Drugs of Abuse pp 187-234 | Cite as

Sedative-Hypnotics: Animal Pharmacology

  • Roger A. Nicoll
Part of the Handbook of Psychopharmacology book series (HBKPS)


The separate classification of CNS depressants into general anesthetics and sedative-hypnotics is based primarily on clinical usage, which in turn is determined largely by pharmacokinetic factors. Thus, volatile anesthetics are not used as sedative-hypnotics because of difficulties with administration and short duration of action, and the sedative-hypnotics, although anesthetics in higher doses, are not routinely used as anesthetics in humans, except for induction, because there is less control over the level of anesthesia. The progressive dose-related effects of all CNS depressants may be indicated as follows: sedation→hypnosis→anesthesia→coma→death. These different states lie on a continuum and, except for an early excitatory phase that is often seen with many agents, there is no convincing evidence that the drug actions that produce sedation are qualitatively any different from those that produce anesthesia for a particular agent. Therefore, much of the research on CNS depressants has focused on their anesthetic action with the belief that such results will also apply to their sedative-hypnotic action.


Superior Cervical Ganglion Primary Afferents Presynaptic Inhibition Synaptic Inhibition Primary Afferent Depolarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, P. R., 1974, The mechanism by which amylobarbitone and thiopentone block the end-plate response to nicotinic agonists, J. Physiol. (Lond.) 236:41–43.Google Scholar
  2. Adams, P. R., 1976, Drug blockade of open end-plate channels, J. Physiol. (Lond.) 260:531–552.Google Scholar
  3. Adams, P. R., and Brown, D. A., 1975, Actions of γ-aminobutyric acid on sympathetic ganglion cells, J. Physiol. (Lond.) 250:85–120.Google Scholar
  4. Adams, P. R., Cash, H. C., and Quilliam, J. P., 1970, Extrinsic and intrinsic acetylcholine and barbiturate effects on frog skeletal muscle, Br. J. Pharmacol. 40:552–553.Google Scholar
  5. Akert, K., Livingston, R. B., Moor, H., and Streit, P., 1974, Ultrastructure of synapses in the waking state, J. Neurol. Trans. Suppl. XI: 1-11.Google Scholar
  6. Almaes, E., and Rahamimoff, R., 1975, On the role of mitochondria in transmitter release from motor nerves terminals, J. Physiol. (Lond.) 248:285–306.Google Scholar
  7. Andersen, P., and Anderson, J. A., 1968, Physiological Basis of the Alpha Rhythm, Appleton-Century-Crofts, New York.Google Scholar
  8. Andersen, P., and Curtis, D. R., 1964, The excitation of thalamic neurones by acetylcholine, Acta Physiol. Scand. 61:85–99.PubMedCrossRefGoogle Scholar
  9. Andersen, P., Eccles, J. C, and Sears, T. A., 1964, The ventro-basal complex of the thalamus: Types of cells, their responses and their functional organization, J. Physiol. (Lond.) 174:370–399.Google Scholar
  10. Ariens, E. J., 1964, Molecular Pharmacology, Academic Press, New York.Google Scholar
  11. Baldissera, F., Cesa-Bianchi, M. G., and Mancia, M., 1966, Phasic events indicating presynaptic inhibition of primary afférents to the spinal cord during desynchronized sleep, J. Neurophysiol. 29:871–887.PubMedGoogle Scholar
  12. Banna, N. R., 1970, Antagonism of barbiturate depression of spinal transmission by catechol, Experientia 26:1330–1331.PubMedCrossRefGoogle Scholar
  13. Banna, N. R., 1973, The effect of semicarbazide pretreatment on the depressant action of barbiturates, Experientia 29:819–820.PubMedCrossRefGoogle Scholar
  14. Banna, N. R., and Jabbur, S. J., 1969, Pharmacological studies on inhibition in the cuneate nucleus of the cat, Int. J. Neuropharmacol. 8:299–307.PubMedCrossRefGoogle Scholar
  15. Banna, N. R., and Jabbur, S. J., 1972, Facilitation of spinal synaptic transmission by catechol, Neuropharmacol. 11:565–571.CrossRefGoogle Scholar
  16. Barker, J. L., 1975a, CNS depressants: Effects on post-synaptic pharmacology, Brain Res. 92:35–55.PubMedCrossRefGoogle Scholar
  17. Barker, J. L., 1975b, Inhibitory and excitatory effects of CNS depressants on invertebrate synapses, Brain Res. 93:77–90.PubMedCrossRefGoogle Scholar
  18. Barker, J. L., and Nicoll, R. A., 1972, GABA: Role in primary afferent depolarization, Science (N.Y.) 176:1043–1045.CrossRefGoogle Scholar
  19. Barker, J. L., and Nicoll, R. A., 1973, The pharmacology and ionic dependency of amino acid responses in the frog spinal cord, J. Physiol. (Lond.) 228:259–277.Google Scholar
  20. Barker, J. L., Nicoll, R. A., and Padjen, A., 1975a, Studies on convulsants in the isolated frog spinal cord. I. Antagonism of amino acid responses, J. Physiol. (Lond.) 245:521–536.Google Scholar
  21. Barker, J. L., Nicoll, R. A., and Padjen, A., 1975b, Studies on convulsants in the isolated frog spinal cord. II. Effects on root potentials. J. Physiol. (Lond.) 245:537–548.Google Scholar
  22. Blaustein, M. P., 1968, Barbiturates block sodium and potassium conductance increases in voltage-clamped lobster axons, J. Gen. Physiol. 51:293–307.PubMedCrossRefGoogle Scholar
  23. Blaustein, M. P., 1976, Barbiturates block calcium uptake by stimulated and potassiumdepolarized rat sympathetic ganglia, J. Pharmacol. Exp. Ther. 196:80–86.PubMedGoogle Scholar
  24. Blaustein, M. P., and Ector, A. C, 1975, Barbiturate inhibition of calcium uptake by depolarized nerve terminals in vitro, Molec. Pharmacol. 11:369–378.Google Scholar
  25. Bloedel, J. R., and Roberts, W. J. T., 1960, Functional relationship among ncurons of the cerebellar cortex in the absence of anesthesia, J. Neurophysiol. 32:75–84.Google Scholar
  26. Bloom, F. E., 1975, Amine receptors in CNS. I. Norepinephrine, in: Handbook of Psychopharmacology, Vol. 6 (L. L. Iversen, S. D. Iversen, and S. H. Snyder, eds.), Plenum, New York.Google Scholar
  27. Bloom, F. E., Costa, E., and Salmoiraghi, G. C., 1965, Anesthesia and the responsiveness of individual neurons of the caudate nucleus of the cat to acetylcholine, norepinephrine and dopamine administered by microelectrophoresis, J. Pharmacol. Exp. Ther. 150:244–252.PubMedGoogle Scholar
  28. Bloom, F. E., Hoffer, B. J., Siggins, C. R., Barker, J. L., and Nicoll, R. A., 1972, Effects of serotonin on central neurons: Microiontophoretic administration, Fed. Proc. 31:97–106.PubMedGoogle Scholar
  29. Bowery, N. G., and Dray, A., 1976, Barbiturate reversal of amino acid antagonism produced by convulsant agents, Nature 264:276–278.PubMedCrossRefGoogle Scholar
  30. Bradley, P. B., and Dray, A., 1973, Modification of the responses of brain stem neurones to transmitter substances by anaesthetic agents, Br. J. Pharmacol. 48:212–224.PubMedGoogle Scholar
  31. Bremer, F., 1970, Inhibitions intrathalamiques recurrentielles et physiologie du sommeil, Electroenceph. Clin. Neurophysiol. 28:1–16.PubMedCrossRefGoogle Scholar
  32. Brooks, C. Mcc, and Eccles, J. C, 1947, A study of the effects of anaesthesia and asphyxia on the mono-synaptic pathway through the spinal cord, J. Neurophysiol. 5:349–360.Google Scholar
  33. Brooks, C McC, Koizumi, K., and Siebens, A. A., 1956, Inhibitory action of bulbar and suprabulbar reticular formation on spinal reflex pathway, Am. J. Physiol. 184:497–504.PubMedGoogle Scholar
  34. Brown, D. A., and Quilliam, J. P., 1964a, The effects of some centrally acting drugs on ganglionic transmission in the cat, Br. J. Pharmacol. 23:241–256.Google Scholar
  35. Brown, D. A., and Quilliam, J. P., 1964b, Observations on the mode of action of some central depressant drugs on transmission through the cat superior cervical ganglion, Br. J. Pharmacol. 23:257–272.Google Scholar
  36. Buch, H., Knabe, J., Buzello, W., and Rummel, W., 1970, Stereospecificity of anesthetic activity, distribution, inactivation and protein binding of the optical antipodes of two N-methylated barbiturates, J. Pharmacol. Exp. Ther. 175:709–716.PubMedGoogle Scholar
  37. Buch, H. P., Schneider-Affeld, F., Rummel, W., and Knabe, J., 1973, Stereochemical dependence of pharmacological activity in a series of optically active N-methylated barbiturates, Naunyn-Schmiedeberg’s Arch. Pharmacol. 277:191–198.CrossRefGoogle Scholar
  38. Carmichael, F. J., and Israel, M., 1975, Effects of ethanol on neurotransmitter release by rat brain cortical slices, J. Pharmacol. Exp. Ther. 193:824–834.PubMedGoogle Scholar
  39. Catchlove, R. F. H., Krnjevic, K., and Maretic, H., 1972, Similarity between effects of general anesthetics and dinitrophenol on cortical neurones, Canad. J. Physiol. Pharmacol. 50:1111–1114.CrossRefGoogle Scholar
  40. Christensen, H. D., and Lee, I. S., 1973, Anesthetic potency and acute toxicity of optically active disubstituted barbituric acids, Toxicol. Appl. Pharmacol. 26:495–503.PubMedCrossRefGoogle Scholar
  41. Cowan, M. J., Scher, A. M., and Hildebrandt, J., 1975, Heart rate response to sympathetic stimulation before and after sodium pentobarbital, Am. J. Physiol. 228:1568–1574.PubMedGoogle Scholar
  42. Crawford, J. M., 1969, Effects of convulsant barbiturates on cortical neurons, Brain Res. 12:485–489.PubMedCrossRefGoogle Scholar
  43. Crawford, J. M., 1970, Anaesthetic agents and the chemical sensitivity of cortical neurones, Neuropharmacology 9:31–46.PubMedCrossRefGoogle Scholar
  44. Crawford, J. M., and Curtis, D. R., 1966, Pharmacological studies on feline Betz cells, J. Physiol. (Lond.) 186:121–138.Google Scholar
  45. Curtis, D. R., and Degroat, W. C, 1968, Tetanus toxin and spinal inhibition, Brain Res. 10:208–212.PubMedCrossRefGoogle Scholar
  46. Curtis, D. R., and Johnston, G. A. R., 1974, Amino acid transmitters in the mammalian central nervous system, Ergeh. Physiol. 69:97–188.Google Scholar
  47. Curtis, D. R., and Ryall, R. W., 1966a, Pharmacological studies upon spinal presynaptic fibres, Exp. Brain Res. 1:195–204.PubMedCrossRefGoogle Scholar
  48. Curtis, D. R., and Ryall, R. W., 1966b, The excitation of Renshaw cells by cholinomimetics, Exp. Brain Res. 2:49–65.PubMedGoogle Scholar
  49. Curtis, D. R., Felix, D., Game, C. J. A., and Mcculloch, 1973, Tetanus toxin and the synaptic release of GABA, Brain Res. 51:358–362.PubMedCrossRefGoogle Scholar
  50. Cutler, R. W. P., and Dudzinski, D. S., 1974, Effect of pentobarbital on uptake and release of [3H]-GABA and [14C]glutamate by brain slices, Brain Res. 67:546–548.PubMedCrossRefGoogle Scholar
  51. Cutler, R. W. P., and Dudzinski, D. S., 1975, Release of 3H-GABA and C-glutamic acid from rat cortex slices: The relationship between the tissue pool size and rates of spontaneously and electrically induced release, Brain Res. 88:415–423.PubMedCrossRefGoogle Scholar
  52. Cutler, R. W. P., Markowitz, D., and Dudzinski, D. S., 1974, The effect of barbiturates on 3H-GABA transport in rat cerebral cortex slices, Brain Res. 81:189–197.PubMedCrossRefGoogle Scholar
  53. Daves, G. D., Belshee, R. B., Anderson, W. R., and Downes, H., 1975, Solution conformations of ethyl-l-methylbutylbarbituric acids: Implications for drug-receptor interactions, Mol. Pharmacol. 11:470–477.Google Scholar
  54. Davidoff, R. A., 1972, Gamma-aminobutyric acid antagonism and presynaptic inhibition in the frog spinal cord, Science (N.Y.) 175:331–333.CrossRefGoogle Scholar
  55. Davidson, N., and Southwick, C. A. P., 1971, Amino acids and presynaptic inhibition in the rat cuneate nucleus, J. Physiol. (Lond.) 219:689–708.Google Scholar
  56. Domino, E. F., 1956, Pharmacological actions of a convulsant barbiturate. II. Effects compared with pentobarbital on cerebral cortex and some brain stem systems of the cat, J. Pharmacol. Exp. Ther. 119:272–283.Google Scholar
  57. Downes, H., 1969, as quoted by Esplin, D. W., and Zablocka-Esplin, B., Mechanisms of action of convulsants, in Basic Mechanisms of the Epilepsies (H. H. Jasper, A. A. Ward, and A. Pope, eds.) Little, Brown, Boston.Google Scholar
  58. Downes, H., and Franz, D. N., 1971, Effects of a convulsant barbiturate on dorsal root ganglion cells and dorsal root discharges, J. Pharmacol. Exp. Ther. 179:660–670.PubMedGoogle Scholar
  59. Downes, H., and Williams, J. K., 1969, Effects of a convulsant barbiturate on the spinal monosynaptic pathway, J. Pharmacol. Exp. Ther. 168:283–289.PubMedGoogle Scholar
  60. Downes, H., Perry, R. S., Ostlund, R. E., and Karler, R., 1970, A study of the excitatory effects of barbiturates, J. Pharmacol. Exp. Ther. 175:692–699.PubMedGoogle Scholar
  61. Downing, D. A., 1972, The effects of procaine, amylobarbitone on drug induced changes in the surface potentials of an isolated sympathetic ganglion, Br. J. Pharmacol. 45:159–160.Google Scholar
  62. Dransfeld, H., Greeff, K., Schorn, A., and Ting, B. T., 1969, Calcium uptake in mitochondria and vesicles of heart and skeletal muscle in presence of potassium, sodium, K-strophanthin and pentobarbital, Biochem. Pharmacol. 18:1335–1345.PubMedCrossRefGoogle Scholar
  63. Dudel, J., 1965, The action of inhibitory drugs on nerve terminals in crayfish muscle, Pflugers Arch. 284:81–94.CrossRefGoogle Scholar
  64. Duggan, A. W., Headley, P. M., and Lodge, D., 1974, Acetylcholine-sensitive cells in the caudal medulla of the rat: Distribution, pharmacology and effects of pentobarbitone, Br. J. Pharmacol. 54:23–31.Google Scholar
  65. Eccles, J. C., 1946, Synaptic potentials of motoneurones, J. Neurophysiol. 9:87–120.PubMedGoogle Scholar
  66. Eccles, J. C, 1964, The Physiology of Synapses, Springer, Berlin.CrossRefGoogle Scholar
  67. Eccles, J. C., and Malcolm, J. L., 1946, Dorsal root potentials of the spinal cord, J. Neurophysiol. 9:139–160.PubMedGoogle Scholar
  68. Eccles, J. C., Schmidt, R., and Willis, W. D., 1963, Pharmacological studies on presynaptic inhibition, J. Physiol. (Lond.) 168:500–530.Google Scholar
  69. Eccles, J. C., Faber, D. S., and Taborikova, H., 1971, The action of a parallel fiber volley on the antidromic invasion of Purkinje cells of cat cerebellum, Brain Res. 25:335–356.PubMedCrossRefGoogle Scholar
  70. Eccles, J. C., Sabah, N. H., and Taborikova, H., 1974, Excitatory and inhibitory responses of neurones of the cerebellar fastigial nucleus, Exp. Brain Res. 19:61–77.PubMedCrossRefGoogle Scholar
  71. Edney, S. M., and Downes, H., 1975, Contractor effect of barbiturates on smooth muscle, Arch. Int. Pharmacolodyn. 217:180–196.Google Scholar
  72. Elliott, R. C., and Quilliam, J. P., 1964, Some actions of centrally active and other drugs on the transmission of single nerve impulses through the isolated superior cervical ganglion preparation of the rabbit, Br. J. Pharmacol. 23:222–240.Google Scholar
  73. Esplin, D. W., 1963, Criteria for assessing effects of depressant drugs on spinal synaptic transmission with examples of drug selectivity, Arch. Int. Pharmacodyn. Ther. 143:479–497.Google Scholar
  74. Exley, K. A., 1954, Depression of autonomic ganglia by barbiturates, Br. J. Pharmacol. 9:170–181.Google Scholar
  75. Fencl, V., Koski, G., and Pappenheimer, J. R., 1971, Factors in cerebrospinal fluid from goats that affect sleep and activity in rats, J. Physiol. (Lond.) 216:565–589.Google Scholar
  76. Fink, B. R., ed., 1975, Molecular mechanisms of anesthesia, in: Progress in Anesthesiology (R. L. Katz, ed.), Raven Press, New York.Google Scholar
  77. Fisher, R. S., Walker, J. T., and Plummer, C. W., 1948, Quantitative estimation of barbiturates in blood by ultra-violet spectrophotometry, Am. J. Clin. Pathol. 18:462–469.PubMedGoogle Scholar
  78. Frank, G. B., 1968, Drugs which modify membrane excitability, Fed. Proc. 27:132–136.PubMedGoogle Scholar
  79. Frank, G. B., and Ohta, M., 1971, Blockade of the reticulospinal inhibitory pathway by anaesthetic agents, Br. J. Pharmacol. 42:328–342.PubMedGoogle Scholar
  80. Frank, G. B., and Sanders, H. D., 1963, A proposed common mechanism of action for general and local anesthetics in the central nervous system, Br. J. Pharmacol. Chemother. 21:1–9.PubMedGoogle Scholar
  81. Frazier, D. T., Murayama, K., Abbott, N.J., and Narahashi, T., 1975, Comparison of the action of different barbiturates on squid axon membranes, Eur. J. Pharmacol. 32:102–107.PubMedCrossRefGoogle Scholar
  82. Freudenthal, R. I., and Martin, J., 1975, Correlation of brain levels of barbiturate enantiomers with reported differences in duration of sleep, J. Pharmacol. Exp. Ther. 184:664–668.Google Scholar
  83. Galindo, A., 1969, Effects of procaine, pentobarbital, and halothane on synaptic transmission in the central nervous system, J. Pharmacol. Exp. Ther. 169:185–195.PubMedGoogle Scholar
  84. Galindo, A., 1971, Procaine, pentobarbital, and halothane: Effects on the mammalian myoneural junction, J. Pharmacol. Exp. Ther. 177:360–368.PubMedGoogle Scholar
  85. Gallagher, J. P., Higashi, H., and Nishi, S., 1975, The ionic requirements for the production of the GABA depolarization at cat primary afferent neurons, Fed. Proc. 34:418.Google Scholar
  86. Garrison, D. L., Sinclair, J. G., Kee, R. D., and Yim, G. K. W., 1974, The differential action of intravenous lidocaine on cerebellar inhibition and cerebellar disfacilitation, Brain Res. 77:443–450.PubMedCrossRefGoogle Scholar
  87. Gergis, S. D., Dretchen, K. L., Sokoll, M. D., and Long, J. P., 1972, Effect of anesthetics on acetylcholine release from the myoneural junction, Proc. Soc. Exp. Biol. Med. 141:629–631.PubMedGoogle Scholar
  88. Gibson, W. R., Doran, W. J., Wood, W. C., and Swanson, E. E., 1959, Pharmacology of stereoisomers of l-methyl-5-(l-methyl-2-pentynyl)-5-allyl-barbituric acid, J. Pharmacol. Exp. Ther. 125:23–27.PubMedGoogle Scholar
  89. Godfraind, J. M., Kawamura, H., Krnjevic, K., and Pumain, R., 1971, Actions of dinitrophenol and some other metabolic inhibitors on cortical neurones, J. Physiol. (Lond.) 215:199–222.Google Scholar
  90. Goldring, J. M., and Blaustein, M. P., 1976, Barbiturates block Ca spikes but not Na spikes in Aplysia neurons, Neurosci. Abst. 2:411.Google Scholar
  91. Gordon, M., Rubia, F. J., and Strata, P., 1973, The effect of Pentothal on the activity evoked in the cerebellar cortex, Exp. Brain Res. 17:50–62.PubMedCrossRefGoogle Scholar
  92. Goth, A., 1974, Medical Pharmacology, C. V. Mosby, St. Louis.Google Scholar
  93. Grinnell, A. D., 1966, A study of the interaction between motoneurones in the frog spinal cord, J. Physiol. (Lond.) 182:612–648.Google Scholar
  94. Grossmann, W., Jurna, I., and Theres, C., 1974, The site of action of the optical isomers of l-methyl-5-phenyl-5-propyl barbituric acid, Naunyn-Schmiedeberg′s Arch. Pharmacol. 282:367–377.CrossRefGoogle Scholar
  95. Halsey, M. J., Millar, R., and Sutton, J. A., ed., 1974, Molecular Mechanisms in General Anaesthesia, Churchill, Livingston, New York.Google Scholar
  96. Harris, M., Hopkin, J. M., and Neal, M. J., 1973, Effect of centrally acting drugs on uptake of γ-aminobutyric acid (GABA) by slices of rat cerebral cortex, Br. J. Pharmacol. 47:229–239.PubMedGoogle Scholar
  97. Harvey, S. C, 1975, Hypnotics and sedatives, in: The Pharmacological Basis of Therapeutics (L. S. Goodman and A. Gilman, eds.) pp. 102–136, MacMillan, New York.Google Scholar
  98. Haycock, J. W., Levy, W. B., and Cotman, C. W., 1977, Pentobarbital depression of stimulus-secretion coupling in brain-selective inhibition of depolarization-induced calcium-dependent release, Biochem. Pharmacol. 26:159–161.PubMedCrossRefGoogle Scholar
  99. Heavner, J. E., and Haschke, R. H., 1975, Interaction of glutamate and neurotropic compounds with an excitable membrane, Neurosci. Abst. 1:368.Google Scholar
  100. Heinbecker, P., and Bartley, S. H., 1940, Action of ether and nembutal on the nervous system, J. Neurophysiol. 3:210–236.Google Scholar
  101. Holmes, J. C, and Schneider, F. H., 1973, Pentobarbitone inhibition of catecholamine secretion, Br. J. Pharmacol 49:205–213.PubMedGoogle Scholar
  102. Hsueh, C., and Marvel, C. S., 1928, Optically active hypnotics, JAMA 50:855–859.Google Scholar
  103. Hupka, A. L., Williams, J. K., and Karler, R., 1969, Effects of convulsant barbiturates on vascular smooth muscle, J. Pharm. Pharmacol. 21:838–844.PubMedCrossRefGoogle Scholar
  104. Iravani, J., 1965a, Wechselbeziehung von Barbituraten und Piperazin mit GABA an der Membrane des Krebsmuskels, Arch. Exp. Pathol. Pharmakol. 251:265–274.Google Scholar
  105. Iravani, J., 1965b, Die Wirkung einiger zentral wirksamer Pharmaka auf die synaptische Ubertragung im Krebsmuskel, Arch. Exp. Pathol. Pharmakol. 251:375–395.Google Scholar
  106. Johnson, E. S., Roberts, M. H. T., and Straughan, D. W., 1969, The responses of cortical neurones to monoamines under differing anaesthetic conditions, J. Physiol. (Lond.). 203:261–280.Google Scholar
  107. Johnston, G. A. R., and Iversen, L. L., 1971, Glycine uptake in rat central nervous system slices and homogenates: Evidence for different uptake systems in spinal cord and cerebral cortex, J. Neurochem. 18:1951–1961.PubMedCrossRefGoogle Scholar
  108. Jori, A., Bianchetti, A., and Prestini, P. E., 1970, Relations between barbiturate brain levels and sleeping time in various experimental conditions, Biochem. Pharmacol. 19:2687–2694.PubMedCrossRefGoogle Scholar
  109. Kelly, J. S., and Beart, P. M., 1975, Amino acid receptors in the CNS. II. GABA in supraspinal regions, in: Handbook of Psychopharmacology, Vol. 4 (L. L. Iversen, S. D. Iversen, and S. H. Snyder, eds.), Plenum, New York.Google Scholar
  110. Knave, B., and Persson, H. E., 1974, The effect of barbiturate on retinal functions. III. Effects on the isolated receptor responses and the inner nuclear layer components in the low-intensity electroretinogram of the sheep eye, Acta Physiol. Scand. 91:187–195.PubMedCrossRefGoogle Scholar
  111. Knoefel, P. L., 1945, Stimulation and depression of the central nervous system by derivatives of barbituric and thiobarbituric acids, J. Pharmacol. Exp. Ther. 84:26–33.Google Scholar
  112. Koketsu, K., Shoji, T., and Yamamoto, K., 1974, Effects of GABA on presynaptic nerve terminals in bullfrog (Rana catesbiana) sympathetic ganglia, Experientia 30:382–383.PubMedCrossRefGoogle Scholar
  113. Krnjevic, K., 1974a, Chemical nature of synaptic transmission in vertebrates, Physiol. Rev. 54:418–540.Google Scholar
  114. Krnjevic, K., 1974a, Central action of general anaesthetics, in: Molecular Mechanisms in General Anaesthesia, Glaxo Symposium, October 1973, Middlesex, England. Churchill-Livingston, London.Google Scholar
  115. Krnjevic, K., 1975, Is general anesthesia induced by neuronal asphyxia? in: Molecular Mechanisms of Anesthesia (B. R. Fink, ed.), Raven Press, New York.Google Scholar
  116. Krnjevic, K., and Lisiewicz, A., 1972, Injections of calcium ions into spinal motoneurones, J. Physiol. (Lond.) 225:363–390.Google Scholar
  117. Krnjevic, K., and Phillis, J. W., 1963, Acetyichoiine-sensitive ceiis in the cerebrai cortex, J. Physiol. (Lond.) 166:296–327.Google Scholar
  118. Krnjevic, K., Randic, M., and Straughan, D. W., 1966, Pharmacology of cortical inhibition, J. Physiol. 184:78–105.PubMedGoogle Scholar
  119. Krnjevic, K., Pumain, R., and Renaud, L., 1971, The mechanism of excitation by acetylcholine in the cerebral cortex, J. Physiol. 215:247–268.PubMedGoogle Scholar
  120. Krupp, P., Bianchi, C. P., and Suarez-Kurtz, G., 1969, On the local anaesthetic effect of barbiturates, J. Pharm. Pharmacol. 21:763–768.PubMedCrossRefGoogle Scholar
  121. Landis, D. M. D., and Reese, T. S., 1974, Differences in membrane structure between excitatory and inhibitory synapses in the cerebellar cortex, J. Comp. Neurol. 155:93–126.PubMedCrossRefGoogle Scholar
  122. Landis, D. M. D., Reese, T. S., and Raviola, E., 1974, Differences in membrane structure between excitatory and inhibitory components of the reciprocal synapse in the olfactory bulb, J. Comp. Neurol. 155:67–92.PubMedCrossRefGoogle Scholar
  123. Larrabee, M. G., and Posternak, J. M., 1952, Selective action of anesthetics on synapses and axons in mammalian sympathetic ganglia, J. Neurophysiol. 15:91–114.PubMedGoogle Scholar
  124. Larson, M. D., and Major, M. A., 1970, The effect of hexobarbital on the duration of the recurrent IPSP in cat motoneurons, Brain Res. 21:309–311.PubMedCrossRefGoogle Scholar
  125. Lee Son, S., Wand, B. E., and Wand, D. R., 1975, A comparison of the potencies of a series of barbiturates at the neuromuscular junction and on the central nervous system, J. Pharmacol. Exp. Ther. 195:251–256.Google Scholar
  126. Lidbrink, P., and Farnebo, L. O., 1973, Uptake and release of noradrenaline in rat cerebral cortex in vitro: No effect of benzodiazepimes and barbiturates, Neuropharmacology 12:1087–1095.PubMedCrossRefGoogle Scholar
  127. Lingwood, R. N. G., and Chiesa, F., 1967, Barbiturate/γ-aminobutyric acid compositions, British Patent: Brit. 1,085,786.Google Scholar
  128. Lloyd, D. P. C., 1952, Electrotonics in dorsal nerve roots, Cold Spr. Harb. Symp. Quant. Biol. 17:203–219.CrossRefGoogle Scholar
  129. Løyning, Y., Oshima, T., and Yokota, T., 1964, Site of action of thiamylal sodium on the monosynaptic spinal reflex pathway in CNS, J. Neurophysiol. 27:408–428.PubMedGoogle Scholar
  130. Marley, E., and Vane, J. R., 1963, Tryptamine receptors in the central nervous system: Effects of anaesthetics, Nature (London) 198:441–444.CrossRefGoogle Scholar
  131. Matthews, E. K., and Quilliam, J. P., 1964, Effects of central depressant drugs upon acetycholine release, Br. J. Pharmacol. 22:415–440.Google Scholar
  132. Meyer, H., 1899, Welche Eigenschaft der Anästhetica bedingt ihre narkitische Wirkung? Arch. Exp. Path. Pharmakol. (Naunyn-Schmiedelbergs) 42:109–118.CrossRefGoogle Scholar
  133. Minchin, M. C. W., and Iversen, L. L., 1974, Release of [3H]gamma-aminobutyric acid from glial cells in rat dorsal root ganglia, J. Neurochem. 25:239–244.Google Scholar
  134. Miyahara, J. T., Esplin, D. W., and Zablocka, B., 1966, Differential effects of depressant drugs on presynaptic inhibition, J. Pharmacol. Exp. Ther. 154:118–127.Google Scholar
  135. Miyata, Y., and Otsuka, M., 1975, Quantitative histochemistry of γ-aminobutyric acid in cat spinal cord with special reference to presynaptic inhibition, J. Neurochem. 25:239–244.PubMedCrossRefGoogle Scholar
  136. Monnier, M., and Hosli, L., 1965, Humoral transmission of sleep and wakefulness: II. Hemodialysis of a sleep-inducing humour during stimulation of the thalamic somnogenic area, Pflugers Arch. Ges. Physiol 282:60–75.CrossRefGoogle Scholar
  137. Mori, K., ed., 1975, Neurophysiological basis of anesthesia, in: International Anesthesiology Clinics, Vol. 13, Little, Brown, Boston.Google Scholar
  138. Mullins, L. J., 1975, Anesthesia: An overview, in: Molecular Mechanisms of Anesthesia (B. R. Fink, ed.), Raven, Press, New York.Google Scholar
  139. Narahashi, T., Moore, J. W., and Poston, R. N., 1969, Anesthetic blocking of nerve membrane conductances by internal and external applications, J. Neurobiol. 1:3–22.PubMedCrossRefGoogle Scholar
  140. Narahashi, T., Frazier, D. T., Deguchik, T., Cleaves, C. A., and Ernan, M. C., 1971, The active form of pentobarbital in squid giant axons, J. Pharmacol. Exp. Ther. 177: 25–33.PubMedGoogle Scholar
  141. Nayler, W. G., and Szelo, J., 1972, Effect of sodium pentobarbital on calcium in mammalian heart muscle, Am. J. Physiol. 222:339–344.PubMedGoogle Scholar
  142. Nicoll, R. A., 1972, The effects of anaesthetics on synaptic excitation and inhibition in the olfactory bulb, J. Physiol (Lond.) 223:803–814.Google Scholar
  143. Nicoll, R. A., 1975a, Presynaptic action of barbiturates in the frog spinal cord, Proc. Nat. Acad. Sci. 72:1460–1463.PubMedCrossRefGoogle Scholar
  144. Nicoll, R. A., 1975b, Pentobarbital: Action on frog motoneurons, Brain Res. 96:119–123.PubMedCrossRefGoogle Scholar
  145. Nicoll, R. A., 1975c, Peptide receptors in CNS, in: Handbook of Psychopharmacology, Vol. 4 (L. L. Iversen, S. D. Iversen, and S. H. Snyder, eds.), Plenum, New York.Google Scholar
  146. Nicoll, R. A., 1976a, The action of pentobarbital on the amino acid induced depolarization of primary afferents in the frog, Proc. West. Pharmacol. Soc. 19:421–423.PubMedGoogle Scholar
  147. Nicoll, R. A., 1976b, Promising peptides, in: Neurotransmitters, Hormones, and Receptors: Novel Approaches (J. A. Ferrendelli, B. S. McEwen, and S. H. Snyder, eds.) Neurosc. Symp. 1:99-122.Google Scholar
  148. Nicoll, R. A., 1977, Differential effects of pentobarbital on synaptic potentials in the sympathetic ganglion, (in preparation).Google Scholar
  149. Nicoll, R. A., Eccles, J. C., Oshima, T., and Rubia, F., 1975, Prolongation of hippocampal inhibitory postsynaptic potentials by barbiturates, Nature (London) 258:625–627.CrossRefGoogle Scholar
  150. Nishi, S., Minota, S., and Karczmar, A. G., 1974, Primary afferent neurons: The ionic mechanism of GABA-mediated depolarization, Neuropharmacology, 13:215–219.PubMedCrossRefGoogle Scholar
  151. Noda, H., and Iwama, K., 1975, Behavior of cortical neurons during both sleep and barbiturate anesthesia, Internat. Anesth. Clin. 13:37–66.CrossRefGoogle Scholar
  152. Otsuka, M., and Nonomura, Y., 1963, The action of phenolic substances on motor nerve endings, J. Pharmacol. Exp. Ther. 140:41–45.PubMedGoogle Scholar
  153. Otsuka, M., Konishi, S., and Takahashi, T., 1975, Hypothalamic substance P as a candidate for transmitter of primary afferent neurons, Fed. Proc. 34:1922–1928.PubMedGoogle Scholar
  154. Overton, E., 1896, Ueber die osmotischen Eigenschaften der Zelle in ihrer Bedentung für die Toxikologie und Pharmakologie, Z. Phys. Chem. 22:189–209.Google Scholar
  155. Overton, E., 1901, Studien über die Narkose zugleich sin Beitrag zur allgemeinen Pharmakologie, Verlag von Gustav, Fischer, Jena.Google Scholar
  156. Pappenheimer, J. R., Koski, G., Fencl, V., Karnovsky, M. L., and Krueger, J., 1975, Extraction of sleep-promoting factor S from cerebrospinal fluid and from brains of sleep deprived animals, J. Neurophysiol. 38:1299–1311.PubMedGoogle Scholar
  157. Parnas, I., Rahamimoff, R., and Sarne, Y., 1975, Tonic release of transmitter at the neuromuscular junction of the crab, J. Physiol. (Lond.) 250:275–286.Google Scholar
  158. Phillis, J. W., and Tebecis, A. K., 1967, The effects of pentobarbitone sodium on acetylcholine excitation and noradrenaline inhibition of thalamic neurones, Life Sci. 6:1621–1625.PubMedCrossRefGoogle Scholar
  159. Price, J. L., and Powell, T. P. S., 1970, The mitral and short-axon cells of the olfactory bulb, J. Cell Sci. 7:631–651.PubMedGoogle Scholar
  160. Prichard, J. W., 1972, Effect of phénobarbital on a leech neuron, Neuropharmacol. 11:585–590.CrossRefGoogle Scholar
  161. Prichard, J. W., and Kleinhaus, A. L., 1974, Dual action of phenobarbital on leech ganglia, Comp. Gen. Pharmacol. 5:239–249.CrossRefGoogle Scholar
  162. Proctor, W. R., and Weakly, J. N., 1976, A comparison of the presynaptic and postsynaptic actions of pentobarbitone and phenobarbitone in the neuromuscular junction of the frog, J. Physiol. (Lond.) 258:257–268.Google Scholar
  163. Quastel, D. M. J., and Linder, T. M., 1975, Pre-and postsynaptic actions of central depressants at the neuromuscular junction, in: Molecular Mechanisms of Anesthesia (B. R. Fink, ed.), pp. 157–168, Raven Press, New York.Google Scholar
  164. Quastel, D. M. J., Hackett, J. T., and Cook, J. D., 1971, Calcium: Is it required for transmitter secretion? Science 172:1034–1036.PubMedCrossRefGoogle Scholar
  165. Quastel, D. M. J., Hackett, J. T., and Okamoto, K., 1972, Presynaptic action of central depressant drugs: Inhibition of depolarization-secretion coupling, Canad. J. Physiol. Pharmacol. 50:279–284.CrossRefGoogle Scholar
  166. Quilliam, J. P., 1955, The action of hypnotic drugs on frog skeletal muscle, Br. f. Pharmacol. 10:133–140.Google Scholar
  167. Quilliam, J. P., and Shand, D. C., 1964, The selectivity of drugs blocking ganglionic transmission in the rat, Br. J. Pharmacol. 23:273–284.Google Scholar
  168. Ransom, B. R., and Barker, J. L., 1975, Pentobarbital modulates transmitter effects on mouse spinal neurones grown in tissue culture, Nature (London) 254:703–705.CrossRefGoogle Scholar
  169. Ricci, G., and Zanchetti, A., 1953, Rapporti tra le azioni inhibitrici del cerveletto e della sostanza reticolare mediale del bulbo, Arch. Fisiol 53:162–177.PubMedGoogle Scholar
  170. Richards, C. D., 1972, On the mechanism of barbiturate anaesthesia, J. Physiol. (Lond.) 227:749–767.Google Scholar
  171. Richards, C. D., and Hesketh, T. R., 1975, Implications for theories of anaesthesia of antagonism between anaesthetic and non-anaesthetic steroids, Nature (London) 256:179–182.CrossRefGoogle Scholar
  172. Richards, C. D., and Smaje, J. C, 1976, Anaesthetics depress the sensitivity of cortical neurones to L-glutamate, Br. J. Pharmacol 58:347–357.PubMedGoogle Scholar
  173. Richnes, A., 1969a, The action of general anaesthetic agents on root responses of the frog isolated spinal cord. Br. J. Pharmacol. 36:294–311.Google Scholar
  174. Richnes, A., 1969b, Microelectrode studies in the frog isolated spinal cord during depression by general anaesthetic agents, Br. J. Pharmacol. 36:312–328.Google Scholar
  175. Roberts, P. J., 1974, Amino acid release from isolated rat dorsal root ganglia, Brain Res. 74:327–332.PubMedCrossRefGoogle Scholar
  176. Roberts, M. H. T., and Straughan, D. W., 1967, Excitation and depression of cortical neurones by 5-hydroxytryptamine, J. Physiol. (Lond.) 193:269–294.Google Scholar
  177. Rudomin, P., 1966, Pharmacological evidence for the existence of interneurons mediating primary afferent depolarization in the solitary tract nucleus of the cat, Brain Res. 2:181–183.PubMedCrossRefGoogle Scholar
  178. Ryall, R. W., 1975, Amino acid receptors in CNS. I. GABA and glycine in spinal cord, in: Handbook of Psychopharmacology, Vol. 4 (L. L. Iversen, S. D. Iversen, and S. H. Snyder, eds.), Plenum, New York.Google Scholar
  179. Salmoiraghi, G. C., and Stefanis, C. N., 1967, A critique of iontophoretic studies of central nervous system neurons, Int. Rev. Neurobiol. 10:1–30.PubMedCrossRefGoogle Scholar
  180. Salmoiraghi, G. C, and Weight, F., 1967, Micromethods in neuropharmacology: An approach to the study of anesthetics, Anesthesiology 28:54–64.PubMedCrossRefGoogle Scholar
  181. Sampson, S. R., and Jaffe, R. A., 1975, Excitatory effects of 5-hydroxytryptamine, veratridine and phenyl diguanide on sensory ganglion cells of the cat, Life Sci. 15: 2157–2165.CrossRefGoogle Scholar
  182. Sasaki, K., and Otani, J., 1962, Accommodation in motoneurons as modified by circumstantial conditions, Jap. J. Physiol. 12:383–396.CrossRefGoogle Scholar
  183. Sato, M., Austin, G. M., and Yai, H., 1967, Increase in permeability of the postsynaptic membrane to potassium produced by “Nembutal,” Nature (London) 215:1506–1508.CrossRefGoogle Scholar
  184. Sato, M., Austin, G., Yai, H., and Maruhashi, J., 1968, The ionic permeability changes during acetylcholine-induced responses of aplysia ganglion cells, J. Gen. Physiol. 51:321–345.PubMedCrossRefGoogle Scholar
  185. Saubermann, A. J., Gallagher, M. L., and Hedley-Whyte, J., 1974, Uptake, distribution, and anesthetic effect of pentobarbital-2-14C after intravenous injection into mice, Anesthesiology 40:41–51.PubMedCrossRefGoogle Scholar
  186. Schmidt, R. F., 1963, Pharmacological studies on the primary afferent depolarization of the toad spinal cord, Pflugers Arch. 277:325–346.CrossRefGoogle Scholar
  187. Schmidt, R. F., 1964, The pharmacology of presynaptic inhibition, Progr. Brain Res. 12:119–134.CrossRefGoogle Scholar
  188. Schmidt, R. F., 1971, Presynaptic inhibition in the vertebrate central nervous system, Ergebn Physiol. 63:20–101.PubMedCrossRefGoogle Scholar
  189. Schoepfle, G. M., 1957, Pentothal block of single nerve fibers and subsequent revival by means of anodal polarization, Fed. Proc. 16:114.Google Scholar
  190. Schoenenberger, G. A., Cueni, L. B., Monnier, M., and Hatt, A. M., 1972, Humoral transmission of sleep. VII. Isolation and physical chemical characterization of the “Sleep Inducing Factor Delta,” Pflugers Arch. Ges. Physiol. 338:1–17.CrossRefGoogle Scholar
  191. Scholfield, C. N., and Harvey, J. A., 1975, Local anesthetics and barbiturates: Effects on evoked potentials in isolated mammalian cortex, J. Pharmacol. Exp. Ther. 195:522–531.PubMedGoogle Scholar
  192. Scholfield, C. N., 1977, Prolongation of post-synaptic inhibition by barbiturates, Br. J. Pharmacol. 59:507.Google Scholar
  193. Schon, F., and Kelly, J. S., 1975, Selective uptake of 3H-β-alanine by glia-association with the glial uptake system for GABA, Brain Res. 86:243–257.PubMedCrossRefGoogle Scholar
  194. Seeman, P., 1972, The membrane action of anesthetics and tranquilizers, Pharmacol. Rev. 24:583–655.PubMedGoogle Scholar
  195. Seyama, I., and Narahashi, T., 1975, Mechanism of blockade of neuromuscular transmission by pentobarbital, J. Pharmacol. Exp. Ther. 192:95–105.PubMedGoogle Scholar
  196. Shapovalov, A. I., 1963, Intracellular microelectrode investigation of effects of anesthetics on transmission of excitation in the spinal cord, Fed. Proc, Trans. Suppl. 23:113–116.Google Scholar
  197. Smaje, J. C, 1976, General anaesthetics and the acetylcholine-sensitivity of cortical neurones, Br. J. Pharmacol. 58:359–366.PubMedGoogle Scholar
  198. Snyder, S. H., and Bennet, J. P., 1976, Neurotransmitter receptors in the brain: Biochemical identification, Ann. Rev. Physiol. 38:153–176.CrossRefGoogle Scholar
  199. Somjen, G. G., 1963, Effects of ether and thiopental on spinal presynaptic terminals, J. Pharmacol. Exp. Ther. 140:396–402.PubMedGoogle Scholar
  200. Somjen, G. G., and Gill, M., 1963, The mechanism of the blockade of synaptic transmission in the mammalian spinal cord by diethyl ether and by thiopental, J. Pharmacol. Exp. Ther. 140:19–30.PubMedGoogle Scholar
  201. Staiman, A., and Seeman, P., 1974, The impulse blocking concentrations of anesthetics, alcohols, anticonvulsants, barbiturates, and narcotics on phrenic and sciatic nerves, Canad. J. Physiol. Pharmacol. 52:535–550.CrossRefGoogle Scholar
  202. Steriade, M., Wyzinski, P., and Halle, J., 1974, Input-output organization of the motor cortex and its alterations during sleep and waking, in: Basic Sleep Mechanisms (O. Petre-Quadens and J. Schlag, eds.). Academic Press, New York.Google Scholar
  203. Suria, A., and Costa, E., 1975, Action of diazepam, dibutyryl cGMP, and GABA on presynaptic nerve terminals in bull frog sympathetic ganglia, Brain Res. 87:102–106.PubMedCrossRefGoogle Scholar
  204. Tan, A. T., 1975, Effects of amino acid transmitters on synaptosomal Cl fluxes, Neurosci. Abst. 1:377.Google Scholar
  205. Tebecis, A. K., and Dimaria, A., 1972, A re-evaluation of the mode of action of 5-hydroxytryptamine on lateral geniculate neurones: Comparison with catecholamines and LSD, Exp. Brain Res. 14:480–490.PubMedCrossRefGoogle Scholar
  206. Thesleff, S., 1956, The effect of anaesthetic agents on skeletal muscle membrane, Acta Physiol. Scand, 37:335–349.PubMedCrossRefGoogle Scholar
  207. Thomson, T. D., and Turkanis, S. A., 1973, Barbiturate-induced transmitter release at a frog neuromuscular junction. Br. J. Pharmacol. 48:48–58.PubMedGoogle Scholar
  208. Thornton, J. A., Whelpton, D., and Brown, B. H., 1963, The effect of general anaesthetic agents on nerve conduction velocities. Br. J. Anaesth. 40:583–587.CrossRefGoogle Scholar
  209. Valdman, A. V., and Arushanyan, E. B., 1967, The influence of analgetic drugs on segmental and suprasegmental inhibition, Prog. Brain Res. 20:223–242.CrossRefGoogle Scholar
  210. Van Gilder, J. C, and O’Leary, J. L., 1971, Effect of Nembutal anesthesia upon Purkinje cell activation in the cat, Electroenceph. Clin. Neurophysiol. 30:173–188.PubMedCrossRefGoogle Scholar
  211. Veselyunene, M. A., Gutman, A. M., and Lesene, V. A., 1971, Effect of Nembutal upon the inhibitory wave of antidromically evoked potential in the motor cortex of the cat, Farmakol. Toksikol. 5:520–522.Google Scholar
  212. Wahlstrom, G., 1966, Differences in anaesthetic properties between the optical antipodes of hexobarbitol in the rat, Life Sci. 5:1781–1790.PubMedCrossRefGoogle Scholar
  213. Wahlstrom, G., 1968, Differences in anaesthetic properties between the optical isomers of 5-(2-bromoallyl)-5-isopropyl-l-methylbarbituric acid (Enibomal NFN) in the rat, Acta Pharmacol. Toxicol. 26:81–91.CrossRefGoogle Scholar
  214. Wall, P., 1958, Excitability changes in afferent fibre terminations and their relation to slow potentials, J. Physiol. (Lond.) 142:1–21.Google Scholar
  215. Way, W. L., and Trevor, A. J., 1971, Sedative-hypnotics, Anesthesiology 34:170–182.PubMedCrossRefGoogle Scholar
  216. Weakly, J. N., 1969, Effect of barbiturates on ‘quantal’ synaptic transmission in spinal motoneurones, J. Physiol. (Lond.) 204:63–77.Google Scholar
  217. Weakly, J. N., Esplin, D. W., and Zablocka, B., 1968, Criteria for assessing effects of drugs on postsynaptic inhibition, Arch. Int. Pharmacodyn. Ther. 171:385–393.PubMedGoogle Scholar
  218. Weinberger, J., Niclas, J., and Berl, S., 1975, Differential effects of anticonvulsants on the active uptake of putative neurotransmitters by rat brain synaptosomes, Neurosci. Abst. 1:402.Google Scholar
  219. Westmoreland, B. F., Ward, D., and Johns, T. R., 1971, The effect of methohexital at the neuromuscular junction, Brain Res. 26:465–468.PubMedGoogle Scholar
  220. York, D. H., 1975, Amine receptors in CNS. II. Dopamine, in: Handbook of Psychopharmacology, Vol. 6 (L. L. Iversen, S. D. Iversen, and S. H. Snyder, eds.), Plenum, New York.Google Scholar
  221. Zukin, S. R., Young, A. B., and Snyder, S. H., 1974, Gamma-aminobutyric acid binding to receptor sites in the rat central nervous system, Proc. Nat. Acad. Sci. 71:4802–4807.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Roger A. Nicoll
    • 1
  1. 1.Department of Pharmacology and PhysiologyUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations