Approaches to Brain Amines in Psychiatric Patients: A Reevaluation of Cerebrospinal Fluid Studies

  • Robert M. Post
  • Frederick K. Goodwin


This chapter will focus on manipulation of monoamines in psychiatric patients specifically as they are reflected and documented by alterations in cerebrospinal fluid amine metabolites. Hypotheses relating alterations in central neurotransmitter amine systems to the pathophysiology of manic-depressive illness and schizophrenia have provided a driving force toward the study of alterations in amine metabolism in psychiatric patients; these theories are reviewed elsewhere in this volume and will not be represented here in detail. However, on the basis of our review of the literature of cerebrospinal fluid (CSF) amine metabolites in psychiatric patients on and off medication, a critical evaluation and reformulation of amine theories will be offered. Special focus will be given to the time course of biological changes at the synapse, especially more chronic, long-term compensatory and adaptive mechanisms which may be critical to an understanding of the nature of biochemical-behavioral linkage.


Psychiatric Patient Homovanillic Acid Fusaric Acid Dopamine Turnover Affective Illness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aghajanian, G. K., 1972, LSD and CNS transmission, Annu. Rev. Pharmacol.12:157–168.PubMedGoogle Scholar
  2. Aghajanian, G. K., and Bunney, B. S., 1974, Pre- and post-synaptic feedback mechanisms in central dopaminergic neurons, in: Frontiers of Catecholamine Research (E. Usdin and S. H. Snyder, eds.), pp. 643, Pergamon Press, New York.Google Scholar
  3. Aghajanian, G. K., and Gallager, D. W., 1975, Raphe origin of serotonergic nerves terminating in the cerebral ventricles, Brain Res.88:221–231.PubMedGoogle Scholar
  4. Anden, N. E., 1965, Distribution of monoamines and dihydroxyphenylalanine decarboxyase activity in the spinal cord,Acta Physiol. Scand.64:197–203.PubMedGoogle Scholar
  5. Anden, N. E., Butcher, S. G., and Corrodi, H., 1970, Receptor activity and turnover of dopamine and noradrenaline after neuroleptics, Eur. J. Pharmacol.11:303–314.PubMedGoogle Scholar
  6. Andersson, H., and Roos, B. E., 1969, 5-Hydroxindoleacetic acid in cerebrospinal fluid of hydrocephalic children, Acta Paediatr. Scand.58:601–608.PubMedGoogle Scholar
  7. Angrist, B. M., Wilk, S., and Gershon, S., 1974, The effect of probenecid and large dose amphetamine administration on cerebrospinal fluid homovanillic acid, Biol. Psychiatry8:113–114.PubMedGoogle Scholar
  8. Asberg, M., Bertilsson, L., Tuck, D., Cronholm, B., and Sjoqvist, F., 1973, Indoleamine metabolites in the cerebrospinal fluid of depressed patients before and during treatment with nortriptyline, Clin. Pharmacol. Ther.14:277–286.PubMedGoogle Scholar
  9. Asberg, M., Traskman, L., and Thoren, P., 1976a, 5-HIAA in the cerebrospinal fluid, Arch. Gen. Psychiatry33:1193–1197.PubMedGoogle Scholar
  10. Asberg, M., Thoren, P., Traskman, L., Bertilsson, L., and Ringberger, V., 1976b, “Serotonin depression”: A biochemical subgroup within the affective disorders? Science191:478–480.PubMedGoogle Scholar
  11. Ashcroft, G. W., and Glen, A. I. M., 1974, Mood and neuronal functions: A modified amine hypothesis for the etiology of affective illness, Adv. Biochem. Psychopharmacol.11:335–339.PubMedGoogle Scholar
  12. Ashcroft, G. W., Crawford, T. B. B., and Eccleston, D., 1966, 5-Hydroxyindole compounds in the cerebrospinal fluid of patients with psychiatric or neurological diseases, Lancet2:1049–1050.PubMedGoogle Scholar
  13. Ashcroft, G. W., Blackburn, I. M., Eccleston, D., Glen, A. I. M., Hardley, W., Kinloch, N. E., Lonergan, M., Murray, L. G., and Pullar, I. A., 1973a, Changes on recovery in the concentrations of tryptophan and the biogenic amine metabolites in the cerebrospinal fluid of patients with affective illness, Psychol. Med.3:319–325.PubMedGoogle Scholar
  14. Ashcroft, G. W., Crawford, T. B. B., Cundall, R. L., Dobson, J., Dow, R. C., Eccelston, D., Loose, R. W., and Pullar, I. A., 1973b, 5-Hydroxytryptamine metabolism in affective illness: The effect of tryptophan administration, Psychol. Med.3:326–332.PubMedGoogle Scholar
  15. Asper, H., Baggiolini, M., and Burki, H. R., 1973, Tolerance phenomena with neuroleptic catalepsy. Apomorphine stereotypies and striatal dopamine metabolism in the rat after single and repeated administration of loxapine and haloperidol, Eur. J. Pharmacol.22:287–294.PubMedGoogle Scholar
  16. Axelrod, J., 1974, The pineal gland: A neurochemical transducer, Science184:1341–1348.PubMedGoogle Scholar
  17. Ayd, F. J., 1971, Neuroleptics and antiparkinsonian drugs, Int. Drug Ther. Newslett.6:33.Google Scholar
  18. Ayd, F. J., 1975, The depot fluphenazines: A reappraisal after ten years clinical experience, Am. J. Psychiatry132: 5.Google Scholar
  19. Banki, C. M., 1977, Correlation between cerebrospinal fluid amine metabolites and psychomotor activity in affective disorders, J. Neurochem.29:255–257.Google Scholar
  20. Barrai, A., Glusman, M., Rapport, M. M., 1972, Serotonin turnover in the intact cat brain, J. Pharm. Exp. Ther.181:28–35.Google Scholar
  21. Beckman, H., and Goodwin, F. K., 1975, Antidepressant response to tricyclics and urinary MHPG in unipolar patients, Arch. Gen. Psychiatry32:17–21.Google Scholar
  22. Bertilsson, L., Asberg, M., and Thoren, P., 1974, Differential effect of chlorimipramine and nortriptyline on cerebrospinal fluid metabolites of serotonin and noradrenaline in depression, Eur. J. Clin. Pharmacol.7:365–367.PubMedGoogle Scholar
  23. Bingham, W. G., Ruffolo, R., Goodman, J. H., Knofel, J., and Friedman, S., 1975, Norepinephrine and dopamine levels in normal dog and monkey spinal cord, Life Sci.16:1521–1526.PubMedGoogle Scholar
  24. Bloom, F. E., 1975, Physiological assessment of pre- and post-synaptic receptors, in: Pre- and Postsynaptic Receptors (E. Usdin and W. E. Bunney Jr., eds.), pp. 67–87, Marcel Dekker, New York.Google Scholar
  25. Blumberg, J. B., Taylor, R. E., and Sielser, F., 1975, Blockade by pimozide of noradrenaline sensitivity adenylate cyclase in the limbic forebrain: Possible role of limbic noradrenergic mechanisms in the mode of action of antipsychotics, J. Pharm. Pharmacol.27:125–128.PubMedGoogle Scholar
  26. Bowers, M. B. Jr., 1972a, Cerebrospinal fluid 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA) following probenecid in unipolar depressives treated with amitriptyline, Psychopharmacologia23:26–33.PubMedGoogle Scholar
  27. Bowers, M. B. Jr., 1972b, Acute psychosis induced by psychomimetic drug abuse. II. Neurochemical findings, Arch. Gen. Psychiatry27:440–442.PubMedGoogle Scholar
  28. Bowers, M. B. Jr., 1973, 5-Hydroxyindoleacetic acid (5-HIAA) following probenecid in acute psychotic patients treated with phenothiazines, Psychopharmacologia28:309–318.PubMedGoogle Scholar
  29. Bowers, M. B. Jr., 1974a, Amitriptyline in man: Decreased formation of central 5-hydroxyindoleacetic acid, Clin. Pharmacol. Ther.15:167–170.PubMedGoogle Scholar
  30. Bowers, M. B. Jr., 1974b, Lumbar CSF 5-hydroxyindoleacetic acid and homovanillic acid in affective syndromes, J. Nerv. Ment. Dis.158:325–330.PubMedGoogle Scholar
  31. Bowers, M. B. Jr., 1974c, Central dopamine turnover in schizophrenic syndromes, Arch. Gen. Psychiatry31:50–54.PubMedGoogle Scholar
  32. Bowers, M. B., Jr., 1974d, Fluorometric measurement of 5-hydroxyindoleacetic acid (5-HIAA) and tryptophan in human CSF: Effects of high doses of probenecid, Biol. Psychiatry9:93–97.PubMedGoogle Scholar
  33. Bowers, M. B., Jr., 1975, Thioridazine: Central dopamine turnover and clinical effects of antipsychotic drugs, Clin. Pharmacol. Ther.17:73.PubMedGoogle Scholar
  34. Bowers, M. B., Jr., and Kupfer, J. D., 1971, Central monoamine oxidase inhibition and REM sleep, Brain Res.35:561–564.PubMedGoogle Scholar
  35. Bowers, M. B., Jr., and Rozitis, A., 1974, Regional differences in homovanillic acid concentrations after acute and chronic administration of antipsychotic drugs, J. Pharm. Pharmacol.26:743–745.PubMedGoogle Scholar
  36. Owers, M. B., Jr., Heninger, G. R., and Gerbode, F. A., 1969, Cerebrospinal fluid 5-hydroxyindoleacetic acid and homovanillic acid in psychiatric patients, Int. J. Neuropharmacol.8:255–262.Google Scholar
  37. Brodie, K. H., Murphy, D. L., Goodwin, F. K., and Bunney, W. E., Jr., 1971, Catecholamines and mania: The effect of alpha-methyl-para-tyrosine on manic behavior and catecholamine metabolism, Clin. Pharmacol. Ther.12:218–224.PubMedGoogle Scholar
  38. Brodie, H. K. H., Sack, R., and Siever, L., 1973, Clinical studies of L-5-hydroxytryptophan in depression, in: Serotonin and Behavior (J. Barchas and E. Usdin, eds.), pp. 549–627, Academic Press, New York.Google Scholar
  39. Bulat, M., and Zivkovič, B., 1971, Origin of 5-hydroxyindoleacetic acid in the spinal fluid, Science173:738–740.PubMedGoogle Scholar
  40. Bulat, M., Lackovic, Z., Jakupcevic, M., and Damjonov, I., 1974, 5-Hydroxyindoleacetic acid in the lumbar fluid: A specific indicator of spinal cord injury, Science185:527–528.PubMedGoogle Scholar
  41. Bunney, B. S., and Aghajanian, G. K., 1975, Evidence for drug actions on both pre- and postsynaptic catecholamine receptors in the CNS, in: Pre- and Postsynaptic Receptors (E. Usdin and W. E. Bunney, Jr., eds.), pp. 89–122, Marcel Dekker, New York.Google Scholar
  42. Bunney, B. S., Walters, J. R., and Roth, R. H., 1973, Dopaminergic neurons: Effect of antipsychotic drugs and amphetamine on single cell activity, J. Pharm. Exp. Ther.185:560–571.Google Scholar
  43. Bunney, W. E., Jr., and Davis, J. M., 1965, Norepinephrine in depressive reactions, Arch. Gen. Psychiatry13:483–494.PubMedGoogle Scholar
  44. Bunney, W. E., Jr., and Murphy, D. L., 1975, Strategies for the systematic study of neurotransmitter receptor function in man, in: Pre- and Postsynaptic Receptors (E. Usdin and W. E. Bunney, Jr., eds.), pp. 283–312, Marcel Dekker, New York.Google Scholar
  45. Bunney, W. E., Jr., Brodie, H. K. H., Murphy, D. L., and Goodwin, F. K., 1971, Studies of alpha-methyl-para-tyrosine, L-dopa, and L-tryptophan in depression and mania, Am. J. Psychiatry127:872–881.PubMedGoogle Scholar
  46. Bunney, W. E., Jr., Murphy, D. L., Goodwin, F. K., and Borge, G. F., 1972a, The “switch process” in manic-depressive illness. I. A systematic study of sequential behavioral changes, Arch. Gen. Psychiatry27:295–302.PubMedGoogle Scholar
  47. Bunney, W. E., Jr., Goodwin, F. K., Murphy, D. L., House, K. M., and Gordon, E. K., 1972b, The “switch process” in manic-depressive illness. II. Relationship to catecholamines, REM sleep, and drugs, Arch. Gen. Psychiatry27:304–309.PubMedGoogle Scholar
  48. Bunney, W. E., Jr., Goodwin, F. K., and Murphy, D. L., 1972c, The “switch process” in manic-depressive illness. III. Theoretical implications, Arch. Gen. Psychiatry27:312–317.PubMedGoogle Scholar
  49. Bunney, W. E., Jr., Post, R. M., Andersen, A. E., and Kopanda, R. T., 1977, A hypothesized neuronal receptor sensitivity mechanism in affective illness, Psychopharmacol. Commun.1:393–406.Google Scholar
  50. Burki, H. R., Ruch, W., and Asper, H., 1974, Effect of single and repeated administration of clozapine on the metabolism of dopamine and noradrenaline in the brain of the rat, Eur. J. Pharmacol.27:180–190.PubMedGoogle Scholar
  51. Burns, D., London, J., Brunswick, D. J., Pring, M., Garfinkel, D., Rabinowitz, J. L., and Mendels, J., 1976, A kinetic analysis of 5-hydroxyindoleacetic acid excretion from rat brain and CSF, Biol. Psychiatry11:125–157.PubMedGoogle Scholar
  52. Carlsson, A., 1975, Receptor-mediated control of dopamine metabolism, in: Pre- and Postsynaptic Receptors (E. Usdin and W. E. Bunney Jr., eds.), pp. 49–87, Marcel Dekker, New York.Google Scholar
  53. Carlsson, G. A., and Goodwin, F. K., 1973, Stages of mania, Arch. Gen. Psychiatry28:221–228.Google Scholar
  54. Carlsson, A., Persson, T., Roos, B.-E., and Walinder, J., 1972, Potentiation of phenothiazines by α-methyltyrosine in treatment of chronic schizophrenia, J. Neural Transm.33:83–90.PubMedGoogle Scholar
  55. Carroll, B. J., 1971, Monoamine precursors in the treatment of depression, Clin. Pharmacol. Ther.12:743–761.PubMedGoogle Scholar
  56. Chase, T. N., and Ng, L. K. Y., 1972, Central monoamine metabolism in Parkinson’s disease, Arch. Neurol.27:486–491.PubMedGoogle Scholar
  57. Chase, T. N., Schnur, J. A., and Gordon, E. K., 1970, Cerebrospinal fluid monoamine metabolites in drug-induced extrapyramidal disorders, Neuropharmacology9:265–268.PubMedGoogle Scholar
  58. Chase, T. N., Schnur, J. A., Brody, J. A., and Gordon, E. K., 1971, Parkinsonism-dementia and amyotropic lateral sclerosis of Guam, Arch. Neurol.25:10–13.Google Scholar
  59. Chase, T. N., Grodon, E. K., and Ng, L. K. Y., 1973, Norepinephrine metabolism in the central nervous system of man: Studies using 3-methoxy-4-hydroxyphenylethylene glycol levels in cerebrospinal fluid, J. Neurochem.21:581–587.PubMedGoogle Scholar
  60. Chase, T. N., Woods, A. C., and Glaubiger, G. A., 1974, Parkinson’s disease treated with a suspected dopamine receptor agonist, Arch. Neurol.30:383–386.PubMedGoogle Scholar
  61. Cohen, A. H., and Bowers, M. B. Jr., 1972, 5-Hydroxyindoleacetic acid in rat forebrain and cerebrospinal fluid following dorsal and median midbrain raphe lesions, Brain Res.39:519–522.PubMedGoogle Scholar
  62. Cohen, D. J., Shaywitz, B. A., and Johnson, W. T., 1974, Biogenic amines in autistic and atypical children: Cerebrospinal fluid measures of homovanillic acid and 5-hydroxyin-doleacetic acid, Arch. Gen. Psychiatry31:845–853.PubMedGoogle Scholar
  63. Coppen, A. J., 1967, The biochemistry of affective disorder, Br. J. Psychiatry113:1237.PubMedGoogle Scholar
  64. Coppen, A. J., Prange, A. J., Jr., Whybrow, P. C., and Noguera, R., 1972, Abnormalities of indoleamines in affective disorders, Arch. Gen. Psychiatry26:474–478.PubMedGoogle Scholar
  65. Corrodi, H., Farnebo, L.-O., Fuxe, K., Hamberger, B., and Ungerstedt, U., 1972, ET-495 and brain amine catecholamine mechanisms: Evidence for stimulation of dopamine receptors, Eur. J. Pharmacol.20:195–204.PubMedGoogle Scholar
  66. Curzon, G., Gumpert, E. J. W., and Sharpe, D. M., 1971, Amine metabolites in the human cerebrospinal fluid of humans with restricted flow of cerebrospinal fluid, Nature (London), New Biol.231:189–191.Google Scholar
  67. Dahlstrom, A., and Fuxe, K., 1965, Evidence for the existence of monoamine neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neuron systems, Acta Physiol. Scand.64:1–36.Google Scholar
  68. Davson, H., 1967, Physiology of the Cerebrospinal Fluid, p. 155, J. and A. Churchill, London.Google Scholar
  69. Denker, S. J., Malm, V., Roos, B.-E., and Werdinius, B., 1966, Acid monoamine metabolites of cerebrospinal fluid in mental depression and mania, J. Neurochem.13:1545–1548.Google Scholar
  70. Dunner, D. R., and Fieve, R. R., 1975, Affective disorder: Studies with amine precursors, Am. J. Psychiatry132:180–183.PubMedGoogle Scholar
  71. Dunner, D. L., and Goodwin, F. K., 1972, The effect of L-tryptophan on brain serotonin metabolism in depressed patients, Arch. Gen. Psychiatry26:364–366.PubMedGoogle Scholar
  72. Ebert, M., Post, R. M., and Goodwin, F. K., 1975, unpublished observations.Google Scholar
  73. Eccleston, D., Ashcroft, G. W., Crawford, T. B. B., Stanton, J. B., Wood, D., and McTurk, P. H., 1970, Effect of tryptophan administration on 5-HIAA in cerebrospinal fluid in man, J. Neurol. Neurosurg. Psychiatry33:269–272.PubMedGoogle Scholar
  74. Ellinwood, E. H., and Kilbey, M. M., 1975, Amphetamine stereotypy: The influence of environmental factors and prepotent behavioral patterns on its topography and development, Biol. Psychiatry10:3–16.PubMedGoogle Scholar
  75. Ericksen, S., Haraszti, J., Dekirmenjian, H., and David, J., 1976, Loading-dose versus standard-dose haloperidol in decompensated schizophrenic patients: A double blind study, presented at the Annual Meeting, American Psychiatric Association, Miami, Florida.Google Scholar
  76. Extein, T., Korf, J., Roth, R. J., and Bowers, M. B., Jr., 1973, Accumulation of 3-methoxy-4-hydroxyphenylethyleneglycol-sulfate in rabbit cerebrospinal fluid following probenecid, Brain Res.54:403–407.PubMedGoogle Scholar
  77. Fawcett, J., Maas, J. W., and Dekirmenjian, H., 1972, Depression and MHPG excretion. Response to dextroamphetamine and tricyclic antidepressants, Arch. Gen. Psychiatry26:246–257.PubMedGoogle Scholar
  78. Fernstrom, J. D., and Wurtman, R. J., 1971, Brain serotonin content: Increase following ingestion of carbohydrate diet, Science174:1023–1025.PubMedGoogle Scholar
  79. Fotherby, K., Ashcroft, G. W., and Affleck, J. W., 1963, Studies on sodium transfer and 5-hydroxyindoles in affective illness, J. Neurol. Neurosurg. Psychiatry26:71–73.PubMedGoogle Scholar
  80. Freedman, D. X., 1961, Effects of LSD-25 on brain serotonin, J. Pharmacol. Exp. Ther.134:160–166.PubMedGoogle Scholar
  81. Fyro, B., Wode-Helgodt, B., Borg, S., and Sedvall, G., 1974, The effect of chlorpromazine on homovanillic acid levels in cerebrospinal fluid of schizophrenic patients, Psychopharmacologia35:287–294.PubMedGoogle Scholar
  82. Fyro, B., Petterson, U., and Sedvall, G., 1975, The effect of lithium treatment on manic symptoms and levels of monoamine metabolites in cerebrospinal fluid of manic depressive patients, Psychopharmacologia44:99–103.PubMedGoogle Scholar
  83. Garelis, E., and Sourkes, T. L., 1973, Sites of origin in the central nervous system of monoamine metabolites measured in human cerebrospinal fluid, J. Neurol. Neurosurg. Psychiatry36:625–629.PubMedGoogle Scholar
  84. Gerlach, J., Thorsen, K., and Fog, R., 1975, Extrapyramidal reactions and amine metabolites in cerebrospinal fluid during haloperiodol and clozapine treatment of schizophrenic patients, Psychopharmacologia40:341–350.PubMedGoogle Scholar
  85. Gerner, R. H., Post, R. M., and Bunney, W. E., Jr., 1976, A dopaminergic mechanism in mania, Am. J. Psychiatry133:1177–1180.PubMedGoogle Scholar
  86. Gerner, R. H., Post, R. M., Gillin, J., Carman, J., Bunney, W., Jr., 1977, Effects of a dopamine agonist piribedil on mood and sleep in depressed patients, unpublished manuscript.Google Scholar
  87. Gianutsos, G., Hynes, M. D., and Lal, H., 1975, Enhancement of apomorphine-induced inhibition of striatal dopamine-turnover following chronic haloperidol, Biochem. Pharmacol.24:581–582.PubMedGoogle Scholar
  88. Glowinski, J., 1975, Effects of neuroleptics on the nigroneostriatal and mesocortical dopaminergic systems, in: Biology of the Major Psychoses: A Comparative Analysis (D. X. Freedman, ed.), pp. 233–246, Raven Press, New York.Google Scholar
  89. Goodwin, F. K., 1971, Psychiatric side effects of Levodopa in man, J. Am. Med. Assoc.218:1915–1920.Google Scholar
  90. Goodwin, F. K., Murphy, D. L., Brodie, H. K. H., and Bunney, W. E., Jr., 1970, L-Dopa catecholamines and behavior: A clinical and biochemical study in depressed patients, Biol. Psychiatry2:341–366.PubMedGoogle Scholar
  91. Goodwin, F. K., Post, R. M., Dunner, D. L., and Gordon, E. K., 1973a, Cerebrospinal fluid amine metabolites in affective illness: The probenecid technique, Am. J. Psychiatry130:73–79.PubMedGoogle Scholar
  92. Goodwin, F. K., Post, R. M., and Murphy, D. L., 1973b, Cerebrospinal fluid amine metabolites and therapies for depression, presented at the Annual Meeting, American Psychiatric Association, Honolulu, Hawaii.Google Scholar
  93. Goodwin, F. K., Post, R. M., and Sack, R. L., 1975, Clinical evidence for neuroendocrine adaptation to psychotropic drugs, in: Neurobiological Mechanisms of Adaptation and Behavior (A. Mandell, ed.), pp. 33–45, Raven Press, New York.Google Scholar
  94. Goodwin, F. K., Rubovits, R., Jimerson, D. C., and Post, R. M., 1977, Serotonin and norepinephrine “subgroups” in depression: Metabolite findings and clinical-pharmacological correlations, Sci. Proc. Am. Psychiatr. Assoc.130:108.Google Scholar
  95. Gordon, E. K., and Oliver, J., 1971, 3-Methoxy-4-hydroxyphenylethylene glycol in human cerebrospinal fluid, Clin. Chim. Acta35:145–150.PubMedGoogle Scholar
  96. Gordon, E. K., Oliver, J., Goodwin, F. K., Chase, T. N., and Post, R. M., 1973, Effect of probenecid on free 3-methoxy-4-hydroxyphenylethylene glycol (MHPG) and its sulfate in human cerebrospinal fluid, Neuropharmacology12:391–396.PubMedGoogle Scholar
  97. Gordon, E. K., Perlow, M., Oliver, J., Ebert, M., and Kopin, I. J., 1975, Origins of catecholamine metabolites in monkey cerebrospinal fluid, J. Neurochem.25:347–349.PubMedGoogle Scholar
  98. Guldberg, H. C., and Yates, M. C., 1968, Some studies of the effects of chlorpromazine, reserpine and dihydroxyphenylacetic acid and 5-hydroxyindol-3-ylacetic acid in ventricular cerebrospinal fluid of the dog using the technique of serial sampling of the cerebrospinal fluider, Br. J. Pharmacol. Chemother.33:457–471.PubMedGoogle Scholar
  99. Halaris, A. E., and Freedman, D. X., 1975, Psychotropic drugs and dopamine uptake inhibition, in: Biology of the Major Psychoses: A Comparative Analysis (D. X. Freedman, ed.), pp. 247–258, Raven Press, New York.Google Scholar
  100. Hornykiewicz, O., 1975, Parkinson’s disease and its chemotherapy, Biochem. Pharmacol.24:1061–1065.PubMedGoogle Scholar
  101. Iversen, L. L., 1975, Dopamine receptors in the brain. A dopamine-sensitive adenylate cyclase models synaptic receptors, illuminating antipsychotic drug action, Science188:1084–1089.PubMedGoogle Scholar
  102. Janowsky, D. S., El-Yousef, M. K., Davis, J. M., and Sekerke, H. J., 1973, Parasympathetic suppression of manic symptoms by physostigmine, Arch. Gen. Psychiatry28:542–547.PubMedGoogle Scholar
  103. Jimerson, D. C., Gordon, E. K., Post, R. M., and Goodwin, F. K., 1975, Central noradrenergic function in man: VMA in CSF, Brain Res. 99:434–439.PubMedGoogle Scholar
  104. Jimerson, D. C., Post, R. M., Stoddard, F. J., and Bunney, W. E., Jr., 1976, Receptor agonist strategies in psychiatric illness, Presented at the annual meeting of the Society of Biological Psychiatry, San Francisco, California, June.Google Scholar
  105. Johansson, B., and Roos, B.-E., 1967, 5-Hydroxyindoleacetic and homovanillic acid levels in the cerebrospinal fluid of healthy volunteers and patients with Parkinson’s syndrome, Life Sci. 6:1449–1454.PubMedGoogle Scholar
  106. Jonsson, L. E., Lewander, T., and Gunne, L. M., 1971, Amphetamine psychosis: Urinary excretion of catecholamines and concentrations of homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) in the cerebrospinal fluid, Chem. Pathol. Pharmacol.2:355–369.Google Scholar
  107. Jori, A., Dolfini, E., Casati, C., and Argenta, G., 1975, Effect of ECT and imipramine treatment on the concentration of 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA) in the cerebrospinal fluid of depressed patients, Psychopharmacologia44:87–90.PubMedGoogle Scholar
  108. Karoum, F., Gillin, J. C., and Wyatt, R. J., 1975, Mass fragmentographic determination of some acidic and alcoholic metabolites of biogenic amines in the rat brain, J. Neurochem.25:653–658.PubMedGoogle Scholar
  109. Kessler, J. A., Gordon, E. K., Reid, J. L., and Kopin, I. J., 1976a, Homovanillic acid and 3-methoxy-4-hydroxyphenylethyleneglycol production by the monkey spinal cord, J. Neurochem.26:1057–1061.PubMedGoogle Scholar
  110. Kessler, J. A., Fenstermacher, J. D., and Patlak, C. S., 1976b, MHPG transport from the spinal cord during spinal subarachnoid perfusion, Brain Res. 102:131–141.PubMedGoogle Scholar
  111. Klawans, H. L., and Margolin, D. I., 1975, Amphetamine-induced dopaminergic sensitivity in guinea pigs, Arch. Gen. Psychiatry32:725–732.PubMedGoogle Scholar
  112. Korf, J., and van Praag, H. M., 1971, Amine metabolism in human brain: Further evaluation of the probenecid test, Brain Res. 35:221–230.PubMedGoogle Scholar
  113. Korf, J., van Praag, H. M., and Sebens, J. B., 1972, Serum tryptophan decreased, brain tryptophan increased and brain serotonin synthesis unchanged after probenecid loading, Brain Res. 42:239–242.PubMedGoogle Scholar
  114. Korf, J., van Praag, H. M., Schut, D., Nienhuis, R.J., and Lakke, J. P., 1974, Parkinson’s disease and amine metabolites in cerebrospinal fluid: implications for L-dopa therapy, Eur. Neurol.12:340–350.PubMedGoogle Scholar
  115. Kupfer, D. J., and Bowers, M. B., Jr., 1973, REM sleep and central monoamine oxidase inhibition, Psychopharmacologia27:183–190.Google Scholar
  116. Lapin, I. P., and Oxenkrug, G. F., 1969, Intensification of the central serotonergic processes as a possible determinant of thymoleptic effect, Lancet1:132–136.PubMedGoogle Scholar
  117. Laverty, R., and Sharman, D. F., 1965, Modification by drugs of the metabolism of 3,4-dihydroxyphenylethylamine, noradrenaline and 5-hydroxytryptamine in the brain, Br. J. Pharmacol.24:759.Google Scholar
  118. Lewander, T., and Sjostrom, R., 1973, Increase in the plasma concentration of free tryptophan caused by probenecid in humans, Psychopharmacologia33:81–86.PubMedGoogle Scholar
  119. Lidbrink, P., Jonsson, G., and Fuxe, K., 1971, The effect of imipramine-like drugs and antihistamine drugs on uptake mechanisms in the central noradrenaline and 5-hydroxytryptamine neurons, Neuropharmacology10:521–536.PubMedGoogle Scholar
  120. Lipton, M. A., 1971, Brain amines and affective disorders, in: Brain Chemistry and Mental Disease (B. T. Ho and W. M. Mclssac, eds.), pp. 245–263, Plenum Press, New York.Google Scholar
  121. Maas, J. W., 1975, Biogenic amines and depression: Biochemical and pharmacological separation of two types of depression, Arch. Gen. Psychiatry32:1357–1361.PubMedGoogle Scholar
  122. Maas, J. W., Fawcett, J. A., and Dekirmenjian, H., 1972, Catecholamine metabolism, depressive illness, and drug response, Arch. Gen. Psychiatry26:252.PubMedGoogle Scholar
  123. Mandell, A. J., 1975, Neurobiological mechanisms of presynaptic metabolic adaptation and their organization: Implications for a pathophysiology of the affective disorders, in: Neurobiological Mechanisms of Adaptation and Behavior (A. J. Mandell, ed.), pp. 1–32, Raven Press, New York.Google Scholar
  124. Matthysse, S., and Kety, S. S. (eds.), 1974, Symposium on Catecholamines and Their Enzymes in the Neuropathology of Schizophrenia, May 13–21, 1973, Strasbourg, France, J. Psychiatr. Res.11:1–364.Google Scholar
  125. McGeer, E. G., and McGeer, P. L., 1962, Catecholamine content of spinal cord, Can. J. Biochem. Physiol40:1141–1151.Google Scholar
  126. McLeod, W. R., and McLeod, M. F., Indoleamines and the cerebrospinal fluid, in: Depressive Illness: Some Research Studies (B. M. Davis, B. J. Carroll, and R. M. Mowbray, eds.), pp. 209–225, Charles C. Thomas, Springfield, Illinois.Google Scholar
  127. Meek, J. L., and Neff, N. H., 1973, Is cerebrospinal fluid the major avenue for the removal of 5-hydroxyindoleacetic acid from the brain? Neuropharmacol. 12:497–499.Google Scholar
  128. Meltzer, H. Y., 1975, Personal communication.Google Scholar
  129. Mendels, J., Stinnett, J. L., Burns, D., and Frazer, A., 1975, Amine precursors and depression, Arch. Gen. Psychiatry32:22–30.PubMedGoogle Scholar
  130. Moir, A. T. B., Ashcroft, G. W., Crawford, T. B. B., Eccleston, D., and Guldberg, H. C., 1970, Cerebral metabolites in cerebrospinal fluid as a biochemical approach to the brain, Brain93:357–368.PubMedGoogle Scholar
  131. Muizelaar, J. P., and Oberink, J. I., 1975, Probenecid: Dosage, levels in plasma and cerebrospinal fluid (CSF) and influence upon CSF levels of homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) in the rabbit, Psychopharmacologia43:223–227.PubMedGoogle Scholar
  132. Murphy, D. L., 1972, L-Dopa, behavioral activation and psychopathology, in: Neurotransmitters (I. J. Kopin, ed.), pp. 472–493, Raven Press, New York (Res. Publ. Assoc. Res. Nerv. Ment. Dis., Vol. 50).Google Scholar
  133. Murphy, D. L., 1975, Personal communication.Google Scholar
  134. Murphy, D. L., Brodie, H. K. H., Goodwin, F. K., and Bunney, W. E., Jr., 1971, L-Dopa: Regular induction of hypomania in bipolar manic-depressive patients, Nature229:135–136.PubMedGoogle Scholar
  135. Murphy, D. L., Baker, M., Goodwin, F. K., and Bunney, W. E., Jr., 1972, Behavioral and metabolic effects of L-tryptophan in unipolar depressed patients, in: Serotonin and Behavior (J. Barchas and E. Usdin, eds.), pp. 529–537, Academic Press, New York.Google Scholar
  136. Murphy, D. L., Baker, M., Goodwin, F. K., Miller, H., Kotin, J., and Bunney, W. E., Jr., 1974, L-Tryptophan in affective disorders: Indoleamine changes and differential clinical effects, Psychopharmacologia34:11–20.PubMedGoogle Scholar
  137. National Institute of Mental Health-Psychopharmacology Service Center Collaborative Study Group, 1964, Arch. Gen. Psychiatry 10:246–261.Google Scholar
  138. National Institute of Mental Health- Psychopharmacology Service Center Collaborative Study Group, 1966, Publication Rep. No. 6, U.S. Public Health Service, Bethesda, Maryland.Google Scholar
  139. Neff, N. H., Tozer, T. N., and Brodie, B. B., 1967, Application of steady-state kinetics to studies of the transfer of 5-hydroxyindoleacetic acid from brain to plasma, J. Pharmacol. Exp. Ther.158:214–218.Google Scholar
  140. Nordin, G., Ottosson, J.-O., and Roos, B.-E., 1971, Influence of convulsive therapy on 5-hydroxyindoleacetic acid and homovanillic acid in cerebrospinal fluid in endogenous depression, Psychopharmacologia20:315–320.PubMedGoogle Scholar
  141. O’Keeffe, R., Sharman, D. F., and Vogt, M., 1970, Effect of drugs used in psychoses on cerebral dopamine metabolism, Br. J. Pharmacol.38:287.PubMedGoogle Scholar
  142. Papeschi, R., and McClure, D. J., 1971, Homovanillic acid and 5-hydroxyindoleacetic acid in cerebrospinal fluid of depressed patients, Arch. Gen. Psychiatry25:354–358.PubMedGoogle Scholar
  143. Papeschi, R., Sourkes, T. L., Poirier, L. J., and Boucher, R., 1971, On the intracerebral origin of homovanillic acid of the cerebrospinal fluid of experimental animals, Brain Res. 28:527–533.PubMedGoogle Scholar
  144. Perel, J. M., Levitt, M., and Dunner, D. L., 1974, Plasma and cerebrospinal fluid probenecid concentrations as related to accumulation of acidic biogenic amine metabolites in man, Psychopharmacologia35:83–90.Google Scholar
  145. Persson, T., and Roos, B.-E., 1968, Clinical and pharmacological effects of monoamine precursors of haloperidol in chronic schizophrenia, Nature217:854.PubMedGoogle Scholar
  146. Persson, T., and Roos, B.-E., 1969, Acid metabolites from monoamines in cerebrospinal fluid of chronic schizophrenics, Br. J. Psychiatry115:95–98.PubMedGoogle Scholar
  147. Pieri, L., Pieri, M., and Haefely, W., 1975, LSD as agonist of dopamine receptors in the striatum, Nature252:586–588.Google Scholar
  148. Portig, P. J., and Vogt, M., 1969, Release into the cerebral ventricles of substances with possible transmitter function in the caudate nucleus, J. Physiol.204:687–715.PubMedGoogle Scholar
  149. Post, R. M., 1975, Cocaine psychoses: A continuum model, Am. J. Psychiatry132:225–231.PubMedGoogle Scholar
  150. Post, R. M., and Goodwin, F. K., 1974, Effects of amitriptyline and imipramine on amine metabolites in the cerebrospinal fluid of depressed patients, Arch. Gen. Psychiatry30:234–239.PubMedGoogle Scholar
  151. Post, R. M., and Goodwin, F. K., 1975, Time-dependent effects of phenothiazine on dopamine turnover in psychiatric patients, Science190:488–489.PubMedGoogle Scholar
  152. Post, R. M., and Kopanda, R. T., 1975, Cocaine, kindling, and reverse tolerance, Lancet1:409–410.PubMedGoogle Scholar
  153. Post, R. M., and Kopanda, R. T., 1976. Cocaine, kindling, and psychosis, Am. J. Psychiatry133:1177–1180.PubMedGoogle Scholar
  154. Post, R. M., Kotin, J., Goodwin, F. K., and Gordon, E. K., 1973a, Psychomotor activity and cerebrospinal fluid amine metabolites in affective illness, Am. J. Psychiatry130:67–72.PubMedGoogle Scholar
  155. Post, R. M., Gordon, E. K., Goodwin, F. K., and Bunney, W. E., Jr., 1973b, Central norepinephrine metabolism in affective illness: MHPG in the cerebrospinal fluid, Science179:1002–1003.PubMedGoogle Scholar
  156. Post, R. M., Goodwin, F. K., Gordon, E. K., and Watkin, D. M., 1973c, Amine metabolites in human cerebrospinal fluid: Effects of cord transection and spinal fluid block, Science179:897–899.PubMedGoogle Scholar
  157. Post, R. M., Kotin, J., and Goodwin, F. K., 1974a, The effects of cocaine on depressed patients, Am. J. Psychiatry131:511–517.PubMedGoogle Scholar
  158. Post, R. M., Allen, F. H., and Ommaya, A. K., 1974b, Cerebrospinal fluid flow and iodide131 transport in the spinal subarachnoid space, Life Sci. 14:1885–1894.PubMedGoogle Scholar
  159. Post, R. M., Fink, E., Carpenter, W. T., and Goodwin, F. K., 1975a, Cerebrospinal fluid amine metabolites in acute schizophrenia, Arch. Gen. Psychiatry32:1063–1069.PubMedGoogle Scholar
  160. Post, R. M., Gerner, R. H., Carman, J. S., and Bunney, W. E., Jr., 1975b, A dopamine receptor stimulator in depression, presented at the Annual Meeting, American Psychiatric Association, Anaheim, California.Google Scholar
  161. Post, R. M., Kopanda, R. T., and Black, K. E., 1976a, Progressive effects of cocaine on behavior and central amine metabolism in rhesus monkeys: Relationship to kindling and psychosis, Biol. Psychiatry11:403–409.PubMedGoogle Scholar
  162. Post, R. M., Kotin, J., and Goodwin, F. K., 1976b, Effects of sleep deprivation on mood and central amine metabolism in depressed patients, Arch. Gen. Psychiatry33:627–632.PubMedGoogle Scholar
  163. Post, R. M., Jimerson, D. C., and Goodwin, F. K., 1976c, Time-related biochemical effects of neuroleptics, presented at the Annual Meeting, American Psychiatric Association, Miami Beach, Florida, May.Google Scholar
  164. Post, R. M., Gerner, R. H., Carman, J. S., and Bunney, W. E., Jr., 1976d, Effects of low doses of a dopamine-receptor stimulator in mania, Lancet1:203–204.PubMedGoogle Scholar
  165. Post, R. M., Gerner, R. H., Jimerson, D. C., Goodwin, F. K., and Bunney, W. E., Jr., 1977a, Piribedil and dopamine metabolism: Relationship of pretreatment HVA to antidepressant response, unpublished manuscript.Google Scholar
  166. Post, R. M., Lake, C. R., Jimerson, D. C., Bunney, W. E., Jr., Wood, J. H., Ziegler, M. G., and Goodwin, F. K., 1977b, CSF norepinephrine in affective illness, presented at the Annual Meeting of the American Psychiatric Association, May 2–6, 1977, Toronto, Canada.Google Scholar
  167. Prange, A. J., Wilson, I. C., Lynn, C. W., Alltop, L. B., and Stikeleather, R. A., 1974, l-Tryptophan in mania: Contribution to a permissive hypothesis of affective disorders, Arch. Gen. Psychiatry30:46–62.Google Scholar
  168. Randrup, A., and Munkvad, I., 1970, Biochemical anatomical and psychological investigations of sterotyped behavior induced by amphetamines, in: International Symposium on Amphetamines and Related Compounds (E. Costa and S. Garrattini, eds.), pp. 695–713, Raven Press, New York.Google Scholar
  169. Rimon, R., Roos, B.-E., and Rakkolainen, V., 1971, The content of 5-HIAA and HVA in CSF of patients with acute schizophrenia, J. Psychosom. Res.15:375–378.PubMedGoogle Scholar
  170. Romero, J. A., and Axelrod, J., 1975, Regulation of sensitivity to beta-adrenergic stimulation in induction of pineal N-acetyl-transferase, Proc. Natl. Acad. Sci. U.S.A.72:1661–1665.PubMedGoogle Scholar
  171. Roos, B.-E., 1972, CSF metabolites and psychopathology, read at the American College of Neuropsychopharmacology, Las Vegas, Nevada.Google Scholar
  172. Roos, B.-E., and Sjostrom, R., 1969, 5-Hydroxyindoleacetic acid (and homovanillic acid) levels in the CSF after probenecid application in patients with manic-depressive psychosis, Pharmacol. Clin.1:153–155.Google Scholar
  173. Rubovits, R., Goodwin, F. K., and Post, R. M., 1976, Effects of lithium on brain amine metabolism, Sci. Proc. Am. Psychiatr. Assoc.129:249–250.Google Scholar
  174. Sack, R. L., and Goodwin, F. K., 1974, Inhibition of dopamines-hydroxylase in manic patients, Arch. Gen. Psychiatry31:649–654.PubMedGoogle Scholar
  175. Scatton, B., Garret, C., and Julou, L., 1975, Acute and subacute effects of neuroleptics on dopamine synthesis and release in rat striatum, Arch. Pharmacol.289:419–434.Google Scholar
  176. Scatton, B., Glowinski, J., and Julou, L., 1976, Dopamine metabolism in the mesolimbic and mesocortical dopaminergic systems after single or repeated administrations of neuroleptics, Brain Res. 109:184–189.PubMedGoogle Scholar
  177. Schildkraut, J. J., 1965, The catecholamine hypothesis of affective disorders: A review of supporting evidence, Am. J. Psychiatry122:509–522.PubMedGoogle Scholar
  178. Schildkraut, J. J., 1974, Biochemical criteria for classifying depressive disorders and predicting responses to pharmacotherapy: Preliminary findings from studies of norepinephrine metabolism, Pharmacopsychiatry7:98.Google Scholar
  179. Schildkraut, J. J., and Kety, S. S., 1967, Biogenic amines and emotion, Science156:21–30.PubMedGoogle Scholar
  180. Schildkraut, J. J., Keeler, B. A., Papousek, M., and Hartmann, E., 1973, MHPG excretion in depressive disorders: Relationship to clinical subtypes and desynchronized sleep, Science181:762–764.PubMedGoogle Scholar
  181. Sedvall, G., Fyro, B., Nyback, H., Wiesel, F., and Wode-Helgodt, B., 1974, Mass fragmentometric determination of homovanillic acid in lumbar cerebrospinal fluid of schizophrenic patients during treatment with antipsychotic drugs. J. Psychiatr. Res.11:75–80.PubMedGoogle Scholar
  182. Sedvall, G., Alfredsson, G., Bjerkenstedt, L., Eneroth, P., Fyro, B., Harnryd, C., Swahn, C. G., Wiesel, F. A., and Wode-Helgodt, B., 1976, Selective effects of psychoactive drugs on levels of monoamine metabolites and prolacting in cerebrospinal fluid of depressed patients, in: Proceedings of the Sixth International Congress of Pharmacology, Vol. 3: Central Nervous System and Behavioral Pharmacology (M. Airaksinen, ed.), pp. 255–267, Pergamon Press, New York.Google Scholar
  183. Seeman, P., and Lee, T., 1975, Antipsychotic drugs: Direct correlation between clinical potency and presynaptic action on dopamine neurons, Science188:1217–1219.PubMedGoogle Scholar
  184. Shaw, D. M., O’Keefe, R., and MacSweeney, D. A., 1973, 3-Methoxy-4-hydroxyphenylglycol in depression, Psychol. Med.3:333–336.PubMedGoogle Scholar
  185. Sheard, M. H., Zolovick, A., and Aghajanian, G. K., 1972, Raphe neurons: Effect of tricyclic antidepressant drugs, Brain Res. 43:690–694.PubMedGoogle Scholar
  186. Shopsin, B., Wilk, S., and Gershon, S., 1973, Collaborative psychopharmacologic studies exploring catecholamine metabolism in psychiatric disorders, in: Frontiers in Catecholamine Research (E. Usdin and S. Snyder, eds.), pp. 1173–1179, Pergamon Press, New York.Google Scholar
  187. Shopsin, B., Gershon, S., Goldstein, M., Friedman, E., and Wilk, S., 1975, Use of synthesis inhibitors in defining a role for biogenic amines during imipramine treatment in depressed patients, Psychopharmacol. Commun.1:239–249.PubMedGoogle Scholar
  188. Sjostrom, R., 1972, Steady-state levels of probenecid and their relation to acid monoamine metabolites in human cerebrospinal fluid, Psychopharmacologia25:96–100.PubMedGoogle Scholar
  189. Sjostrom, R., 1973a, 5-Hydroxyindoleacetic acid and homovanillic acid in cerebrospinal fluid in manic-depressive psychosis and the effect of probenecid treatment, Eur. J. Clin. Pharmacol.6:75–80.PubMedGoogle Scholar
  190. Sjostrom, R., 1973b, Cerebrospinal fluid content of 5-hydroxyindoleacetic acid and homovanillic acid in manic-depressive psychosis, Aca Univ. Ups.154:16–17.Google Scholar
  191. Sjostrom, R., and Roos, B.-E., 1972, 5-Hydroxyindoleacetic acid and homovanillic acid in cerebrospinal fluid in manic-depressive psychosis, Eur. J. Clin. Pharmacol.4:170–176.PubMedGoogle Scholar
  192. Snyder, S. H., Banerjee, S. P., Yamamura, H. I., and Greenberg, D., 1974, Drugs, neurotransmitters and schizophrenia, Science184:1243–1253.PubMedGoogle Scholar
  193. Sourkes, T. L., 1973, On the origin of homovanillic acid (HVA) in the cerebrospinal fluid, J. Neural Transm.34:153–157.PubMedGoogle Scholar
  194. Spitzer, R. L., Endicott, J., and Robins, E., 1975, Clinical criteria for psychiatric diagnosis and DSM III, Am. J. Psychiatry32:1187–1192.Google Scholar
  195. Stein, L., and Wise, C. D., 1971, Possible etiology of schizophrenia: Progressive damage to the noradrenergic reward system by 6-hydroxydopamine, Science171:1032–1036.PubMedGoogle Scholar
  196. Subrahmanyam, S., 1975, Role of biogenic amines in certain pathological conditions, Brain Res. 87:355–362.PubMedGoogle Scholar
  197. Tagliamonte, A., Tagliamonte, P., Perez-Cruet, J., Stern, S., and Gessa, G., 1971, Effect of psychotropic drugs on tryptophan concentration in the rat brain, J. Pharmacol. Exp. Ther.177:475–480.PubMedGoogle Scholar
  198. Tamarkin, R. N., Goodwin, F. K., and Axelrod, J., 1970, Rapid elevation of biogenic amine metabolites in human CSF following probenecid, Life Sci. 9:1397–1408.Google Scholar
  199. Usdin, E., and Bunney, W. E., Jr., 1975, Pre- and Postsynaptic Receptors, Marcel Dekker, New York.Google Scholar
  200. Van den Burg, W., and Van den Hoofdakker, R. H., 1975, Total sleep deprivation on endogenous depression, Arch. Gen. Psychiatry32:1121–1125.PubMedGoogle Scholar
  201. Van Praag, H. M., 1977a, The significance of dopamine for the mode of action of neuroleptics and the pathogenesis of schizophrenia, Br. J. Psychiatry130:463–474.PubMedGoogle Scholar
  202. Van Praag, H. M., 1977b, Significance of biochemical parameters in the diagnosis, treatment and prevention of depressive disorders, Biol. Psychiatry12:101–131.PubMedGoogle Scholar
  203. van Praag, H. M., and Korf, J., 1971a, A pilot study of some kinetic aspects of the metabolism of 5-hydroxytryptamine in depression, Biol. Psychiatry3:105–112.PubMedGoogle Scholar
  204. van Praag, H. M., and Korf, J., 1971b, Retarded depression and the dopamine metabolism, Psychopharmacologia19:199–203.PubMedGoogle Scholar
  205. van Praag, H. M., and Korf, J., 1975, Neuroleptics, catecholamines, and psychoses: A study of their interrelations, Am. J. Psychiatry132:593–597.PubMedGoogle Scholar
  206. van Praag, H. M., Korf, J., and Puite, J., 1970, 5-Hydroxyindoleacetic acid levels in the cerebrospinal fluid of depressive patients treated with probenecid, Nature225:1259–1260.PubMedGoogle Scholar
  207. van Praag, H. M., Flentge, F., Korf, J., Dols, C. W., and Schut, T., 1973a, The influence of probenecid on the metabolism of serotonin, dopamine and their precursors in man, Psychopharmacologia33:141–151.PubMedGoogle Scholar
  208. van Praag, H. M., Korf, J., and Schut, D., 1973b, Cerebral monoamines and depression: An investigation with the probenecid technique, Arch. Gen. Psychiatry28:827–831.PubMedGoogle Scholar
  209. Van Rossum, J. M., 1967, The significance of dopamine-receptor blockade for the action of neuroleptic drugs, in: Neuropsychopharmacology (H. Brill, J. O. Cole, and P. Deniker, eds.), pp. 321–329, Excerpta Medica, Amsterdam.Google Scholar
  210. Velley, L. G., Blanc, J. P., and Tassin, A. M., 1975, Inhibition of striatal dopamine synthesis in rats injected chronically with neuroleptics in their early life, N.S. Arch. Pharmacol.288:97–102.Google Scholar
  211. Von Hungen, K., Roberts, S., and Hill, D. F., 1975, LSD as agonist and antagonist at central dopamine receptors, Nature252:588–589.Google Scholar
  212. Weir, R., Chase, T. N., Ng, L. K. Y., and Kopin, I. J., 1973, 5-Hydroxyindoleacetic acid in spinal fluid: Relative contributions from brain and spinal cord, Brain Res. 52:409–412.PubMedGoogle Scholar
  213. Weiss, B. L., Kupfer, D. J., Foster, F. G., and Delgado, J., 1974, Psychomotor activity, sleep and biogenic amine metabolites in depression, Biol. Psychiatry9:45–54.PubMedGoogle Scholar
  214. Weisel, F., Alfredsson, G., and Likwornik, V., 1975, A relation between drug concentra tions in brain and striatal homovanillic acid levels in chlorpromazine treated rats, Life Sci. 16:1145–1156.Google Scholar
  215. Wilk, S., Shopsin, B., Gershon, S., and Suhl, M., 1972, Cerebrospinal fluid levels of MHPG in affective disorders, Nature235:440–441.PubMedGoogle Scholar
  216. Wilson, R. G., Hamilton, J. R., and Boyd, W. A., 1975, The effect of long term phenothiazine therapy on plasma prolactin, Br. J. Psychiatry127:71–74.PubMedGoogle Scholar
  217. Woolley, D. W., and Shaw, E., 1954, A biochemical and pharmacological suggestion about certain mental disorders, Proc. Natl. Acad. Sci. U.S.A.40:228–231.PubMedGoogle Scholar
  218. Wyatt, R. J., Gillin, J. C., Kaplan, J., Stillman, L., Mandel, H., Ahn, S., Vanden Heuvel, W. J. A., and Walker, R. W., 1974, N,N-Dimethyltriptamine—A possible relationship to schizophrenia? in: Serotonin, New Vistas (E. Costa, G. L. Gessa, and M. Sandler, eds.), pp. 299–313, Raven Press, New York.Google Scholar
  219. Young, S. N., Lal, S., Martin, J. B., Ford, R. M., and Sourkes, T. L., 1973, 5-Hydroxyindoleacetic acid, homovanillic acid and tryptophan levels in CSF above and below a complete block of CSF flow, Psychiatr. Neurol. Neurochir.76:439–444.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Robert M. Post
    • 1
  • Frederick K. Goodwin
    • 2
  1. 1.Section on Psychobiology, Biological Psychiatry BranchNational Institute of Mental HealthBethesdaUSA
  2. 2.Clinical Psycho-biology BranchNational Institute of Mental HealthBethesdaUSA

Personalised recommendations