Drug-Induced Motor Behavior

  • Peter H. Kelly
Part of the Handbook of Psychopharmacology book series (HBKPS)


The property of directed movement which most animals possess is a major difference between them and other living things and is largely responsible for their ability to manipulate their environment. In fact, active motor behavior appears to be crucial for perceptual development and learning (Held and Hein, 1963). Here we consider some of the neural mechanisms which underly three types of drug-induced motor behavior. The first of these, locomotor activity, is influenced not only by drugs but by a wide variety of genetic, developmental, hormonal, environmental, motivational, and endogenous rhythmic factors. It is hoped that elucidation of the mechanisms of drug-induced locomotor activity can provide clues as to how some of these other factors might affect locomotor behavior. The second type of activity, stereotyped behavior, is rarely seen in the undrugged animal but is reported to be a striking feature of human schizophrenic behavior (Bleuler, 1950). The third type of behavior, drug-induced circling, is generally studied in animals with some type of unilateral lesion but can be induced in the intact animal (Glick et al., 1976). The behavior is closely related to asymmetric dopaminergic activity in the corpora striata, and its study may reveal functional relationships within the basal ganglia and between them and other brain structures. For reasons of consistency the experiments considered here are mainly restricted to those performed on the rat.


Locomotor Activity Dopamine Receptor Nucleus Accumbens Caudate Nucleus Stereotyped Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aceto, M. D., Harris, G. Y., Lescher, I. P., and Brown, T. G., 1967, Pharmacologic studies with 7-benzyl-1-ethyl-1,4-dihydro-4-oxo-1,8-naphthyridine-3-carboxylic acid, J. Pharmacol. Exp. Ther. 158:286–293.PubMedGoogle Scholar
  2. Aghajanian, G. K., Foote, W. E., and Sheard, M. H., 1970, Action of psychotogenic drugs on single midbrain raphe neurons, J. Pharmacol. Exp. Ther. 171:178–187.PubMedGoogle Scholar
  3. Agid, Y., Guyenet, P., Javoy, F., Beaujouian, J. C., and Glowinski, J., 1974, Specific aspects of antagonists and agonists of DA receptors on ACh turnover in the rat neostriatum, J. Pharmacol. Suppl. 1 5:59.Google Scholar
  4. Andén, N-E., and Bédard, P., 1971, Influences of cholinergic mechanisms on the function and turnover of brain dopamine, J. Pharm. Pharmacol. 23:460–462.PubMedCrossRefGoogle Scholar
  5. Andén, N-E., and Stock, G., 1973, Inhibitory effect of gamma-hydroxybutyric acid and gamma-aminobutyric acid on the dopamine cells in the substantia nigra, Naunyn-Schmiedebergs Arch. Pharmacol. 279:89–92.PubMedCrossRefGoogle Scholar
  6. Andén, N-E., Roos, B-E., and Werdinius, B., 1964, Effects of chlorpromazine, haloperidol and reserpine on the levels of phenolic acids in rabbit corpus striatum, Life Sci. 3:149–158.CrossRefGoogle Scholar
  7. Andén, N-E., Dahlström, A., Fuxe, K., and Larsson, K., 1966, Functional role of the nigro-neostriatal dopamine neurons, Acta Pharmacol. Toxicol. 24:263–274.CrossRefGoogle Scholar
  8. Andén, N-E., Butcher, S. G., Corrodi, H., Fuxe, K., and Ungerstedt, U., 1970, Receptor activity and turnover of dopamine and noradrenaline after neuroleptics, Eur. J. Pharmacol. 11:303–314.PubMedCrossRefGoogle Scholar
  9. Andén, N-E., Stromböm, U., and Svensson, T. H., 1973, Dopamine and noradrenaline receptor stimulation: reversal of reserpine-induced sedation, Psychopharmacologia 29:289–298.PubMedCrossRefGoogle Scholar
  10. Arnfred, T., and Randrup, A., 1968, Cholinergic mechanism in brain inhibiting amphetamine-induced stereotyped behaviour, Acta Pharmacol. Toxicol. 26:384–394.CrossRefGoogle Scholar
  11. Asher, I. M., and Aghajanian, G. K., 1974, 6-Hydroxydopamine lesions of olfactory tubercles and caudate nuclei: effect on amphetamine-induced stereotyped behaviour in rats, Brain Res. 82:1–12.PubMedCrossRefGoogle Scholar
  12. Ayhan, I. H., and Randrup, A., 1973, Behavioural and pharmacological studies on morphine-induced excitation of rats. Possible relation to brain catecholamines, Psychopharmacologia 29:317–328.PubMedCrossRefGoogle Scholar
  13. Baldessarini, R. J., Amatruda, T. T., Griffith, F. F., and Gerson, S., 1975a, Differential effects of serotonin on turning and stereotypy induced by apomorphine, Brain Res. 92:158–163.CrossRefGoogle Scholar
  14. Baldessarini, R. J., Walton, K. G., and Borgman, R. J., 1975b, Esters of apomorphine and N,N-dimethyldopamine as agonists of dopamine receptors in the rat brain in vivo, Neuropharmacol 14:725–731.CrossRefGoogle Scholar
  15. Baumgarten, H. G., Björklund, A., Lachenmeyer, L., Nobin, A., and Stenevi, U., 1971, Long-lasting selective depletion of brain serotonin by 5,6-dihydroxytryptamine, Acta Physiol. Scand. Suppl. 373:1–15.PubMedGoogle Scholar
  16. Bleuler, E., 1950, Dementia Praecox, International Universities, New York.Google Scholar
  17. Bloom, F. E., Algeri, S., Groppetti, A., Revuelta, A., and Costa, E., 1969, Lesions of central norepinephrine terminals with 6-OH-dopamine: biochemistry and fine structure, Science 166:1284–1286.PubMedCrossRefGoogle Scholar
  18. Breese, G. R., and Traylor, T. D., 1970, Effect of 6-hydroxydopamine on brain norepinephrine and dopamine: evidence for selective degeneration of catecholamine neurons, J. Pharmacol. Exp. Ther. 174:413–420.PubMedGoogle Scholar
  19. Breese, G. R., and Traylor, T. D., 1971, Depletion of brain noradrenaline and dopamine by 6-hydroxydopamine, Br. J. Pharmacol. 42:88–99.PubMedGoogle Scholar
  20. Breese, G. R., Cooper, B. R., and Mueller, R. A., 1974, Evidence for involvement of 5-hydroxytryptamine in the actions of amphetamine, Br. J. Pharmacol. 52:307–314.PubMedGoogle Scholar
  21. Butcher, L. L., Eastgate, S. M., and Hodge, G. K., 1974, Evidence that punctate intracerebral administration of 6-hydroxydopamine fails to produce selective neuronal degeneration, Naunyn-Schmiedeberg’s Arch. Pharmacol. 285:31–70.CrossRefGoogle Scholar
  22. Buus Lassen, J., 1974, Evidence for a noradrenergic and dopaminergic mechanism in the hyperactivity produced by 4,α-dimethyl-m-tyramine (H77/77) in rats, Psychopharmacologia 37:331–340.CrossRefGoogle Scholar
  23. Campbell, B. A., Lytle, L. D., and Fibiger, H. C., 1969, Ontogeny of adrenergic arousal and cholinergic inhibitory mechanisms in the rat, Science 166:635–637.PubMedCrossRefGoogle Scholar
  24. Campbell, B. A., Ballantine, P., and Lynch, G. S., 1971, Hippocampal control of behavioral arousal: duration of lesion effects and possible interactions with recovery after frontal cortical damage, Exp. Nenrol. 33:159–170.CrossRefGoogle Scholar
  25. Carlsson, A., Corrodi, H., Fuxe, K., and Hökfelt, T., 1969, Effects of some antidepressant drugs on the depletion of intraneuronal catecholamine stores caused by 4-α-dimethyl-metatyramine, Eur. J. Pharmacol. 5:367–373.PubMedCrossRefGoogle Scholar
  26. Chiueh, C. C., and Moore, K. E., 1974a, Effects of α-methyltyrosine on d-amphetamine-induced release of endogenously synthesized and exogenously administered catecholamines from the cat brain in vivo, J. Pharmacol. Exp. Ther. 190:100–108.PubMedGoogle Scholar
  27. Chiueh, C. C., and Moore, K. E., 1974b, Relative potencies of d-and l-amphetamine on the release of dopamine from cat brain in vivo, Res. Commun. Chem. Pathol. Pharmacol. 7:189–199.PubMedGoogle Scholar
  28. Chiueh, C. C., and Moore, K. E., 1975, Blockade by reserpine of methylphenidate-induced release of brain dopamine, J. Pharmacol. Exp. Ther. 193:559–563.PubMedGoogle Scholar
  29. Christie, J. E., and Crow, T. J., 1971, Turning behaviour as an index of the action of amphetamines and ephedrines on central dopamine-containing neurones, Br. J. Pharmacol. 43:658–667.PubMedGoogle Scholar
  30. Christie, J. E., and Crow, T. J., 1973, Behavioural studies of the actions of cocaine, monoamine oxidase inhibitors, and iminodibenzyl compounds on central dopamine neurones, Br. J. Pharmacol. 47:39–47.PubMedGoogle Scholar
  31. Cools, A. R., and Janssen, H-J., 1974, The nucleus linearis raphe and behavior evoked by direct and indirect stimulation of dopamine-sensitive sites within the caudate nucleus of cats, Eur. J. Pharmacol. 28:266–275.PubMedCrossRefGoogle Scholar
  32. Corrodi, H., Fuxe, K., Ljungdahl, Å., and Ögren, S-O., 1970, Studies on the action of some psychoactive drugs on central noradrenaline neurons after inhibition of dopa-mine-β-hydroxylase, Brain Res. 24:451–470.PubMedCrossRefGoogle Scholar
  33. Corrodi, H., Farnebo, L-O., Fuxe, K., Hamberger, B., and Ungerstedt, U., 1972, ET495 and brain catecholamine mechanisms: evidence for stimulation of dopamine receptors, Eur. J. Pharmacol. 20:195–204.PubMedCrossRefGoogle Scholar
  34. Corrodi, H., Fuxe, K., Hökfelt, T., Lidbrink, P., and Ungerstedt, U., 1973, Effect of ergot drugs on central catecholamine neurons: evidence for a stimulation of central dopamine neurons, J. Pharm. Pharmacol. 25:409–412.PubMedCrossRefGoogle Scholar
  35. Costa, E., Groppetti, A., and Naimzada, M. K., 1972, Effects of amphetamine on the turnover rate of brain catecholamines and motor activity, Br. J. Pharmacol 44:742–751.PubMedGoogle Scholar
  36. Costall, B., and Naylor, R. J., 1973a, The role of telencephalic dopaminergic systems in the mediation of apomorphine-stereotyped behavior, Eur. J. Pharmacol. 24:8–24.PubMedCrossRefGoogle Scholar
  37. Costall, B., and Naylor, R. J., 1973b, The site and mode of action of ET495 for the mediation of stereotyped behavior in the rat, Naunyn-Schmiedeberg’s Arch. Pharmacol 278:117–133.CrossRefGoogle Scholar
  38. Costall, B., and Naylor, R. J., 1974a, Extrapyramidal and mesolimbic involvement with the Stereotypic activity of d-and l-amphetamine, Eur. J. Pharmacol. 25:121–129.PubMedCrossRefGoogle Scholar
  39. Costall, B., and Naylor, R. J., 1974b, Stereotyped and circling behavior induced by dopaminergic agonists after lesions of the midbrain raphe nuclei, Eur. J. Pharmacol. 29:206–222.PubMedCrossRefGoogle Scholar
  40. Costall, B., and Naylor, R. J., 1975, The behavioral effects of dopamine applied intracerebrally to areas of the mesolimbic system, Eur. J. Pharmacol. 32:87–92.PubMedCrossRefGoogle Scholar
  41. Costall, B., and Naylor, R. J., 1976, Antagonism of the hyperactivity induced by dopamine applied intracerebrally to the nucleus accumbens septi by typical neuroleptics and by clozapine, sulphide and thioridazine, Eur. J. Pharmacol. 35:161–168.PubMedCrossRefGoogle Scholar
  42. Costall, B., Naylor, R. J., and Olley, J. E., 1972, Catalepsy and circling behavior after intracerebral injections of neuroleptic, cholinergic and anticholinergic agents into the caudate-putamen, globus pallidus and substantia nigra of rat brain, Neuropharmacology 11:645–663.PubMedCrossRefGoogle Scholar
  43. Costall, B., Marsden, C. D., Naylor, R. J., and Pycock, C. J., 1975, Differences in circling responses following electrolytic and 6-hydroxydopamine lesions of the nigro-striatal pathway, Br. J. Pharmacol. 55:289–290P.Google Scholar
  44. Costall, B., Naylor, R. J., Marsden, C. D., and Pycock, C. J., 1976, Serotonergic modulation of the dopamine response from the nucleus accumbens, J. Pharm. Pharmacol. 28:523–526.PubMedCrossRefGoogle Scholar
  45. Coyle, J. T., and Snyder, S. H., 1969, Catecholamine uptake by synaptosomes in homogenates of rat brain: stereospecificity in different areas, J. Pharmacol. Exp. Ther. 170:221–231PubMedGoogle Scholar
  46. Creese, I., and Iversen, S. D., 1972, Amphetamine response after dopamine neurone destruction, Nature New Biol. 238:247–248.PubMedGoogle Scholar
  47. Creese, I., and Iversen, S. D., 1973, Blockade of amphetamine induced motor stimulation and stereotypy in the adult rat following neonatal treatment with 6-hydroxydopamine, Brain Res. 55:369–382.PubMedCrossRefGoogle Scholar
  48. Creese, I., and Iversen, S. D., 1974, The role of forebrain dopamine systems in amphetamine induced stereotyped behavior in the rat, Psychopharmacologia 39:345–357.PubMedCrossRefGoogle Scholar
  49. Creese, I., and Iversen, S. D., 1975, The pharmacological and anatomical substrates of the amphetamine response in the rat, Brain Res. 83:419–436.PubMedCrossRefGoogle Scholar
  50. Crossman, A. R., Walker, R. J., and Woodruff, G. N., 1973, Picrotoxin antagonism of γ-aminobutyric acid inhibitory responses and synaptic inhibition in the rat substantia nigra, Br. J. Pharmacol. 49:696–698.PubMedGoogle Scholar
  51. Crow, T. J., 1971, The relationship between lesion site, dopamine neurones and turning behavior in the rat, Exp. Neurol. 32:247–255.PubMedCrossRefGoogle Scholar
  52. Crow, T. J., and Gillbe, D., 1973, Dopamine antagonism and antischizophrenic potency of neuroleptic drugs, Nature New Biol. 245:27–28.PubMedGoogle Scholar
  53. Divac, I., 1972, Drug-induced syndromes in rats with large, chronic lesions in the corpus striatum, Psychopharmacologia 27:171–178.PubMedCrossRefGoogle Scholar
  54. Dominic, J. A., and Moore, K. E., 1969, Acute effects of α-methyltyrosine on brain catecholamines and on spontaneous and amphetamine-stimulated motor activity in mice, Arch. Int. Pharmacodyn. 178:166–176.PubMedGoogle Scholar
  55. Donaldson, I., McG., Dolphin, A., Jenner, P., Marsden, C. D., and Pycock, C., 1976, The roles of noradrenaline and dopamine in contraversive circling behavior seen after unilateral electrolytic lesions of the locus coeruleus, Eur.J. Pharmacol. 39:179–191.PubMedCrossRefGoogle Scholar
  56. Dray, A., Fowler, L. J., Oakley, N. R., Simmonds, M. A., and Tanner, T., 1975, Comparison of circling behavior following unilateral inhibition of GABA-transaminase or discrete electrolytic lesioning in the rat substantia nigra, Br. J. Pharmacol. 55:288P.Google Scholar
  57. Elkhawad, A. O., and Woodruff, G. N., 1975, Studies on the behavioral pharmacology of a cyclic analogue of dopamine following its injection into the brains of conscious rats, Br. J. Pharmacol. 54:107–114.PubMedGoogle Scholar
  58. Ellinwood, E., and Balster, R., 1974, Rating the behavioral effects of amphetamine, Eur. J. Pharmacol. 28:35–41.PubMedCrossRefGoogle Scholar
  59. Ernst, A., and Smelik, P. G., 1966, Site of action of dopamine and apomorphine on compulsive gnawing behavior in rats, Experientia 22:837–838.PubMedCrossRefGoogle Scholar
  60. Evans, B. K., Armstrong, S., Singer, G., Cook, R. D., and Burnstock, G., 1975, Intracranial injection of drugs: comparison of diffusion of 6-OHDA and guanethidine, Pharm. Biochem. Behav. 3:205–217.CrossRefGoogle Scholar
  61. Evetts, K. D., and Iversen, L. L., 1970, Effects of protriptyline on the depletion of catecholamines induced by 6-hydroxydopamine in the brain of the rat, J. Pharm. Pharmacol. 22:540–543.PubMedCrossRefGoogle Scholar
  62. Evetts, K. D., Uretsky, N. J., Iversen, L. L., and Iversen, S. D., 1970, Effects of 6-hydroxydopamine on CNS catecholamines, spontaneous motor activity and amphetamine-induced hyperactivity in rats, Nature (London) 225:961–962.CrossRefGoogle Scholar
  63. Feltz, P., 1971, γ-Aminobutyric acid and a caudato-nigral inhibition, Can. J. Physiol. Pharmacol. 49:1113–1115.PubMedCrossRefGoogle Scholar
  64. Ferris, R. M., Tang, F. L. M., and Maxwell, R. A., 1972, A comparison of the capacities of isomers of amphetamine, deoxypipradrol and methylphenidate to inhibit the uptake of tritiated catecholamines into rat cerebral cortex slices, synaptosomal preparations of rat cerebral cortex, hypothalamus and striatum and into adrenergic nerves of rabbit aorta, J. Pharmacol. Exp. Ther. 181:407–416.PubMedGoogle Scholar
  65. Fibiger, H. C., Lytle, L. D., and Campbell, B. A., 1970, Cholinergic modulation of adrenergic arousal in the developing rat, J. Comp. Physiol. Psychol. 72:384–389.PubMedCrossRefGoogle Scholar
  66. Fibiger, H. C., Lynch, G. S., and Cooper, H. P., 1971, A biphasic action of central cholinergic stimulation on behavioral arousal in the rat, Psychopharmacologia 20:366–382.PubMedCrossRefGoogle Scholar
  67. Fibiger, H. C., Fibiger, H. P., and Zis, A. P., 1973, Attenuation of amphetamine-induced motor stimulation and stereotypy by 6-hydroxydopamine in the rat, Br. J. Pharmacol. 47:683–692.PubMedGoogle Scholar
  68. Fog, R., 1970, Behavioral effects in rats of morphine and amphetamine and of a combination of the two drugs, Psychopharmacologia 16:305–312.PubMedCrossRefGoogle Scholar
  69. Fog, R., and Pakkenberg, H., 1971, Behavioral effects of dopamine and p-hydroxyamphetamine injected into the corpus striatum of rats, Exp. Nenrol. 31:75–86.CrossRefGoogle Scholar
  70. Fog, R., Randrup, A., and Pakkenberg, H., 1967, Aminergic mechanisms in corpus striatum and amphetamine-induced stereotyped behavior, Psychopharmacologia 11:179–183.PubMedCrossRefGoogle Scholar
  71. Fog, R., Randrup, A., and Pakkenberg, H., 1968, Neuroleptic action of quaternary chlorpromazine and related drugs injected into various brain areas in rats, Psychopharmacologia 12:428–432.PubMedCrossRefGoogle Scholar
  72. Fog, R., Randrup, A., and Pakkenberg, H., 1970, Lesions in the corpus striatum and cortex of rat brains and the effect on pharmacologically induced stereotyped, aggressive and cataleptic behaviour, Psychopharmacologia 18:346–356.PubMedCrossRefGoogle Scholar
  73. Fonnum, F., Grofovä, L, Rinvik, E., Storm-Mathieson, J., and Walberg, F., 1974, Origin and distribution of glutamate decarboxylase in substantia nigra of the cat, Brain Res. 71:77–92.PubMedCrossRefGoogle Scholar
  74. Fuxe, K., and Ungerstedt, U., 1970, Histochemical, biochemical and functional studies on central monoamine neurons after acute and chronic amphetamine administration, in: Amphetamines and Related Compounds (E. Costa and S. Garattini, eds.) pp. 257–288, Raven Press, New York.Google Scholar
  75. Geyer, M. A., and Segal, D. S., 1973, Differential effects of reserpine and alpha-methyl-p-tyrosine on norepinephrine and dopamine induced behavioral activity, Psychopharmacologia 29:131–140.PubMedCrossRefGoogle Scholar
  76. Geyer, M. A., Segal, D. S., and Mandell, A. J., 1972, Effect of intraventricular infusion of dopamine and norepinephrine on motor activity, Physiol. Behav. 8:653–658.PubMedCrossRefGoogle Scholar
  77. Glick, S. D., Jerussi, T. P., and Fleisher, L. N., 1976, Turning in circles: the neuropharmacology of rotation, Life Sci. 18:889–896.PubMedCrossRefGoogle Scholar
  78. Grabowska, M., 1974, Influence of midbrain raphe lesions on some pharmacological and biochemical effects of apomorphine in rats, Psychopharmacologia 39:315–322.PubMedCrossRefGoogle Scholar
  79. Grabowska, M., Antikiewicz, L., Maj, J., and Michaluk, J., 1973, Apomorphine and central serotonin neurones, Pol. J. Pharmacol. Pharm. 25:29–39.PubMedGoogle Scholar
  80. Grahame-Smith, D. G., 1971, Studies in vivo on the relationship between brain tryptophan, brain 5-HT synthesis and hyperactivity in rats treated with a monoamine oxidase inhibitor and l-tryptophan, J. Neurochem. 18:1053–1066.PubMedCrossRefGoogle Scholar
  81. Green, A. R., and Kelly, P. H., 1976, Evidence concerning the involvement of 5-hydroxytryptamine in the locomotor activity produced by amphetamine or tranylcypromine plus l-DOPA, Br. J. Pharmacol. 57:141–147.PubMedGoogle Scholar
  82. Held, R., and Hein, A., 1963, Movement-produced stimulation in the development of visually guided behavior, J. Comp. Physiol. Psychol. 56:872–876.PubMedCrossRefGoogle Scholar
  83. Herman, Z. S., 1967, Influence of some psychotropic and adrenergic blocking agents upon amphetamine stereotyped behavior in white rats, Psychopharmacologia 11:136–142.PubMedCrossRefGoogle Scholar
  84. Hollinger, M., 1969, Effect of reserpine, α-methyl-p-tyrosine, p-chlorophenylalanine and pargyline on levorphanol-induced running activity in mice, Arch. Int. Pharmacodyn. 179:419–424.PubMedGoogle Scholar
  85. Hollister, A. S., Breese, G. R., and Cooper, B. R., 1974, Comparison of tyrosine hydroxylase and dopamine-β-hydroxylase inhibition with the effects of various 6-hydroxydopamine treatments on d-amphetamine-induced motor activity, Psychopharmacologia 36:1–16.PubMedCrossRefGoogle Scholar
  86. Iversen, L. L., 1975, Dopamine receptors in the brain, Science 188:1084–1089.PubMedCrossRefGoogle Scholar
  87. Iversen, S. D., and Kelly, P. H., 1975, The use of 6-hydroxydopamine (6-OHDA) techniques for studying the pathways involved in drug-induced motor behaviors, in: Chemical Tools in Catecholamine Research (G. Jonsson, T. Malmfors, and C. Sachs, eds.) pp. 327–333, North-Holland/American Elsevier, New York.Google Scholar
  88. Jacks, B. R., DeChamplain, J., and Cordeau, J-P., 1972, Effects of 6-hydroxydopamine on putative transmitter substances in the central nervous system, Eur.J. Pharmacol. 18:353–360.PubMedCrossRefGoogle Scholar
  89. Jacobs, B. L., Wise, W. D., and Taylor, K. M., 1974, Differential behavioral and neurochemical effects following lesions of the dorsal or median raphe nuclei in rats, Brain Res. 79:353–361.PubMedCrossRefGoogle Scholar
  90. Jacobs, B. L., Trimbach, C., Eubanks, E. E., and Trulson, M., 1975a, Hippocampal mediation of raphe lesion and PCPA-induced hyperactivity in the rat, Brain Res. 94:253–261.PubMedCrossRefGoogle Scholar
  91. Jacobs, B. L., Wise, W. D., and Taylor, K. M., 1975b, Is there a catecholamine-serotonin interaction in the control of locomotor activity? Neuropharmacology 14:501–506.CrossRefGoogle Scholar
  92. Janssen, P. A. J., Niemegeers, C. J. E., and Schellekens, K. H. L., 1965, Is it possible to predict the clinical effects of neuroleptic drugs (major tranquilizers) from animal data? Part 1: Neuroleptic activity spectra for rats, Arzneim.-Forsch. 15:104–117.Google Scholar
  93. Javoy, F., Agid, Y., Bouvet, D., and Glowinski, J., 1974, Changes in neostriatal dopamine metabolism after carbachol or atropine injections into the substantia nigra, Brain Res. 68:253–260.PubMedCrossRefGoogle Scholar
  94. Kebabian, J. W., Petzold, G. L., and Greengard, P., 1972, Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain and its similarity to the “dopamine receptor,” Proc. Nat. Acad. Sci. U.S.A. 69:2145–2149.CrossRefGoogle Scholar
  95. Kelly, P. H., 1975, Unilateral 6-hydroxydopamine lesions of nigrostriatal or mesolimbic dopamine-containing terminals and the drug-induced rotation of rats, Brain Res. 100:163–169.PubMedCrossRefGoogle Scholar
  96. Kelly, P. H., and Iversen, L. L., 1975, LSD as an agonist at mesolimbic dopamine receptors, Psychopharmacologia 45:221–224.PubMedCrossRefGoogle Scholar
  97. Kelly, P. H., and Miller, R. J., 1975, The interaction of neuroleptic and muscarinic agents with central dopaminergic systems, Br. J. Pharmacol. 54:115–121.PubMedGoogle Scholar
  98. Kelly, P. H., and Iversen, S. D., 1976, Selective 6-hydroxydopamine induced destruction of mesolimbic dopamine neurones: abolition of psychostimulant induced locomotor activity, Eur. J. Pharmacol. 40:45–56.PubMedCrossRefGoogle Scholar
  99. Kelly, P. H., and Moore, K. E., 1976a, Mesolimbic dopamine neurons in the rotational model of nigrostriatal function, Nature (London) 263:695–696.CrossRefGoogle Scholar
  100. Kelly, P. H., and Moore, K. E., 1976b, Actions of GABA, γ-butyrolactone and baclofen (Lioresal) on mesolimbic and nigrostriatal dopaminergic neurons, Pharmacologist, 18:130.Google Scholar
  101. Kelly, P. H., Miller, R. J., and Neumeyer, J. L., 1976a, Aporphines 16; action of aporphine alkaloids on locomotor activity in rats with 6-hydroxydopamine lesions of the nucleus accumbens, Eur. J. Pharmacol. 35:85–92.PubMedCrossRefGoogle Scholar
  102. Kelly, P. H., Joyce, E. M., Minneman, K. P., and Phillipson, O. T., 1977, Specificity of 6-hydroxydopamine-induced lesions of mesolimbic or nigrostriatal dopamine-containing terminals, Brain Res. 122:382–387.PubMedCrossRefGoogle Scholar
  103. Kelly, P. H., Seviour, P. W., and Iversen, S. D., 1975, Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum, Brain Res. 94:507–522.PubMedCrossRefGoogle Scholar
  104. Kim, J. S., Bak, I. J., Hassler, R., and Okada, Y., 1971, Role of γ-aminobutyric acid in the extrapyramidal motor system. 2. Some evidence for the existence of a type of GABA-rich strio-nigral neurons, Exp. Brain Res. 14:95–104.PubMedCrossRefGoogle Scholar
  105. Koe, B. K., and Weissman, A., 1966, p-Chlorophenylalanine: a specific depletor of brain serotonin, J. Pharmacol. Exp. Ther. 154:499–516.PubMedGoogle Scholar
  106. Kumar, R., Mitchell, E., Stolerman, I. P., 1971, Disturbed patterns of behavior in morphine tolerant and abstinent rats, Br. J. Pharmacol. 42:473–484.PubMedGoogle Scholar
  107. Lorens, S. A., and Guldberg, H. C., 1974, Regional 5-hydroxytryptamine following selective midbrain raphe lesions in the rat, Brain Res. 78:45–56.PubMedCrossRefGoogle Scholar
  108. Mabry, P. D., and Campbell, B. A., 1973, Serotonergic inhibition of catecholamine-induced behavioral arousal, Brain Res. 49:381–391.PubMedCrossRefGoogle Scholar
  109. Mabry, P. D., and Campbell, B. A., 1974, Ontogeny of serotonergic inhibition of behavioral arousal in the rat, J. Comp. Physiol. Psychol. 86:193–201.PubMedCrossRefGoogle Scholar
  110. Maj, J., Sowinska, H., Kapturkiewicz, Z., and Sarnek, J., 1972, The effect of l-dopa and (+)-amphetamine on the locomotor activity after pimozide and phenoxybenzamine, J. Pharm. Pharmacol. 24:412–413.PubMedCrossRefGoogle Scholar
  111. Marsden, C. A., and Guldberg, H. C., 1973, The role of monoamines in rotation induced or potentiated by amphetamine after nigral, raphe and mesencephalic reticular lesions in the rat brain, Neuropharmacology 12:195–212.PubMedCrossRefGoogle Scholar
  112. McGeer, E. G., Fibiger, H. C., and Wickson, V., 1971, Differential development of caudate enzymes in the neonatal rat, Brain Res. 32:433–440.PubMedCrossRefGoogle Scholar
  113. McGeer, E. G., Fibiger, H. C., McGeer, P. L., and Brooke, S., 1973, Temporal changes in amine synthesizing enzymes of rat extrapyramidal structures after hemitransections or 6-hydroxydopamine administration, Brain Res. 52:289–300.PubMedCrossRefGoogle Scholar
  114. McKenzie, G. M., 1972, Role of the tuberculum olfactorium in stereotyped behavior induced by apomorphine in the rat, Psychopharmacologia 23:212–219.PubMedCrossRefGoogle Scholar
  115. McKenzie, G. M., and Szerb, J. C., 1968, The effect of dihydroxyphenylalanine, pheniprazine and dextroamphetamine on the in vivo release of dopamine from the caudate nucleus, J. Pharmacol. Exp. Ther. 162:302–308.PubMedGoogle Scholar
  116. Mendez, J. S., Cotzias, G. C., Finn, B. W., and Dahl, K., 1975, Rotatory behavior induced in nigra-lesioned rats by N-propylnoraporphine, apomorphine, and l-dopa, Life Sci. 16:1737–1742.PubMedCrossRefGoogle Scholar
  117. Meyers, B., Roberts, K. H., Riciputi, R. H., and Domino, E. F., 1964, Some effects of muscarinic cholinergic blocking drugs on behavior and the electrocorticogram, Psychopharmacologia 5:289–300.PubMedCrossRefGoogle Scholar
  118. Miller, R. J., and Hiley, C. R., 1974, Antimuscarinic properties of neuroleptic drugs and drug-induced parkinsonism, Nature (London) 248:596–597.CrossRefGoogle Scholar
  119. Miller, R. J., and Kelly, P. H., 1975, Dopamine-like effects of cholera toxin in the central nervous system, Nature (London) 255:163–166.CrossRefGoogle Scholar
  120. Miller, R. J., and Sahakian, B. J., 1974, Differential effects of neuroleptic drugs on amphetamine-induced stimulation of locomotor activity in 11-day-old and adult rats, Brain Res. 81:387–392.PubMedCrossRefGoogle Scholar
  121. Miller, R. J., Horn, A. S., and Iversen, L. L., 1974, The action of neuroleptic drugs on dopamine-stimulated adenosine-3′,5′-monophosphate production in rat neostriatum and limbic forebrain, Mol. Pharmacol. 10:759–766.Google Scholar
  122. Miller, R. J., Kelly, P. H., and Neumeyer, J. L., 1976, Aporphines 15; action of aporphine alkaloids on dopaminergic mechanisms in rat brain, Eur. J. Pharmacol. 35:77–83.PubMedCrossRefGoogle Scholar
  123. Milson, J. A., and Pycock, C. J., 1976, Effects of drugs acting on cerebral 5-hydroxytrypt-amine mechanisms on dopamine-dependent turning behavior in mice, Br. J. Pharmacol. 56:77–85.PubMedGoogle Scholar
  124. Moorcroft, W. H., 1971, Ontogeny of forebrain inhibition of behavioral arousal in the rat, Brain Res. 35:513–522.PubMedCrossRefGoogle Scholar
  125. Moore, K. E., 1969, Effects of disulfiram and diethyldithiocarbamate on spontaneous locomotor activity and brain catecholamine levels in mice, Biochem. Pharmacol. 18:1627–1634.PubMedCrossRefGoogle Scholar
  126. Moore, K. E., and Kelly, P. H., 1977, Biochemical pharmacology of mesolimbic and mesocortical dopamine neurons, in: Psychopharmacology: A Review of Progress, Raven Press, in press.Google Scholar
  127. Muller, P., and Seeman, P., 1974, Neuroleptics: relation between cataleptic and anti-turning actions, and role of the cholinergic system, J. Pharm. Pharmacol. 26:981–984.PubMedCrossRefGoogle Scholar
  128. Munkvad, I., and Randrup, A., 1966, The persistence of amphetamine stereotypies in spite of strong sedation, Acta Psychiat. Scand, Suppl. 191 42:178.CrossRefGoogle Scholar
  129. Myers, R. D., 1966, Injections of solutions into cerebral tissue; relation between volume and diffusion, Physiol. Behav. 1:171–174.CrossRefGoogle Scholar
  130. Myers, R. D., Tytell, M., Kawa, A., and Rudy, T. A., 1971, Microinjection of 3H-acetylcholine, 14C-serotonin and 3H-norepinephrine into the hypothalamus of the rat: diffusion into tissues and ventricles, Physiol. Behav. 7:743–751.PubMedCrossRefGoogle Scholar
  131. Naylor, R. J., and Olley, J. E., 1972, Modification of the behavioral changes induced by amphetamine in the rat by lesions in the caudate nucleus, the caudate-putamen and globus pallidus, Neuropharmacology 11:91–99.PubMedCrossRefGoogle Scholar
  132. Neill, D. B., Grant, L. D., and Grossman, S. P., 1972, Selective potentiation of locomotor effects of amphetamine by midbrain raphe lesions, Physiol. Behav. 9:655–657.PubMedCrossRefGoogle Scholar
  133. Patel, B. C., Crosset, P., and Klawans, H. L., 1976, Failure of increased brain gammaaminobutyric acid levels to influence amphetamine-induced stereotyped behavior, Res. Commun. Chem. Pathol. Pharmacol. 12:635–643.Google Scholar
  134. Payne, R., and Anderson, D. C., 1967, Scopolamine-produced changes in activity and in the startle response: implications for behavioral activation, Psychopharmacologia 12:83–90.PubMedCrossRefGoogle Scholar
  135. Persson, T., and Waldeck, B., 1969, The interaction between different metabolic pathways of catecholamines in the brain studied by means of 3H-dopa, Acta Pharmacol. Toxicol. 27:225–236.CrossRefGoogle Scholar
  136. Pfeifer, A. K., Galambos, E., and György, L., 1966, Some central nervous properties of diethyldithiocarbamate, J. Pharm. Pharmacol. 18:254.PubMedCrossRefGoogle Scholar
  137. Pieri, L., Pieri, M., and Haefely, W., 1974, LSD as an agonist of dopamine receptors in the striatum, Nature (London) 252:586–588.CrossRefGoogle Scholar
  138. Pijnenburg, A. J. J., and Van Rossum, J. M., 1973, Stimulation of locomotor activity following injection of dopamine into the nucleus accumbens, J. Pharm. Pharmacol. 25:1003–1004.PubMedCrossRefGoogle Scholar
  139. Pijnenburg, A. J. J., Woodruff, G. N., and Van Rossum, J. M., 1973, Ergometrine-induced locomotor activity following intracerebral injection into the nucleus accumbens, Brain Res. 59:289–302.PubMedCrossRefGoogle Scholar
  140. Pijnenburg, A. J. J., Honig, W. M. M., and Van Rossum, J. M., 1975a, Inhibition of d-amphetamine-induced locomotor activity by injection of haloperidol into the nucleus accumbens of the rat, Psychopharmacologia 41:87–96.PubMedCrossRefGoogle Scholar
  141. Pijnenburg, A. J. J., Honig, W. M. M., and Van Rossum, J. M., 1975b, Effects of antagonists upon locomotor stimulation induced by injection of dopamine and noradrenaline into the nucleus accumbens of nialamide-pretreated rats, Psychopharmacologia 41:175–180.PubMedCrossRefGoogle Scholar
  142. Pijnenburg, A. J. J., Honig, W. M. M., and Van Rossum, J. M., 1975c, Antagonism of apomorphine and d-amphetamine-induced stereotyped behavior by injection of low doses of haloperidol into the caudate nucleus and the nucleus accumbens, Psychopharmacologia 45:65–71.CrossRefGoogle Scholar
  143. Pijnenburg, A. J. J., Honig, W. M. M., Van Der Heyden, J. A. M., and Van Rossum, J. M., 1976, Effects of chemical stimulation of the mesolimbic dopamine system upon locomotor activity, Eur. J. Pharmacol. 35:45–58.PubMedCrossRefGoogle Scholar
  144. Poirier, L. J., Langelier, P., Roberge, A., Boucher, R., and Kitsikis, A., 1972, Nonspecific histopathological changes induced by the intracerebral injection of 6-hydroxydopamine (6-OHDA), J. Neurol Sci. 16:401–416.PubMedCrossRefGoogle Scholar
  145. Pradhan, S. N., and Roth, T., 1968, Comparative behavioral effects of several anticholinergic agents in rats, Psychopharmacologia 12:358–366.PubMedCrossRefGoogle Scholar
  146. Precht, W., and Yoshida, M., 1971, Blockade of caudate-evoked inhibition in the substantia nigra by picrotoxin, Brain Res. 32:229–232.PubMedCrossRefGoogle Scholar
  147. Pycock, C. J., and Horton, R. W., 1976, Possible GABA-mediated control of dopaminedependent behavioral effects from the nucleus accumbens of the rat, Psychopharmacology 49:173–178.PubMedCrossRefGoogle Scholar
  148. Pycock, C., Tarsy, D., and Marsden, C. D., 1975, Inhibition of circling behavior by neuroleptic drugs in mice with unilateral 6-hydroxydopamine lesions of the striatum, Psychopharmacologia 45:211–219.PubMedCrossRefGoogle Scholar
  149. Quinton, R. M., and Halliwell, G., 1963, Effects of α-methyldopa on the amphetamine excitatory response in reserpinized rats, Nature (London) 200:178–179.CrossRefGoogle Scholar
  150. Randrup, A., and Munkvad, I., 1964, On the relation of tryptaminergic and serotonergic mechanisms to amphetamine-induced abnormal behavior, Acta Pharmacol. Toxicol. 21:272–282.CrossRefGoogle Scholar
  151. Randrup, A., and Munkvad, I., 1966, On the role of catecholamines in the amphetamine excitatory response, Nature (London) 211:540.CrossRefGoogle Scholar
  152. Randrup, A., and Munkvad, I., 1970, Biochemical, anatomical and psychological investigations of stereotyped behavior induced by amphetamine, in: Amphetamines and Related Compounds (E. Costa and S. Garattini, eds.), pp. 695–713, Raven Press, New York.Google Scholar
  153. Randrup, A., and Scheel-Krüvger, J., 1966, Diethyldithiocarbamate and amphetamine stereotype behavior, J. Pharm. Pharmacol. 18:752.PubMedCrossRefGoogle Scholar
  154. Randrup, A., Munkvad, I., and Usden, P., 1963, Adrenergic mechanisms and amphetamine-induced abnormal behavior, Acta Pharmacol. Toxicol. 20:145–157.CrossRefGoogle Scholar
  155. Rech, R. H., and Stolk, J. M., 1970, Amphetamine-drug interactions that relate brain catecholamines to behavior, in: Amphetamines and Related Compounds (E. Costa and S. Garattini, eds.), pp. 385–413, Raven Press, New York.Google Scholar
  156. Rethy, C. R., Smith, C. B., and Villarreal, J. E., 1971, Effects of narcotic analgesics upon the locomotor activity and brain catecholamine content of the mouse, J. Pharmacol. Exp. Ther. 176:472–479.PubMedGoogle Scholar
  157. Rotrosen, J., Angrist, B. M., Wallach, M. B., and Gershon, S., 1972, Absence of serotonergic influence on apomorphine-induced stereotypy, Eur. J. Pharmacol. 20:133–135.PubMedCrossRefGoogle Scholar
  158. Rushton, R., and Steinberg, H., 1964, Modification of behavioral effects of drugs by past experience, in: Animal Behavior and Drug Actions (H. Steinberg, ed.), pp. 207–218, Churchill, London.Google Scholar
  159. Scheel-Krüger, J., 1970, Central effects of anticholinergic drugs measured by the apomorphine gnawing test in mice, Acta Pharmacol. Toxicol. 28:1–16.CrossRefGoogle Scholar
  160. Scheel-Krüger, J., 1971, Comparative studies of various amphetamine analogues demonstrating different interactions with the metabolism of the catecholamines in the brain, Eur. J. Pharmacol. 14:47–59.PubMedCrossRefGoogle Scholar
  161. Scheel-Krüger, J., and Randrup, A., 1967, Stereotyped hyperactive behaviour produced by dopamine in the absence of noradrenaline, Life Sci. 6:1389–1398.PubMedCrossRefGoogle Scholar
  162. Schlechter, J. M., and Butcher, L. L., 1972, Blockade by pimozide of (+)-amphetamineinduced hyperkinesia in mice, J. Pharm. Pharmacol. 24:408–409.PubMedCrossRefGoogle Scholar
  163. Segal, D. S., McAllister, C., and Geyer, M. A., 1974, Ventricular infusion of norepinephrine and amphetamine: direct versus indirect action, Pharm. Biochem. Behav. 2:79–86.CrossRefGoogle Scholar
  164. Sethy, V. H., and van Woert, M. H., 1974, Regulation of striatal acetylcholine concentration by dopamine receptors, Nature (London) 251:524–530.CrossRefGoogle Scholar
  165. Setler, P., Sarau, H., and McKenzie, G., 1976a, Differential attenuation of some effects of haloperidol in rats given scopolamine, Eur. J. Pharmacol. 39:117–126.PubMedCrossRefGoogle Scholar
  166. Setler, P. E., Turner, K. L., and Malesky, M. R., 1976b, Production of contralateral rotation by injection of dopaminergic agents and catecholamines into the dopaminedepleted audate, Neuroscience Abstr. 2:503 (Abstr. No. 726).Google Scholar
  167. Sloan, J. W., Brooks, J. W., Eisenman, A. J., and Martin, E. R., 1962, The effect of addiction to and abstinence from morphine on rat tissue catecholamine and serotonin levels, Psychopharmacologia 4:261–270.CrossRefGoogle Scholar
  168. Smith, C. B., 1963, Enhancement by reserpine and α-methyl-DOPA of the effects of d-amphetamine upon the locomotor activity of mice, J. Pharmacol. Exp. Ther. 142:343–349.PubMedGoogle Scholar
  169. Snyder, S. H., Greenberg, D. E., and Yamamura, H., 1974, Antischizophrenic drugs and brain cholinergic receptors: affinity for muscarinic sites predicts extrapyramidal effects, Arch. Gen. Psychiat. 31:58–62.PubMedCrossRefGoogle Scholar
  170. Srebro, B., and Lorens, S. A., 1975, Behavioral effects of selective midbrain raphe lesions in the rat, Brain Res. 89:303–325.PubMedCrossRefGoogle Scholar
  171. Stadler, H., Lloyd, K. G., Gadea-Ciria, M., and Bartholini, G., 1973, Enhanced striatal acetylcholine release by chlorpromazine and its reversal by apomorphine, Brain Res. 55:476–480.PubMedCrossRefGoogle Scholar
  172. Stille, G., Lauener, H., and Eichenberger, E., 1971, The pharmacology of 8-chloro-11-(4-methyl-l-piperazinyl)-5H-dibenzo[b,e][l,4]diazepine (Clozapine), Il Farmaco 26:603–625.Google Scholar
  173. Stjärne, L., 1966, Studies of noradrenaline biosynthesis in nerve tissue, Acta Physiol. Scand. 67:441–454.PubMedCrossRefGoogle Scholar
  174. Stolk, J. M., and Rech, R. H., 1970, Antagonism of d-amphetamine by alpha-methyl-l-tyrosine: Behavioral evidence for the participation of catecholamine stores and synthesis in the amphetamine stimulant response, Neuropharmacology 9:249–264.PubMedCrossRefGoogle Scholar
  175. Svensson, T. H., 1970, The effect of inhibition of catecholamine synthesis on dexamphetamine-induced central stimulation, Eur. J. Pharmacol. 12:161–166.PubMedCrossRefGoogle Scholar
  176. Svensson, T. H., 1971 a, Functional and biochemical effects of d-and l-amphetamine on central catecholamine neurons, Naunyn-Schmiedebergs Arch. Pharmakol. 271:170–180.Google Scholar
  177. Svensson, T. H., 1971b, On the role of central noradrenaline in the regulation of motor activity and body temperature in the mouse, Naunyn-Schmiedebergs Arch. Pharmakol. 271:111–120.PubMedCrossRefGoogle Scholar
  178. Svensson, T. H., and Waldeck, B., 1969, On the significance of central noradrenaline for motor activity: experiments with a new dopamine-β-hydroxylase inhibitor, Eur. J. Pharmacol. 7:278–282.PubMedCrossRefGoogle Scholar
  179. Tarsy, D., Pycock, C., Meldrum, B., and Marsden, C. D., 1975, Rotational behavior induced in rats by intranigral picrotoxin, Brain Res. 89:160–165.PubMedCrossRefGoogle Scholar
  180. Taylor, K. M., and Snyder, S., 1971, Differential effects of d-and l-amphetamine on behavior and on catecholamine disposition in dopamine and norepinephrine containing neurons of the rat brain, Brain Res. 28:295–309.PubMedCrossRefGoogle Scholar
  181. Taylor, K. M., Clark, D. W. J., Laverty, R., and Phelan, E. L., 1972, Specific noradrenergic neurones destroyed by 6-hydroxydopamine injection into newborn rats, Nature New Biol. 239:247–248.PubMedCrossRefGoogle Scholar
  182. Thornburg, J. E., and Moore, K. E., 1971, Stress-related effects of various inhibitors of catecholamine synthesis in the mouse, Arch. Int. Pharmacodyn. 194:158–167.PubMedGoogle Scholar
  183. Thornburg, J. E., and Moore, K. E., 1972, A comparison of the locomotor stimulant properties of amantadine and d-and l-amphetamine in mice, Neuropharmacology 11:675–682.PubMedCrossRefGoogle Scholar
  184. Thornburg, J. E., and Moore, K. E., 1973a, Dopamine and norepinephrine uptake by rat brain synaptosomes: relative inhibitory potencies of l-and d-amphetamine and amantadine, Res. Commun. Chem. Pathol. Pharmacol. 6:81–89.Google Scholar
  185. Thornburg, J. E., and Moore, K. E., 1973b, Inhibition of anticholinergic drug-induced locomotor stimulation in mice by α-methyltyrosine, Neuropharmacology 12:1179–1185.PubMedCrossRefGoogle Scholar
  186. Thornburg, J. E., and Moore, K. E., 1973c, The relative importance of dopaminergic and noradrenergic neuronal systems for the locomotor stimulation induced by amphetamine and other drugs, Neuropharmacology 12:853–866.PubMedCrossRefGoogle Scholar
  187. Thornburg, J. E., and Moore, K. E., 1974, A comparison of effects of apomorphine and ET 495 on locomotor activity and circling behavior in mice, Neuropharmacology 13:189–197.PubMedCrossRefGoogle Scholar
  188. Tseng, L. S., Wei, E., and Loh, H., 1973, Brain areas associated with bulbocapnine catalepsy, Eur. J. Pharmacol. 22:363–366.PubMedCrossRefGoogle Scholar
  189. Ungerstedt, U., 1968, 6-Hydroxydopamine induced degeneration of central monoamine neurons, Eur. J. Pharmacol. 5:107–110.PubMedCrossRefGoogle Scholar
  190. Ungerstedt, U., 1971a, Postsynaptic supersensitivity after 6-hydroxydopamine-induced degeneration of the nigro-striatal dopamine system, Acta Physiol. Scand. 83 (Suppl. 367):69–93.Google Scholar
  191. Ungerstedt, U., 1971b, Stereotaxic mapping of the monoamine pathways in the rat brain, Acta Physiol. Scand 83 (Suppl. 367): 1–48.Google Scholar
  192. Ungerstedt, U., 1971c, Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behavior, Acta Physiol. Scand. 83 (Suppl. 367):49–68.Google Scholar
  193. Ungerstedt, U., and Arbuthnott, G. W., 1970, Quantitative recording of rotational behavior in rats after 6-hydroxydopamine lesions of the nigrostriatal dopamine system, Brain Res. 24:485–493.PubMedCrossRefGoogle Scholar
  194. Ungerstedt, U., Butcher, L. L., Butcher, S. G., Andén, N-E., and Fuxe, K., 1969, Direct chemical stimulation of dopaminergic mechanisms in the neostriatum of the rat, Brain Res. 14:461–471.PubMedCrossRefGoogle Scholar
  195. Ungerstedt, U., Avemo, A., Avemo, E., Ljungberg, T., and Ranje, C., 1973, Animal models of Parkinsonism, in: Advances in Neurology, Vol. 3 (D. B. Calne, ed.), pp. 257–271, Raven Press, New York.Google Scholar
  196. Uretsky, N. J., and Iversen, L. L., 1969, Effects of 6-hydroxydopamine on noradrenalinecontaining neurones in the rat brain, Nature (London) 221:557–559.CrossRefGoogle Scholar
  197. Uretsky, N. J., and Iversen, L. L., 1970, Effects of 6-hydroxydopamine on catecholaminecontaining neurones in the rat brain, J. Neurochem. 17:269–278.PubMedCrossRefGoogle Scholar
  198. Van Rossum, J. M., and Hurkmans, J. A. T. M., 1964, Mechanism of action of psychomotor stimulant drugs, Int. J. Neuropharmacol. 3:227–239.CrossRefGoogle Scholar
  199. Van Rossum, J. M., Van der Schoot, J. B., and Hurkmans, J. A. T. M., 1962, Mechanism of action of cocaine and amphetamine in the brain, Experientia 18:229–235.PubMedCrossRefGoogle Scholar
  200. Von Hungen, K., Roberts, S., and Hill, D. F., 1974, LSD as an agonist and antagonist at central dopamine receptors, Nature (London) 252:588–589.CrossRefGoogle Scholar
  201. Von Voigtlander, P. F., and Moore, K. E., 1970, Behavioral and brain catecholamine-depleting actions of U-14,624, an inhibitor of dopamine-β-hydroxylase, Proc. Soc. Exp. Biol. Med. 133:817–820.Google Scholar
  202. Von Voigtlander, P. F., and Moore, K. E., 1973, Turning behavior of mice with unilateral 6-hydroxydopamine lesions in the striatum: effects of apomorphine, l-DOPA, amantadine, amphetamine and other psychomotor stimulants, Neuropharmacology 12:451–462.CrossRefGoogle Scholar
  203. Weiner, W. J., Goetz, C., Westheimer, R., and Klawans, H. L., 1973, Serotonergic influences on amphetamine-induced behavior, J. Neurol. Sci. 20:373–379.PubMedCrossRefGoogle Scholar
  204. Weiner, W. J., Goetz, C., and Klawans, H. L., 1975, Serotonergic and antiserotonergic influences on apomorphine-induced stereotyped behavior, Acta Pharmacol. Toxicol. 36:155–160.CrossRefGoogle Scholar
  205. Weissman, A., and Koe, B. K., 1965, Behavioral effects of l-α-methyltyrosine, an inhibitor of tyrosine hydroxylase, Life Sci. 4:1037–1048.PubMedCrossRefGoogle Scholar
  206. Weissman, A., Koe, B. K., and Tenen, S. S., 1966, Antiamphelamine effects following inhibition of tyrosine hydroxylase, J. Pharmacol. Exp. Ther. 151:339–352.PubMedGoogle Scholar
  207. Woodruff, G. N., Elkhawad, A. O., Crossman, A. R., and Walker, R. J., 1974a, Further evidence for the stimulation of rat brain dopamine receptors by a cyclic analogue of dopamine, J. Pharm. Pharmacol. 26:740–741.PubMedCrossRefGoogle Scholar
  208. Woodruff, G. N., Elkhawad, A. O., Crossman, A. R., 1974b, Further evidence for the Stimulation of rat brain dopamine receptors by ergometrine, J. Pharm. Pharmacol. 26:455–456.PubMedCrossRefGoogle Scholar
  209. Woodruff, G. N., Kelly, P. H., and Elkhawad, A. O., 1976, Effects of dopamine receptor stimulants on locomotor activity of rats with electrolytic or 6-hydroxydopamine-induced lesions of the nucleus accumbens, Psychopharmacology 47:195–198.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Peter H. Kelly
    • 1
  1. 1.Department of PharmacologyMichigan State UniversityEast LansingUSA

Personalised recommendations