, J. Pharmacol. Exp. Ther.171:188–195.PubMedGoogle Scholar
  384. Sabelli, H. C., and Mosnaim, A. D., 1974, Phenylethylamine hypothesis of affective behavior, Am. J. Psychiatry131:695–699.Google Scholar
  385. Sachar, E. J., 1967, Corticosteroids in depressive illness. I. A re-evaluation of control issues and the literature, Psychosom. Med.30:162–171.Google Scholar
  386. Sachar, E. J., Frantz, A. G., Altman, N., and Sassin, J., 1973, Growth hormone and prolactin in unipolar and bipolar depressed patients: Response to hypoglycemia and l- dopa, Am. J. Psychiatry130:1362–1367.PubMedGoogle Scholar
  387. Sack, R. L., and Goodwin, F. K., 1974, Inhibition of dopamine-β-hydroxylase in manic patients, Arch. Gen. Psychiatry31:649–654.PubMedCrossRefGoogle Scholar
  388. Sanders-Bush, E., and Sulser, F., 1970, p-Chloroamphetamine: In vivo investigations on the mechanism of the action of the selective depletion of cerebral serotonin, J. Pharmacol. Exp. Ther.175:419–426.PubMedGoogle Scholar
  389. Sanders-Bush, E., Bushing, J. A., and Sulser, F., 1972, p-Chloroamphetamine-inhibition of cerebral tryptophan hydroxylase, Biochem. Pharmacol.21:1501–1510.PubMedCrossRefGoogle Scholar
  390. Sandler, M., Carter, S. B., Cuthbert, M. F., and Pare, C. M. B., 1975, Is there an increase in monoamine-oxidase activity in depressive illness?, Lancet1:1045–1048.PubMedCrossRefGoogle Scholar
  391. Sano, I., 1972, L-5-Hydroxytryptophan (L-5-HTP)-Therapie bei endogener Depression, Münch. Med. Wochenschr.144:1713–1716.Google Scholar
  392. Schanberg, S. M., Schildkraut, J. J., Breese, G. R., and Kopin, I. J., 1968, Metabolism of normetanephrine H3 in rat brain: Identification of conjugated 3-methoxy-4-hydroxy-phenylglycol as major metabolite, Biochem. Pharmacol.17:247–254.PubMedCrossRefGoogle Scholar
  393. van Scheijen, J. D., 1971, Behandeling van manie met methysergide (Treatment of mania with methysergide), Ned. Tijdschr. Geneeskd.115:1634–1637.Google Scholar
  394. van Scheijen, J. D., van Praag, H. M., and Korf, J., 1977, A controlled study comparing nomifensine and clomipramine in unipolar depression, using the probenecid technique, Br. J. Clin. Pharmacol.4:1795–1845.Google Scholar
  395. Schildkraut, J. J., 1965, The catecholamine hypothesis of affective disorders: A review of supporting evidence, Am. J. Psychiatry122:509–522.PubMedGoogle Scholar
  396. Schildkraut, J. J., 1973a, Pharmacology—the effects of lithium on biogenic amines, in: Lithium: Its Role in Psychiatric Research and Treatment (S. Gershon and B. Shopsin, eds.), pp. 51–73, Plenum Press, New York.Google Scholar
  397. Schildkraut, J. J., 19736, Norepinephrine metabolites as biochemical criteria for classifying depressive disorders and predicting responses to treatment: Preliminary findings, Am. J. Psychiatry130:695–698.Google Scholar
  398. Schildkraut, J. J., 1974, Biochemical criteria for classifying depressive disorders and predicting responses to pharmacotherapy; preliminary findings from studies of norepinephrine metabolism, Pharmacopsychiatry7:98–107.CrossRefGoogle Scholar
  399. Schildkraut, J. J., 1975, Depressions and biogenic amines, in: American Handbook of Psychiatry, Vol. VI (D. Hamburg, ed.), pp. 609–672, Basic Books, New York.Google Scholar
  400. Schildkraut, J. J., and Draskoczy, P. R., 1974, Effects of electroconvulsive shock on norepinephrine turnover and metabolism: Basic and clinical studies, in: Psychobiology of Convulsive Therapy (M. Fink, S. Kety, J. McGaugh, and T. A. Williams, eds.), pp. 143–170, J. Wiley and Sons, New York.Google Scholar
  401. Schildkraut, J. J., and Kety, S. S., 1967, Biogenic amines and emotion, Science 156:21–30.PubMedCrossRefGoogle Scholar
  402. Schildkraut, J. J., Klerman, G. L., Friend, D. G., and Greenblatt, M., 1963, Biochemical and pressor effects of oral D,L-dihydroxyphenylalanine in patients pretreated with antidepressant drugs, Ann. N. Y. Acad. Sci.107:1005–1015.PubMedCrossRefGoogle Scholar
  403. Schildkraut, J. J., Green, R., Gordon, E. K., and Durell, J., 1966, Normetanephrine excretion and affective state in depressed patients treated with imipramine, Am. J. Psychiatry123:690–700.PubMedGoogle Scholar
  404. Schildkraut, J. J., Schanberg, S. M., Breese, G. R., and Kopin, I. J., 1967, Norepinephrine metabolism and drugs used in the affective disorders: A possible mechanism of action, Am. J. Psychiatry124:600–608.PubMedGoogle Scholar
  405. Schildkraut, J. J., Logue, M. A., and Dodge, G. A., 1969, Effects of lithium salts on turnover and metabolism of norepinephrine in rat brain, Psychopharmacologia14:135–141.PubMedCrossRefGoogle Scholar
  406. Schou, M., 1973, Prophylactive lithium maintenance treatment in recurrent endogenous affective disorders, in: Lithium: Its Role in Psychiatric Research and Treatment (S. Gershon and B. Shopsin, eds.), pp. 269–294, Plenum Press, New York.Google Scholar
  407. Schubert, J., 1973, Effect of chronic lithium treatment on monoamine metabolism in rat brain, Psychopharmacologia32:301–311.PubMedCrossRefGoogle Scholar
  408. Schubert, J., Nyback, H., and Sedvall, G., 1970, Effect of antidepressant drugs on accumulation and disappearance of monoamines formed in vivo from labelled precursors in mouse brain, J. Pharm: Pharmacol.22:136–139.CrossRefGoogle Scholar
  409. Schuckit, M., Robins, E., and Feighner, J., 1971, Tricyclic antidepressants and monoamine oxidase inhibitors, Arch. Gen. Psychiatry24:509–514.PubMedCrossRefGoogle Scholar
  410. Sebens, J. B., and Korf, J., 1975, Cyclic AMP in cerebrospinal fluid: Accumulation following probenecid and biogenic amines, Exp. Neurol.46:333–344.PubMedCrossRefGoogle Scholar
  411. Sethna, E. R., 1974, A study of refractory cases of depressive illnesses and their response to combined antidepressant treatment, Br. J. Psychiatry124:265–272.PubMedCrossRefGoogle Scholar
  412. Shaw, D. M., 1975, Lithium and amine metabolism, in: Lithium: Research and Therapy F. N. Johnson, ed.), pp. 411–423, Academic Press, New York.Google Scholar
  413. Shaw, D. M., Camps, F. E., and Eccleston, E. G., 1967, 5-Hydroxytryptamine in hind-brain of depressive suicides, Br. J. Psychiatry, 113:1407–1411.CrossRefGoogle Scholar
  414. Shaw, D. M., O’Keeffe, R., MacSweeney, D. A., Brooksbank, B. W. L., Noguera, R., and Coppen, A., 1973, 3-Methoxy-4-hydroxyphenylglycol in depression, Psychol. Med. 3:333–336.Google Scholar
  415. Sheard, M. H., and Aghajanian, G. K., 1968, Stimulation of the midbrain raphe: Effect on serotonin metabolism, J. Pharmacol. Exp. Ther.163:425–430.PubMedGoogle Scholar
  416. Sheard, M., and Aghajanian, G. K., 1970, Neuronally activated metabolism of brain serotonin: Effect of lithium, Life Sci. 9:285–290.PubMedCrossRefGoogle Scholar
  417. Sheard, M., Lolovick, A., and Aghajanian, J. K., 1972, Raphe neurons: Effect of tricyclic antidepressant drugs, Brain Res. 43:690–694.PubMedCrossRefGoogle Scholar
  418. Shibuya, T., and Andersson, E. G., 1968, The influence of chronic cord transection on the effects of 5-hydroxytryptophan, L-tryptophan and pargyline on spinal neuronal activity, J. Pharmacol. Exp. Ther.164:185–190.PubMedGoogle Scholar
  419. Shields, P. J., and Eccleston, D., 1972, Effects of electrical stimulation of rat midbrain on 5-hydroxytryptamine synthesis as determined by a sensitive radioisotope method, J. Neurochem.19:265–272.PubMedCrossRefGoogle Scholar
  420. Shopsin, B., Freedman, L. S., Goldstein, M., and Gershon, S., 1972, Serum dopamine-β-hydroxylase (DBH) activity and affective states, Psychopharmacologia27:11–16.PubMedCrossRefGoogle Scholar
  421. Shopsin, B., Wilk, S., Gershon, S., Davis, K., and Suhl, M., 1973a, Cerebrospinal fluid MHPG. An assessment of norepinephrine metabolism in affective disorders, Arch. Gen. Psychiatry28:230–233.PubMedCrossRefGoogle Scholar
  422. Shopsin, B., Gershon, S., Goldstein, M., Friedman, E., and Wilk, S., 1974, Use of synthesis inhibition in defining a role for biogenic amines during imipramine treatment in depressed patients, Psychopharmacol. Bull.10:52.PubMedGoogle Scholar
  423. Shore, P. A., and Brodie, B. B., 1957, LSD-like effects elicited by reserpine in rabbits pretreated with iproniazid, Proc. Soc. Exp. Biol. Med.94:433–435.PubMedGoogle Scholar
  424. Sinanan, K., Reatine, A. M. B., Beckett, P. G. S., and Love, W. C., 1975, Urinary cyclic AMP in “endogenous” and “neurotic” depression, Br. J. Psychiatry126:49–55.PubMedCrossRefGoogle Scholar
  425. Sjoerdsma, A., Engelman, K., Spector, S., and Udenfriend, S., 1965, Inhibition of catecholamine synthesis in man with alpha-methyl-tyrosine, an inhibitor of tyrosine hydroxylase, Lancet2:1092–1094.PubMedCrossRefGoogle Scholar
  426. Sjöström, R., 1972, Steady-state levels of probenecid and their relation to acid monoamine metabolites in human cerebrospinal fluid, Psychopharmacologia25:96–100.PubMedCrossRefGoogle Scholar
  427. Sjöström, R., and Roos, B.-E., 1972, 5-Hydroxyindoleacetic acid and homovanillic acid in cerebrospinal fluid in manic-depressive psychosis, Eur. J. Clin. Pharmacol.4:170–176.PubMedCrossRefGoogle Scholar
  428. Sloane, R. B., Hughes, W., and Haust, H. L., 1966, Catecholamine excretion in manic-depressive and schizophrenic psychosis and its relationship in symptomatology, Can. Psychiatr. Assoc. J. 11:6–19.PubMedGoogle Scholar
  429. Snaith, R. P., and McCoubrie, M., 1974, Antihypertensive drugs and depression, Psychol. Med.4:393–398.PubMedCrossRefGoogle Scholar
  430. Snowdon, J., and Braithwaite, R., 1974, Combined antidepressant medication, Br. J. Psychiatry125:610–611.PubMedCrossRefGoogle Scholar
  431. Snyder, S. H., 1972, Catecholamines in the brain as mediators of amphetamine psychosis, Arch. Gen. Psychiatry27:169–179.PubMedCrossRefGoogle Scholar
  432. Sonninen, V., Riekkinen, P., and Rinne, U. K., 1973, Acid monoamine metabolites in cerebrospinal fluid and multiple sclerosis, Neurology23:760–763.PubMedGoogle Scholar
  433. Sourkes, T. L., 1965, The action of α-methyldopa in the brain, Br. Med. Bull.21:66–69.Google Scholar
  434. Sourkes, T. L., 1973a, Enzymology and sites of action of monoamines in the central nervous system, Adv. Neurol.2:13–35.Google Scholar
  435. Sourkes, T. L., 1973b, On the origin of homovanillic acid (HVA) in the cerebrospinal fluid, J. Neurol. Transm.34:153–157.CrossRefGoogle Scholar
  436. Sourkes, T. L., Murphy, G. F., and Chavez, B., 1961, The action of some alpha-methyl and other amino acids on cerebral catecholamines, J. Neurochem.8:109–115.PubMedCrossRefGoogle Scholar
  437. Spector, S., Sjoerdsma, A., and Udenfriend, S., 1965, Blockade of endogenous norepinephrine synthesis by alpha-methyltyrosine, an inhibitor of tyrosine hydroxylase, J. Pharmacol. Exp. Ther.147:86–95.PubMedGoogle Scholar
  438. Stein, L., and Wise, C. D., 1971, Possible etiology of schizophrenia: Progressive damage to the noradrenergic reward system by 6-hydroxy-dopamine, Science171:1032–1036.PubMedCrossRefGoogle Scholar
  439. Ström-Olsen, R., and Weil-Malherbe, H., 1958, Humoral changes in manic-depressive psychosis with particular reference to excretion of catecholamines in urine, J. Mental Sci.104:696–704.Google Scholar
  440. Sulser, F., and Sanders-Bush, E., 1971, Effects of drugs on amines in the CNS, Annu. Rev. Pharmacol.11:209–230.PubMedCrossRefGoogle Scholar
  441. Sulser, F., Owens, M. L., Norvich, M. R., and Dingell, J. V., 1968, Relative role of storage and synthesis of brain norepinephrine in psychomotor stimulation evoked by amphetamine or by desimipramine and tetrabenazine, Psychopharmacologia12:322–332.PubMedCrossRefGoogle Scholar
  442. Tagliamonte, A., Tagliamonte, P., Perez-Cruet, J., and Gessa, G. L., 1971a, Increase of brain tryptophan caused by drugs which stimulate serotonin synthesis, Nature (London) New Biol. 299:125–126.Google Scholar
  443. Tagliamonte, A., Tagliamonte, P., Perez-Cruet, J., Stern, S., and Gessa, G. L., 1971b, Effect of psychotropic drugs on tryptophan concentration in the rat brain, J. Pharmacol. Exp. Ther.177:475–480.Google Scholar
  444. Takahashi, R., Nagao, Y., Tsuchiya, K., Takamizawa, M., and Kobayashi, T., 1968a, Catecholamine metabolism of manic-depressive illness, J. Psychiatr. Res.6:185–199.PubMedCrossRefGoogle Scholar
  445. Takahashi, R., Utenza, H., Machiyama, Y., Kurihama, M., Otsuka, T., Nakamura, T., and Konamura, H., 1968b, Tyrosine metabolism in manic-depressive illness, Life Sci. Part II7:1219–1231.CrossRefGoogle Scholar
  446. Takahashi, R., Kondo, H., Yoshimura, M., and Ochi, Y., 1973, Antidepressant effect of thyrotropin-releasing hormone (TRH) and the plasma thyrotropin levels in depression, Folia Psychiatr. Neurol. Jpn.27:305–314.PubMedGoogle Scholar
  447. Takahashi, R., Kondo, H., and Kato, N., 1975, Effect of L-5-hydroxytryptophan on brain monoamine metabolism and evaluation of its clinical effects in depressed patients, J. Psychiatr. Res.12:177–187.PubMedCrossRefGoogle Scholar
  448. Tamarkin, N. R., Goodwin, F. K., and Axelrod, J., 1970, Rapid elevation of biogenic amine metabolites in human CSF following probenecid, Life Sci. 9:1397–1408.CrossRefGoogle Scholar
  449. Thierry, A. M., Fekete, M., and Glowinski, J., 1968a, Effects of stress on the metabolism of noradrenaline, dopamine and serotonin (5-HT) in the central nervous system of the rat. II. Modifications of serotonin metabolism, Eur. J. Clin. Pharmacol.4:384–389.CrossRefGoogle Scholar
  450. Thierry, A. M., Javoy, F., Glowinski, J., and Kety, S. S., 1968b, Effects of stress on the metabolism of norepinephrine, dopamine and serotonin in the central nervous system of the rat. II. Modifications of norepinephrine turnover, J. Pharmacol. Exp. Ther.163:163–171.PubMedGoogle Scholar
  451. Thoenen, H., 1972, Comparison between the effect of neuronal activity and nerve growth factor on the enzymes involved in the synthesis of norepinephrine, Pharmacol. Rev.24:255–267.PubMedGoogle Scholar
  452. Thoenen, H., Haefely, W., Gey, K. F., and Hürlimann, A., 1965, Diminished effects of sympathetic nerve stimulation in cats pretreated with disulfiram: Liberation of dopamine as sympathetic transmitter, Life Sci. 4:2033–2038.PubMedCrossRefGoogle Scholar
  453. Tissot, R., 1962, Connaissances experimentales sur les monoamines et quelques syndromes psychiatriques, in: Monoamines et Systéme Nerveus Central (J. de Ajuriaguerra, ed.), pp. 169–207, Georg & Cie, Geneva.Google Scholar
  454. Toivola, P. T. K., and Gale, C. C., 1972, Stimulation of growth hormone release by microinjection of norepinephrine into hypothalamus of baboons, Endocrinology90:895–902.PubMedCrossRefGoogle Scholar
  455. Trimble, M., Chadwick, D., Reynolds, E. H., and Marsden, C. D., 1975, L-5-Hydroxytryptophan and mood, Lancet1:583.PubMedCrossRefGoogle Scholar
  456. Turner, W. J., and Merlis, S., 1964, A clinical trial of pargyline and dopa in psychotic subjects, Dis. Nerv. Syst.25:538–541.PubMedGoogle Scholar
  457. Udenfriend, S., 1966, Tyrosine hydroxylase, Pharmacol. Rev.18:43–51.PubMedGoogle Scholar
  458. Voigtlander, P. F. von, and Moore, K. E., 1970, Behavioral and brain catecholamine depleting actions of V-14, 624, an inhibitor of dopamines-hydroxylase, Proc. Soc. Exp. Biol. Med.133:817–820.Google Scholar
  459. Waal, H. J., 1967, Propranolol-induced depressions, Br. Med. J.1:50.CrossRefGoogle Scholar
  460. Wålinder, J., Skott, A., Nagy, A., Carlsson, A., and Roos, B. E., 1975, Potentiation of antidepressant action of clomipramine by tryptophan, Lancet1:984.PubMedCrossRefGoogle Scholar
  461. Weir, R. L., Chase, T. N., Ng, L. K. Y., and Kopin, I. J., 1973, 5-Hydroxyindoleacetic acid in spinal fluid: Relative contribution from brain and spinal cord, Brain Res. 52:409–412.PubMedCrossRefGoogle Scholar
  462. Weiss, B. L., Kupfer, D. J., Foster, F. G., and Delgado, J., 1974, Psychomotor activity, sleep and biogenic amine metabolites in depression, Biol. Psychiatry9:45–54.PubMedGoogle Scholar
  463. Werdinius, B., 1967a, Elimination of 3,4-dihydroxyphenylacetic acid from the blood, Acta Pharmacol. Toxicol.25:9–17.CrossRefGoogle Scholar
  464. Werdinius, B., 1967b, Effect of probencid on the levels of monoamine metabolites in the rat brain, Acta Pharmacol. Toxicol.25:18–23.CrossRefGoogle Scholar
  465. Westerink, B. H. C., and Korf, J., 1975, Determination of nanogram amounts of homovanillic acid in the central nervous system with a rapid semi-automated fluorometric method, Biochem. Med.12:106–115.PubMedCrossRefGoogle Scholar
  466. Wharton, R. N., Perel, J. M., Dayton, P. G., and Malitz, S., 1971, A potential clinical use for methylphenidate with tricyclic antidepressants, Am. J. Psychiatry127:1619–1625.PubMedGoogle Scholar
  467. Wilk, S., Shopsin, B., Gershon, S., and Suhl, M., 1972, Cerebrospinal fluid levels of MHPG in affective disorders, Nature (London)235:440–441.CrossRefGoogle Scholar
  468. Wilson, I. C., Prange, A. J., Jr., Lara, P. P., Alltop, L. B., Stikeleather, R. A., Lipton, M. A., and Hill, C., 1973, TRH (lopremone): Psychobiological responses of normal women. I. Subjective experiences, Arch. Gen. Psychiatry29:15–21.PubMedCrossRefGoogle Scholar
  469. Winokur, G., Cadoret, R., Dorzab, J., and Baker, M., 1971, Depressive disease. A genetic study, Arch. Gen. Psychiatry24:135–144.PubMedCrossRefGoogle Scholar
  470. Winston, F., 1971, Combined antidepressant therapy, Br. J. Psychiatry118:301–304.PubMedCrossRefGoogle Scholar
  471. Wise, D. C., and Stein, L., 1973, Dopamine-beta-hydroxylase. Deficits in the brains of schizophrenic patients, Science181:344–347.PubMedCrossRefGoogle Scholar
  472. Wong, D. T., Horng, J. S., Bymaster, F. P., Hauser, K. L., and Molloy, B. B., 1974, A selective inhibitor of serotonin uptake: Lilly 110140, 3-(p-trifluoromethylphenoxy)-N-methyl-3-phenylpropylamine, Life Sci. 15:471–479.PubMedCrossRefGoogle Scholar
  473. Wooten, G. F., and Cardon, V. P., 1973, Plasma dopamines-hydroxylase activity (elevation in man during cold pressor test and exercise), Arch. Neurol.28:103–106.PubMedCrossRefGoogle Scholar
  474. Wurtman, R. J., Rose, C. M., Chou, C., and Larin, F. F., 1968, Daily rhythms in the concentrations of various amino acids in human plasma, N. Engl. J. Med.279:171–175.PubMedCrossRefGoogle Scholar
  475. Wurtman, R. J., Rose, C. M., Matthyse, S., Stephenson, J., and Baldessarini, R., 1970, l-Dihydroxyphenylalanine: Effect of 5-adenosylmethionine in brain, Science169:395–397.PubMedCrossRefGoogle Scholar
  476. Wyatt, R. J., Engelman, K., Kupfer, D. J., Fram, D. H., Sjoerdsma, A., and Snyder, F., 1970, Effects of L-tryptophan (a natural sedative) on human sleep, Lancet2:842–846.PubMedCrossRefGoogle Scholar
  477. Wyatt, R. J., Portnoy, B., Kupfer, D. J., Snyder, F., and Engelman, K., 1971, Resting plasma catecholamine concentrations in patients with depression and anxiety, Arch. Gen. Psychiatry24:65–70.PubMedCrossRefGoogle Scholar
  478. Youdim, M. B., Collins, G. G., Sandler, M. J., Bevan Jones, A. B., Pare, C. M. B., and Nicholson, W. J., 1972, Human brain: Monoamine oxidase, multiple forms and selective inhibitors, Nature (London)236:225–228.CrossRefGoogle Scholar
  479. Young, S. N., Lal, S., Martin, J. B., Ford, R. M., and Sourkes, T. L., 1973, 5-Hydroxyindoleacetic acid, homovanillic acid and tryptophan levels in CSF above and below a complete block of CSF flow, Psychiatr. Neurol. Neurochir.76:439–444.PubMedGoogle Scholar
  480. Yuwiler, A., Geller, E., and Eiduson, S., 1959, Studies on 5-hydroxytryptophan decarboxylase. I. In vitro inhibition and substrate interaction, Arch. Biochem.80:162–173.CrossRefGoogle Scholar
  481. Zeidenberg, P., Perel, J. M., Kanzler, M., Wharton, R. N., and Malitz, S., 1971, Clinical and metabolic studies with imipramine in man, Am. J. Psychiatry127:1321–1326.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • H. M. van Praag
    • 1
  1. 1.Department of Biological PsychiatryPsychiatric University ClinicGroningenThe Netherlands

Personalised recommendations