Advertisement

Stimulus Selection and Behavioral Inhibition

  • David M. Warburton
Part of the Handbook of Psychopharmacology book series (HBKPS)

Abstract

One important area of applied psychology is devoted to the development of techniques for eliminating or weakening some responses so that they may be replaced with others. The psychopharmacologist has become involved in the search for drugs that affect response elimination and the neurochemical mechanisms that control inhibition. The term “behavioral inhibition” has been used as a description and as an explanation in psychopharmacology, and some of these uses will be discussed in later sections of this chapter. First, I will discuss some manifestations of behavioral inhibition and consider the possibility that different neurochemical mechanisms may mediate different sorts of inhibition.

Keywords

Conditioned Stimulus Unconditioned Stimulus Passive Avoidance Behavioral Inhibition Cholinergic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andén, N. E., Butcher, S. G., Corrodi, H., Fuxe, K., and Ungerstedt, U., 1970, Receptor activity and turnover of dopamine and noradrenaline after neuroleptics, Eur. J. Pharmacol 11:303–314.PubMedCrossRefGoogle Scholar
  2. Andén, N. E., Dahlström, A., Fuxe, K., Larsson, K., Olson, L., and Ungerstedt, U., 1966, Ascending monoamine neurons to the telencephalon and diencephalon, Acta Physiol. Scand. 67:313–326.CrossRefGoogle Scholar
  3. Anger, D., 1956, The dependence of interresponse times upon the relative reinforcement of different interresponse times, J. Exp. Psychol. 52:145–161.PubMedCrossRefGoogle Scholar
  4. Avis, H. H., and Pert, A., 1974, A comparison of the effects of muscarinic and nicotinic anticholinergic drugs on habituation and fear conditioning in rats, Psychopharmacologia 34:209–222.PubMedCrossRefGoogle Scholar
  5. Berger, B. D., and Stein, L., 1969, An analysis of the learning deficits produced by scopolamine, Psychopharmacologia 14:271–283.PubMedCrossRefGoogle Scholar
  6. Bernheimer, H., Birkmayer, W., and Hornykiewicz, O., 1961, Vertielung des 5-Hydroxytryptamins (serotonin) im Gehirn des Menschen und sein Verhalten bei Patienten mit Parkinson-Syndrom, Klin. Wochenschr. 39:1056–1059.PubMedCrossRefGoogle Scholar
  7. Bignami, G., and Rosic, N., 1970, The nature of disinhibitory phenomena caused by central cholinergic (muscarinic blockade), in: Proceedings of the VIIth International Congress of the Collegium Internationale Neuropsychologicum, Prague.Google Scholar
  8. Bliss, E. J., Ailion, J., and Zwanziger, J., 1968, Metabolism of norepinephrine, serotonin, and dopamine in rat brain with stress, J. Pharmacol. Exp. Ther. 164:122–131.PubMedGoogle Scholar
  9. Boren, J. J., and Navarro, A. P., 1959, The action of atropine, benactyzine and scopolamine upon fixed interval and fixed ratio behavior, J. Exp. Anal. Behav. 2:107–115.PubMedCrossRefGoogle Scholar
  10. Bradley, P. B., and Elkes, J., 1953, The effect of atropine, hyoscyamine, physostigmine and neostigmine on the electrical activity of the conscious cat, J. Physiol. (London) 120:13.Google Scholar
  11. Brady, J. V., 1959, Differential drug effects upon aversive and appetitive components of a behavioral repertoire, in: Neuro-psychopharmacology, Vol. 1 (P. B. Bradley, P. Wencker, and C. Radouco-Thomas, eds.), pp. 275–281, Elsevier, New York.Google Scholar
  12. Bremer, F., 1961, Neurophysiological mechanisms in cerebral arousal, in: The Nature of Sleep (G. E. W. Wolstenholme and M. O’Conner, eds.), pp. 30–56, Little, Brown and Company, Boston.Google Scholar
  13. Brimer, C. J., 1972, Disinhibition of an operant response, in: Inhibition and Learning (R. A. Boakes and M. S. Halliday, eds.), pp. 205–227, Academic Press, London.Google Scholar
  14. Brodie, B. B., and Shore, P. A., 1957, A concept for a role of serotonin and norepinephrine as chemical mediators in the brain, Ann. N. Y. Acad. Sci. 66:631–642.PubMedCrossRefGoogle Scholar
  15. Brown, K., and Warburton, D. M., 1971, Attenuation of stimulus sensitivity by scopolamine, Psychonomic Sci. 22:297–298.Google Scholar
  16. Brunton, T. L., 1883, On the nature of inhibition and the action of drugs upon it, Nature (London) 27:419–422.CrossRefGoogle Scholar
  17. Bures, J., Buresova, O., Bohdanecky, Z., and Weiss, T., 1962, Physostigmine-induced hippocampal theta activity and learning in rats, Psychopharmacologia 3:254–263.PubMedCrossRefGoogle Scholar
  18. Carlsson, A., Fuxe, K., Hamberger, B., and Lindgrist, M., 1966, Biochemical and histochemical studies on the effects of imipramine-like drugs and (+)-amphetamine on central and peripheral catecholamine neurons, Acta Physiol. Scand. 67:481–497.PubMedCrossRefGoogle Scholar
  19. Carlton, P., 1963, Cholinergic mechanisms in the control of behavior by the brain, Psychol. Rev. 70:19–39.PubMedCrossRefGoogle Scholar
  20. Carlton, P. L., 1968, Brain acetylcholine and habituation, Progr. Brain Res. 28:48–60.CrossRefGoogle Scholar
  21. Carlton, P. L., and Vogel, J. R., 1965, Studies of the amnesic properties of scopolamine, Psychonomic Sci. 3:261–262.Google Scholar
  22. Chase, T. N., Katz, R. I., and Kopin, I. J., 1970, Effect of diazepam on fate of intracisternally injected serotonin-C14. Neuropharmacology 9:103–108.PubMedCrossRefGoogle Scholar
  23. Cladel, C. E., Cho, M. H., and McDonald, R. D., 1966, Effect of amphetamine and catecholamines on startle response and general motor activity of albino rats, Nature (London) 210:864–865.CrossRefGoogle Scholar
  24. Clark, F. C., and Steele, B. J., 1966, Effects of d-amphetamine on performance under a multiple schedule in the rat, Psychopharmacologia 9:157–169.PubMedCrossRefGoogle Scholar
  25. Corrodi, H., Fuxe, R. I., Lidbrink, P., and Olson, L., 1971, Minor tranquilizers, stress, and central catecholamine neurons, Brain Res. 29:1–16.PubMedCrossRefGoogle Scholar
  26. Cox, T., and Tye, N., 1973, Effects of physostigmine on the acquisition of a position discrimination in rats, Neuropharmacology 12:477–484.PubMedCrossRefGoogle Scholar
  27. Cox, T., and Tye, N., 1974, Effects of physostigmine on the maintenance of discrimination behavior in rats, Neuropharmacology 13:205–210.PubMedCrossRefGoogle Scholar
  28. Crow, T. J., 1973, Catecholamine-containing neurons and electrical self-stimulation. 2. A theoretical interpretation and some psychiatric implications, Psychol. Med. 3:66–73.PubMedCrossRefGoogle Scholar
  29. Dahlström, A., and Fuxe, K., 1964, Evidence for the existence of monamine-containing neurons in the central nervous system. 1. Demonstration of monamines in the cell bodies of the brain stem neurons, Acta Physiol. Scand. 62:Suppl. 232.Google Scholar
  30. Douglas, R. J., 1966, Cues for spontaneous alternation, J. Comp. Physiol. Psychol. 62:171–183.PubMedCrossRefGoogle Scholar
  31. Douglas, R. J., 1967, The hippocampus and behavior, Psychol. Bull. 67:416–442.PubMedCrossRefGoogle Scholar
  32. Douglas, R. J., 1972, Pavlovian conditioning and the brain, in: Inhibition and Learning (R. A. Boakes and M. S. Halliday, eds.), pp. 529–553, Academic Press, London.Google Scholar
  33. Douglas, R. J., and Isaacson, R. L., 1966a, Spontaneous alternation and scopolamine, Psychonomic Sci. 4:283–284.Google Scholar
  34. Douglas, R. J., and Pribram, K. H., 1966b, Learning and limbic lesions, Neuropsychologia 4:197–220.CrossRefGoogle Scholar
  35. Egan, J. P., Greenberg, G. I., and Schulman, A. J., 1961, Operating characteristic, signal detectability and the method of free response, J. Acoust. Soc. Am. 33:993–1007.CrossRefGoogle Scholar
  36. Endroczi, E., Hartmann, G., and Lissak, K., 1963, Effect of intracerebrally administered cholinergic and adrenergic drugs on neocortical and archicortical electrical activity, Acta. Physiol. Acad. Sci. Hung. 24:200–209.Google Scholar
  37. Estes, W. K., and Skinner, B. F., 1941, Some quantitative properties of anxiety, J. Exp. Psychol. 29:390–400.CrossRefGoogle Scholar
  38. Evans, H. L., and Patton, R. A., 1968, Scopolamine effects on a one-trial test of fear conditioning, Psychonomic. Sci. 11:229–230.Google Scholar
  39. Evans, H. L., and Patton, R. A., 1970, Scopolamine effects on conditional suppression, Psychopharmacologia 17:1–13.PubMedCrossRefGoogle Scholar
  40. Feigley, D. A., and Hamilton, L. W., 1971, Response to novel environment following septal lesions or cholinergic blockade in rats, J. Camp. Physiol. Psychol. 76:496–504.CrossRefGoogle Scholar
  41. Ferster, C. B., and Skinner, B. F., 1957, Schedules of Reinforcement, Appleton-Century-Crofts, New York.CrossRefGoogle Scholar
  42. Funderburk, W., and Case, T., 1951, The effect of atropine on cortical potentials, Electroencephalogr. Clin. Neurophysiol. 3:213–223.PubMedCrossRefGoogle Scholar
  43. Geller, J., and Seifter, J., 1960, The effects of meprobamate, barbituates, d-amphetamine and promazine on experimentally induced conflict in the rat, Psychopharmacologia 1:482–492.CrossRefGoogle Scholar
  44. Geller, J., Kulak, J. T., and Seifter, J., 1962, The effects of chlordiazepoxide and chlorpromazine on a punishment discrimination, Psychopharmacologia 3:374–385.PubMedCrossRefGoogle Scholar
  45. Glanzer, M., 1953, Stimulus satiation. An explanation of spontaneous alternation and related phenomena, Psychol, Rev. 60:257–268.CrossRefGoogle Scholar
  46. Grossman, S. P., 1964, Effects of chemical stimulation of the septal nuclei on motivation, J. Comp. Physiol. Psychol. 58:194–200.PubMedCrossRefGoogle Scholar
  47. Hearst, E., 1959, Effects of scopolamine on discriminated responding in the rat, J. Pharmacol. Exp. Ther. 126:349–358.PubMedGoogle Scholar
  48. Hearst, E., 1972, Some persistent problems in the analysis of conditional inhibition, in: Inhibition and Learning (R. A. Boakes and M. S. Halliday, eds.), pp. 5–39, Academic Press, London.Google Scholar
  49. Hearst, E., Besley, S., and Farthing, G. W., 1970, Inhibition and the stimulant control of operant behavior, J. Exp. Anal. Behav. 14:373–409.PubMedCrossRefGoogle Scholar
  50. Heise, G. A., 1964, Animal techniques for evaluating anorexigenic agents, in: Animal and Clinical Techniques in Drug Evaluations (J. H. Nodine and P. E. Seigler, eds.), pp. 279–282, Year Book Medical Publishers, Chicago.Google Scholar
  51. Heise, G. A., 1975, Discrete trial analysis of drug action, Fed. Proc. 34:1898–1903.PubMedGoogle Scholar
  52. Heise, G. A., and Lilie, N. L., 1970, Effects of scopolamine, atropine and amphetamine on internal and external control of responding and nonreinforced trials, Psychopharmacologia 18:38–49.PubMedCrossRefGoogle Scholar
  53. Heise, G. A., Keller, C., Khavari, K. A., and Laughlin, N., 1969, Learning of discrete trial, go-no go alternation patterns by the rat, J. Exp. Anal. Behav. 12:609–622.PubMedCrossRefGoogle Scholar
  54. Heise, G. A., Laughlin, N., and Keller, G. A., 1970, Behavioral analysis of reinforcement withdrawal, Psychopharmacologia 16:345–368.PubMedCrossRefGoogle Scholar
  55. Herblin, W. F., 1968, Extinction reversal by scopolamine, Psychonomic Sci. 13:43–44.Google Scholar
  56. Herrnstein, R. J., 1958, Effects of scopolamine on a multiple schedule, J. Exp. Anal. Behav. 1:351–358.PubMedCrossRefGoogle Scholar
  57. Hillarp, N. A., Fuxe, K., and Dahlstrom, A., 1966, Demonstration and mapping of central neurons containing dopamine, noradrenaline and 5-hydroxytryptamine and their reactions to psychopharmaca, Pharmacol. Rev. 18:727–741.PubMedGoogle Scholar
  58. Kanai, T., and Szerb, J. C., 1965, Mesencephalic reticular activating system and cortical acetycholine output, Nature (London) 205:81–88.CrossRefGoogle Scholar
  59. Kelleher, R. T., and Morse, W. H., 1964, Escape behavior and punished behavior, Fed. Proc. 23:808–817.PubMedGoogle Scholar
  60. Kelleher, R. T., and Morse, W. H., 1968, Determinants of the specificity of behavioral effects of drugs, Ergeb. Physiol. 60:1–56.PubMedGoogle Scholar
  61. Keller, F. S., and Schoenfeld, W. N., 1950, Principles of Psychology, Appleton-Century-Crofts, New York.Google Scholar
  62. Kelly, P. H., Rolls, E. T., and Shaw, S. G., 1974, Functions of catecholamines in brain stimulation reward, Brain Res. 66:363–364.CrossRefGoogle Scholar
  63. Kelly, P. H., Seviour, P. W., and Iversen, S. D., 1975, Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum, Brain Res. 94:507–522.PubMedCrossRefGoogle Scholar
  64. Kimble, D. P., 1968, Hippocampus and internal inhibition, Psychol. Bull. 70:285–295.PubMedCrossRefGoogle Scholar
  65. Kimble, D. P., 1969, Possible inhibitory functions of the hippocampus, Neuropsychologia 7:235–244.CrossRefGoogle Scholar
  66. Kimble, G. A., 1961, Conditioning and Learning, Appleton-Century-Crofts, New York.Google Scholar
  67. Kirkby, R. J., Bell, D. S., and Preston, A. D., 1972, Effects of methylamphetamine on stereotyped behavior, activity, startle and orienting responses, Psychopharmacologia 25:41–48.PubMedCrossRefGoogle Scholar
  68. Konorski, J., 1948, Conditioned Reflexes and Neuron Organization, Cambridge University Press, Cambridge.Google Scholar
  69. Krnjevic, K., and Phillis, J. W., 1963a, Acetylcholine sensitive cells in the cerebral cortex, J. Physiol. (London) 166:296–327.Google Scholar
  70. Krnjevic, K., and Phillis, J. W., 1963b, Pharmacological properties of acetylcholinesensitive cells in the cerebral cortex, J. Physiol. (London) 166:328–350.Google Scholar
  71. Laties, V., and Weiss, B., 1966, Influence of drugs on behavior controlled by internal and external stimuli, J. Pharmacol. Exp. Ther. 152:388–396.PubMedGoogle Scholar
  72. Leaton, R. N., 1968, Effects of scopolamine on exploratory motivated behavior, J. Comp. Physiol. Psychol. 66:524–527.PubMedCrossRefGoogle Scholar
  73. Lidbrink, P., Corrodi, H., Fuxe, K., and Olsen, L., 1973, The effects of benzodiazepines, meprobamate and barbituates on central monoamine neurons, in: The Benzodiazepines (S. Garattini, E. Mussini, and L. O. Randall, eds.), pp. 203–223, Raven Press, New York.Google Scholar
  74. Mabry, P. D., and Campbell, B. A., 1973, Serotonergic inhibition of catecholamine-induced behavioral arousal, Brain Res. 49:381–391.PubMedCrossRefGoogle Scholar
  75. Margules, D. L., and Stein, L., 1967, Neuroleptics vs. tranquilizers. Evidence from animal behavior studies of mode and site of action, Neuropsychopharmacology (A. A. Brill, J. O. Cole, P. Deniker, P. H. Hippius, and P. B. Bradley, eds.), pp. 108–120, Excerpta Medica Foundation, New York.Google Scholar
  76. Margules, D. L., and Stein, L., 1968, Increase of “antianxiety” activity and tolerance of behavioral depression during chronic administration of oxazepam, Psychopharmacologia 13:74–80.PubMedCrossRefGoogle Scholar
  77. McMillan, D. E., 1969, Effects of d-Amphetamine on performance under several parameters of multiple fixed-ratio fixed interval schedules, J. Pharmacol. Exp. Ther. 167:26–33.PubMedGoogle Scholar
  78. Meyers, B., 1965, Some effects of scopolamine on a passive avoidance response in rats, Psychopharmacologia 13:74–80.Google Scholar
  79. Meyers, B., and Domino, E. F., 1964, The effect of cholinergic blocking drugs on spontaneous alternation in rats, Arch. Int. Pharmcodyn. Ther., 150:525–529.Google Scholar
  80. Michelson, M. J., 1961, Pharmacological evidence of the role of acetylcholine in the higher nervous activity of man and animals, Act. Nerv. Super. 3:2.Google Scholar
  81. Miczek, K. A., 1973a, Effects of scopolamine, amphetamine and benzodiazepines on conditional suppression, Pharmacol. Biochem. Behav. 1:401–411.PubMedCrossRefGoogle Scholar
  82. Miczek, K. A., 1973b, Effects of scopolamine, amphetamine, and chlordiazepoxide on punishment, Psychopharmacologia 28:373–389.PubMedCrossRefGoogle Scholar
  83. Millenson, J. R., and Leslie, J., 1974, The conditioned emotional response (CER) as a baseline for the study of anti-anxiety drugs, Neuropharmacology 13:1–9.PubMedCrossRefGoogle Scholar
  84. Mishkin, M., 1964, Perseveration of central sets after frontal lesions in monkeys, in: The Frontal Granular Cortex and behavior (J. M. Warren and K. Akert, eds.), pp. 219–237, McGraw-Hill, New York.Google Scholar
  85. Mowrer, O. H., 1960, Learning Theory and behavior, Wiley, New York.CrossRefGoogle Scholar
  86. Nolon, N. A., and Parkes, M. W 1973, The effects of benzodiazepines on the behaviour of mice on a hole board, Psychopharmacologia 29:277–288.CrossRefGoogle Scholar
  87. Oishi, H., Iwahara, D., Yang, Kwo-Man, and Yogi, A., 1972, Effects of chlordiazepoxide on passive avoidance responses in rats, Psychopharmacologia 23:373–385.CrossRefGoogle Scholar
  88. Olds, J. E., 1962, Hypothalamic substrates of reward, Physiol. Rev. 42:554–604.PubMedGoogle Scholar
  89. Owens, J. E., 1960, The influence of dl-, d-and l-methamphetamine on a fixed ratio schedule, J. Exp. Anal. Behav. 3:293–310.CrossRefGoogle Scholar
  90. Pavlov, J. P., 1927, Conditioned reflexes, Oxford University Press, London.Google Scholar
  91. Payne, R., and Anderson, D. C., 1967, Scopolamine-produced changes in activity and in the startle response: implications for behavioral activation, Psychopharmacologia 12:83–90.PubMedCrossRefGoogle Scholar
  92. Poschel, B. P. H., and Ninteman, F. W., 1971, Intracranial reward and the forebrain’s serotonergic mechanism: studies employing para-chlorophenylalanine and para-chloroamphetamine, Physiol. Behav. 7:39–46.PubMedCrossRefGoogle Scholar
  93. Rescorla, R. A., 1969, Pavlovian conditioned inhibition, Psychol. Bull. 72:77–94.CrossRefGoogle Scholar
  94. Richelle, M., Xhenseval, B., Fontaine, O., and Thone, L., 1962, Action of chlordiazepoxide on two types of temporal conditioning in rats, Int. J. N europharmacol. 1:381–391.Google Scholar
  95. Robbins, T., and Iversen, S. D., 1973a, A dissociation of the effects of d-amphetamine on locomotor activity and exploration in rats, Psychopharmacologia 28:155–164.PubMedCrossRefGoogle Scholar
  96. Robbins, T. W., and Iversen, S. D., 1973b, Amphetamine induced disruption of temporal discrimination by response disinhibition, Nature New Biol. 245:145–192.Google Scholar
  97. Ruch, T. C., Patton, H. D., Woodbury, J. W., and Towe, A. L., 1965, Neurophysiology, Saunders, Philadelphia.Google Scholar
  98. Rushton, R., and Steinberg, H., 1966, Combined effects of chlordiazepoxide and dexamphetamine on activity of rats in an unfamiliar environment, Nature (London) 211:1312–1313.CrossRefGoogle Scholar
  99. Shute, C. C. D., and Lewis, P. R., 1967, The ascending cholinergic reticular system; neocortical, olfactory and subcortical projections, Brain 90:497–520.PubMedCrossRefGoogle Scholar
  100. Skinner, B. F., 1938, The Behavior of Organisms, Appleton-Century-Crofts, New York.Google Scholar
  101. Skinner, B. F., and Heron, W. T., 1937, Effects of caffeine and benzedrine upon conditioning and extinction, Psychol. Rev. 1:340–346.Google Scholar
  102. Spehlmann, R., 1969, Effect of acetylcholine and atropine upon excitation of cortical neurons by reticular stimulation, Fed. Proc. 28:795.Google Scholar
  103. Squire, L. R., 1969, Effects of pretrial and posttrial administration of cholinergic and anticholinergic drugs on spontaneous alternation, J. Comp. Physiol. Psychol. 1:69–75.CrossRefGoogle Scholar
  104. Stein, L., 1964, Self-stimulation of the brain and the central stimulant action of amphetamines, Fed. Proc. 23:836–849.PubMedGoogle Scholar
  105. Stein, L., and Ray, O. S., 1960, Brain stimulation reward “thresholds” self-determined in the rat, Psychopharmacologia 1:251–256.PubMedCrossRefGoogle Scholar
  106. Stein, L., and Wise, C. D., 1969, Release of norepinephrine from hypothalamus and amygdala by rewarding medial forebrain bundle stimulation and amphetamine, J. Comp. Physiol. Psychol. 67:189–198.PubMedCrossRefGoogle Scholar
  107. Stein, L., and Wise, C. D., 1970, Behavioral Pharmacology of central stimulants, in: Principles of Psychopharmacology (W. G. Clark and J. del Giudice, eds.), pp. 313–325, Academic Press, New York.Google Scholar
  108. Stein, L., Wise, C. D., and Berger, B. D., 1973, Antianxiety action of benzodiazepines: decrease in activity of serotonin neurons in the punishment system, in: The Benzodiazepines (S. Garattini, E. Mussini, and L. O. Randall, eds.), pp. 299–326, Raven Press, New York.Google Scholar
  109. Stumpf, C., 1965, Drug action on the electrical activity of the hippocampus, Int. J. Neurobiol. 8:77–138.CrossRefGoogle Scholar
  110. Sutherland, N. S., and Macintosh, N., 1972, Mechanisms of Animal Discrimination Learning, Academic Press, London.Google Scholar
  111. Taylor, K. M., and Laverty, R., 1969, The effect of chlordiazepoxide, diazepam, and nitrazepam on catecholamine metabolism in regions of the rat brain, Eur. J. Pharmacol. 8:296–301.PubMedCrossRefGoogle Scholar
  112. Taylor, K. M., and Laverty, R., 1973, The interaction of chlordiazepoxide, diazepam, and nitrazepam with catecholamine and histamine in regions of the rat brain, in: The Benzodiazepines (S. Garratini, E. Mussini, and L. O. Randall, eds.), pp. 191–202, Raven Press, New York.Google Scholar
  113. Tenen, S. S., 1967, Recovery techolamine metabolism in regions of the rat brain, Eur. J. Pharmacol. 8:296–301.Google Scholar
  114. Taylor, K. M., and Laverty, R., 1973, The interaction of chlordiazepoxide, diazepam, and nitrazepam with catecholamine and histamine in regions of the at brain, in: The Benzodiazepines (S. Garratini, E. Mussini, and L. O. Randall, eds.), pp. 191–202, Raven Press, New York.Google Scholar
  115. Tenen, S. S., 1967, Recovery time as a measure of CER strength: effects of Benzodiazepines, amobarbital, chloropromazine and amphetamine, Psychopharmacologia 12:1–17.PubMedCrossRefGoogle Scholar
  116. Thompson, R. F., and Spencer, W. A., 1966, Habituation. A model phenomenon for the study of neuronal substrates of behavior, Psychol. Rev. 173:16–43.CrossRefGoogle Scholar
  117. Thornburg, J. E., and Moore, K. E., 1973, The relative importance of dopaminergic and noradrenergic neuronal systems for the stimulation of locomotor activity induced by amphetamine and other drugs, Neuropharmacology 12:853–866.PubMedCrossRefGoogle Scholar
  118. Thorpe, W. H., 1956, Learning and Instinct in Animals, Methuen, London.Google Scholar
  119. Tye, N. C., Iversen, S. D., and Everitt, B. J., 1976, Release of punished behavior following selective brain 5-hydroxytryptamine depletion, British Association of Psychopharmacology, Cambridge.Google Scholar
  120. Ungerstedt, U., 1971, Stereotoxic mapping of the monamine pathways in the rat, Acta Physiol. Scand. Suppl. 367:1–48.PubMedGoogle Scholar
  121. Van der Poel, A. M., 1972, Centrally acting cholinolytics and the choice behaviour of the rat, Prog. Brain Res. 36:127–136.PubMedCrossRefGoogle Scholar
  122. Van der Poel, A. M., 1973, Registration of choice direction in a T-maze in rats under the influence of N-methyl-4-piperidyl cyclopentyl methylethynyl glycolate (PCMG), a centrally acting cholinolytic, Psychopharmacologia 31:271–290.CrossRefGoogle Scholar
  123. Van der Poel, A. M., 1974, The effect of some cholinolytic drugs on a number of behavioral parameters measured in the T-maze alternation test: dose-response relationships, Psychopharmacologia 37:45–58.PubMedCrossRefGoogle Scholar
  124. Vogel, J. R., Hughes, R. A., and Carlton, P. L., 1967, Scopolamine, atropine and conditioned fear, Psychopharmacologia 10:409–416.PubMedCrossRefGoogle Scholar
  125. Vogel, J. R., Beer, B., and Clody, D. E., 1971, A simple and reliable conflict procedure for testing anti-anxiety agents, Psychopharmacologia 21:1–7.PubMedCrossRefGoogle Scholar
  126. Warburton, D. M., 1957, Some behavioral effects of central cholinergic stimulation with special reference to the hippocampus, doctoral thesis, Indiana University, Bloomington, Indiana.Google Scholar
  127. Warburton, D. M., 1969a, Behavioral effects of central and peripheral changes in acetylcholine systems, J. Comp. Physiol. Psychol. 68:56–64.PubMedCrossRefGoogle Scholar
  128. Warburton, D. M., 1969b, Effects of atropine sulfate on single alternation in hippocampectomised rats, Physiol. Behav. 4:641–644.CrossRefGoogle Scholar
  129. Warburton, D. M., 1972a, The cholinergic control of internal inhibition, in: Inhibition and Learning (R. M. Boakes and M. S. Halliday, eds.), pp. 431–460, Academic Press, London.Google Scholar
  130. Warburton, D. M., 1972b, Effects of atropine sulphate on repeated extinction performance in hippocampectomised rats, Psychopharmacologia 23:348–356.PubMedCrossRefGoogle Scholar
  131. Warburton, D. M., 1974a, The effect of scopolamine on a two-cue discrimination, Qt. J. Exp. Psychol. 26:395–404.CrossRefGoogle Scholar
  132. Warburton, D. M., 1975a, Modern biochemical concepts of anxiety, Int. Pharmacopsychiat. 9:189–205.Google Scholar
  133. Warburton, D. M., 1975b, Brain, Behaviour and Drugs, Wiley, London.Google Scholar
  134. Warburton, D. M., and Brown, K., 1971, Scopolamine-induced attenuation of stimulus sensitivity, Nature (London) 230:126–127.CrossRefGoogle Scholar
  135. Warburton, D. M., and Brown, K., 1973, The facilitation of discrimination performance by physostigmine sulphate, Psychopharmacologia 27:275–284.CrossRefGoogle Scholar
  136. Warburton, D. M., and Groves, P., 1969, The effect of scopolamine on habituation of acoustic startle in rats, Commun. Behav. Biol. 3:289–293.Google Scholar
  137. Warburton, D. M., and Heise, G. A., 1972, The effects of scopolamine on spatial double alternation in rats, J. Camp. Physiol. Psychol. 81:523–532.CrossRefGoogle Scholar
  138. Warburton, D. M., and Russell, R. W., 1969, Some behavioral effects of cholinergic stimulation of the hippocampus, Life Sci. 8:617–627.PubMedCrossRefGoogle Scholar
  139. Wedeking, P. W., 1968, Stimulating effects of chlordiazepoxide in rats on a food reinforced FR schedule, Psychonomic. Sci. 12:31–32.Google Scholar
  140. Wedeking, P. W., 1969, Disinhibition effect of chlordiazepoxide, Psychonomic Sci. 15:232–233.Google Scholar
  141. Weissman, A., 1959, Differential drug effects upon a three ply multiple schedule of reinforcement, J. Exp. Anal. Behav. 2:271–291.PubMedCrossRefGoogle Scholar
  142. Wentink, E., 1938, The effects of certain drugs and hormones upon conditioning, J. Exp. Psychol. 22:150–163.CrossRefGoogle Scholar
  143. Whitehouse, J. M., 1964, Effects of atropine on discrimination learning in the rat, J. Comp. Physiol. Psychol. 57:13–15.PubMedCrossRefGoogle Scholar
  144. Whitehouse, J. M., 1966, The effect of physostigmine on discrimination learning, Psychopharmacologia 9:183–188.PubMedCrossRefGoogle Scholar
  145. Whitehouse, J. M., 1967, Cholinergic mechanisms in discrimination learning as a function of stimuli J. Comp. Physiol. Psychol. 63:448–451.CrossRefGoogle Scholar
  146. Whitehouse, J. M., Lloyd, A. J., and Fifer, S. A., 1964, Comparative effects of atropine and methylatropine on maze acquisition and eating. J. Comp. Physiol. Psyehol. 58:475–476.CrossRefGoogle Scholar
  147. Wise, C. D., Berger, B. D., and Stein, L., 1972, Benzodiazepines: anxiety-reducting activity by reduction of serotonin turnover in the brain, Science 77:180–183.CrossRefGoogle Scholar
  148. Wise, C. D., and Stein, L., 1969, Facilitation of brain self-stimulation by central administration of norepinephrine, Science 163:299–301.PubMedCrossRefGoogle Scholar
  149. Williams, J. M., Hamilton, L. W., and Carlton, P. L., 1974, Pharmacological and anatomical dissociation of two types of habituation, J. Comp. Physiol. Psychol. 87:724–732.PubMedCrossRefGoogle Scholar
  150. Zbinden, G., 1960, Pharmacodynamics of tetrabenazine and its derivatives, in: Psychosomatic Medicine (J. Nodine and J. Moyer, eds.), pp. 443–454, Lea and Fibiger, Baltimore.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • David M. Warburton
    • 1
  1. 1.Department of PsychologyReading UniversityReadingEngland

Personalised recommendations