Advertisement

The Neuroanatomy and Neuropharmacology of Drinking

  • Paulette E. Setler
Part of the Handbook of Psychopharmacology book series (HBKPS)

Abstract

Terrestrial animals maintain body fluid balance by controlling both the intake of water and the output of water and solutes by the kidney. Regulatory intake of fluid occurs in response to a homeostatic imbalance or in anticipation of the need for water. Nonregulatory drinking, such as that induced by the availability of highly palatable solutions, also occurs. This discussion will be concerned only with regulatory drinking and primarily with drinking in response to alterations of body fluid volume or concentration.

Keywords

Hypertonic Saline Lateral Hypothalamus Preoptic Area Septal Lesion Zona Incerta 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdelaal, A. E., Mercer, P. F., and Mogenson, G. J., 1974, Drinking elicited by polyethylene glycol and isoproterenol reduced by antiserum to angiotensin II, Can. J. Physiol.Pharmacol. 52:362–363.PubMedCrossRefGoogle Scholar
  2. Akerman, B., Andersson, B., Fabricius, E., and Svensson, L., 1960, Observation on central regulation of body temperature and of food and water intake in the pigeon (Columba linia), Acta Physiol. Scand. 50:328–336.PubMedCrossRefGoogle Scholar
  3. Anand, B. K., and Brobeck, J. R., 1951, Hypothalamic control of food intake in rats and cats, Yale J. Biol. Med. 24:123–140.PubMedGoogle Scholar
  4. Anden, N.-E., Butcher, S. G., Corrodi, N., Fuxe, K., and Ungerstedt, U., 1970, Receptor activity and turnover of dopamine and noradrenaline after neuroleptics, Eur. J. Pharmacol. 11:303–314.PubMedCrossRefGoogle Scholar
  5. Anden, N.-E., Dahlström, A., Fuxe, K., Larsson, K., Olson, L., and Ungerstedt, U., 1966, Ascending monoamine neurons to the telencephalon and diencephalon, Acta Physiol. Scand. 67:315–326.Google Scholar
  6. Andersson, B., 1953, The effect of injections of hypertonic NaCl solutions into different parts of the hypothalamus of goats, Acta Physiol. Scand. 28:188–201PubMedCrossRefGoogle Scholar
  7. Andersson, B., 1959, Implantation of electrodes in the hypothalamus of the dog by the diasphenoid route, Acta Physiol. Scand. 47:56–62.PubMedCrossRefGoogle Scholar
  8. Andersson, B., and McCann, S. M., 1955, A further study of polydipsia evoked by hypothalamic stimulation in the goat, Acta Physiol. Scand. 33:333–346.PubMedCrossRefGoogle Scholar
  9. Andersson, B., and McCann, S. M., 1956, The effect of hypothalamic lesions on the water intake of the dog, Acta Physiol. Scand. 35:312–320.PubMedGoogle Scholar
  10. Andersson, B., and Wyrwicka, W., 1957, The elicitation of a drinking motor conditioned reaction by electrical stimulation of the hypothalamic “drinking area” in the goat, Acta Physiol. Scand. 41:194–198.PubMedCrossRefGoogle Scholar
  11. Andersson, B., Jobin, M., and Olsson, K., 1967a, A study of thirst and other effects of an increased sodium concentration in the third brain ventricle, Acta Physiol. Scand. 69:29–36.PubMedCrossRefGoogle Scholar
  12. Andersson, B., Olsson, K., and Warner, R. G., 1967b, Dissimilarities between the central control of thirst and the release of antidiuretic hormone (ADH), Acta Physiol. Scand. 71:57–64.PubMedCrossRefGoogle Scholar
  13. Barrelet, L. F., 1974, Interactions between peripheral and hypothalamic carbachol stimulation of drinking in the rat, Eur. J. Pharmacol. 26:89–95.PubMedCrossRefGoogle Scholar
  14. Beatty, W. W., and Schwartzbaum, J. S., 1968, Consummatory behavior for sucrose following septal lesions in the rat, J. Comp. Physiol. Psychol. 65:93–102.PubMedCrossRefGoogle Scholar
  15. Black, S. L., Kucharczyk, J., and Mogenson, G. J., 1974, Disruption of drinking to intracranial angiotensin by a lateral hypothalamic lesion, Pharmacol. Biochem. Behav. 2:515–522.PubMedCrossRefGoogle Scholar
  16. Blass, E. M., and Epstein, A. N., 1971, A lateral preoptic osmosensitive zone for thirst in the rat, J. Comp. Physiol. Psychol. 76:338–394.CrossRefGoogle Scholar
  17. Blass, E. M., and Hanson, D. G., 1970, Primary hyperdipsia in the rat following septal lesions, J. Comp. Physiol. Psychol. 70:87–93.PubMedCrossRefGoogle Scholar
  18. Blass, E. M., Nussbaum, A. L, and Hanson, D. G., 1974, Septal hyperdipsia: specific enhancement of drinking to angiotensin in rats, J. Comp. Physiol. Psychol. 87:422–439.PubMedCrossRefGoogle Scholar
  19. Block, M. L., and Fisher, A. E., 1970, Anticholinergic central blockade of salt-aroused and deprivation-induced drinking, Physiol. Behav. 5:525–527.PubMedCrossRefGoogle Scholar
  20. Booth, D. A., 1968, Mechanism of action of norepinephrine in eliciting an eating response on injection into the rat hypothalamus, J. Pharmacol. Exp. Ther. 160:336–348.PubMedGoogle Scholar
  21. Breese, G. R., Smith, R. D., Cooper, B. R., and Grant, L. D., 1973, Alterations in consummatory behavior following intracisternal injection of 6-hydroxydopamine, Pharmacol. Biochem. Behav. 1:319–328.CrossRefGoogle Scholar
  22. Brobeck, J. R., Tepperman, J., and Long, C. N. H., 1943, Experimental hypothalamic hyperphagia in the albino rat, Yale J. Biol. Med. 15:831–853.PubMedGoogle Scholar
  23. Buggy, J., Fisher, A. E., Hoffmann, W. E., Johnson, A. K., and Phillips, M. I., 1975, Ventricular obstruction: effect on drinking induced by intracranial angiotensin, Science 190:72–74.PubMedCrossRefGoogle Scholar
  24. Bumpus, F. M., and Smeby, R. R., 1968, Angiotensin, in: Renal Hypertension (I. H. Page and J. W. McCubbin, eds.), pp. 62–100, Year Book Publishers, Chicago.Google Scholar
  25. Burks, C. D., and Fisher, A. E., 1970, Anticholinergic blockade of schedule-induced polydipsia, Physiol. Behav. 5:635–640.PubMedCrossRefGoogle Scholar
  26. Cooling, M. J., and Day, M. D., 1973, Antagonism of central dipsogenic and peripheral vasoconstrictor responses to angiotensin II with Sar1 Ala8 angiotensin II in the conscious cat, J. Pharm. Pharmacol. 2:1005–1006.CrossRefGoogle Scholar
  27. Cooling, M. J., and Day, M. D., 1975, Drinking behavior in the cat induced by renin, angiotensin I, II, and isoprenaline, J. Physiol. (London) 244:325–336.Google Scholar
  28. Coury, J. N., 1967, Neural correlates of food and water intake in the rat, Science 156:1763–1765.PubMedCrossRefGoogle Scholar
  29. Cox, V. C., and Valenstein, E. S., 1969, Distribution of hypothalamic sites yielding stimulus-bound behavior, Brain Behav. Evol. 2, 359–376.CrossRefGoogle Scholar
  30. Devor, M. G., Wise, R. A., Milgram, N. M., and Hoebel, B. G., 1970, Physiological control of hypothalamically elicited feeding and drinking, J. Comp. Physiol. Psychol. 73:226–232.PubMedCrossRefGoogle Scholar
  31. DeWied, D., 1966, Effect of autonomie blocking agents and structurally related substances on the “salt arousal of drinking,” Physiol. Behav. 1:193–197.CrossRefGoogle Scholar
  32. Epstein, A. N., 1971, The lateral hypothalamic syndrome: its implications for the physiological psychology of hunger and thirst, in: Progress in Physiological Psychology (E. Stellar and J. M. Sprague, eds.), Vol. 4, pp. 263–317, Academic Press, New York.Google Scholar
  33. Epstein, A. N., and Simpson, J. B., 1975, The dipsogenic action of angiotensin, Acta Physiol Lat.-Am. 24:405–408.Google Scholar
  34. Epstein, A. N., and Teitelbaum, P., 1964, Severe and persistent deficits in thirst in rats with lateral hypothalamic damage, in: Thirst (M. J. Wayner, ed.), pp. 395–406, Pergamon Press, New York.Google Scholar
  35. Epstein, A. N., Fitzsimons, J. T., and Simons, B. J., 1969, Drinking caused by the intracranial injection of angiotensin into the rat, J. Physiol. (London) 200:98–1 OOP.Google Scholar
  36. Epstein, A. N., Fitzsimons, J. T., and Rolls(née Simons), B. J., 1970, Drinking induced by injection of angiotensin into the brain of the rat, J. Physiol. (London) 210:457–474.Google Scholar
  37. Epstein, A. N., Fitzsimons, J. T., and Johnson, A. K., 1973a, Peptide antagonists of the renin-angiotensin system and the elucidation of the receptors for angiotensin-induced drinking, J. Physiol. (London) 238:34–35P.Google Scholar
  38. Epstein, A. N., Fitzsimons, J. T., and Johnson, A. K., 1973b, Prevention by angiotensin II antiserum of drinking induced by intracranial angiotensin, J. Physiol. (London) 230:42P–43P.Google Scholar
  39. Fibiger, H. C., Zis, A. P., and McGeer, E. G., 1973, Feeding and drinking deficits after 6-hydroxydopamine administration in the rat: similarities to the lateral hypothalamic syndrome, Brain Res. 55:135–148.PubMedCrossRefGoogle Scholar
  40. Fischer-Ferraro, C., Nahmod, V. E., Goldstein, D. J., and Finkielman, S., 1971, Angiotensin and renin in rat and dog brain, J. Exp. Med. 133:353–361.PubMedCrossRefGoogle Scholar
  41. Fisher, A. E., 1973, Relationships between cholinergic and other dipsogens in the central mediation of thirst, in: The Neuropsychology of Thirst: New Findings and Advances in Concepts (A. N. Epstein, H. R. Kissileff, and E. Stellar, eds.), pp. 243–279, Winston, Washington, D.C.Google Scholar
  42. Fisher, A. E., and Coury, J. N., 1962, Cholinergic tracing of a central neural circuit underlying the thirst drive, Science 138:691–693.PubMedCrossRefGoogle Scholar
  43. Fitzsimons, J. T., 1969, The role of a renal thirst factor in drinking induced by extracellular stimuli, J. Physiol. (London) 201:349–368.Google Scholar
  44. Fitzsimons, J. T., 1971, The effect on drinking of peptide precursors and of shorter chain peptide fragments of angiotensin II injected into the rat’s diencephalon, J. Physiol. (London) 214:295–303.Google Scholar
  45. Fitzsimons, J. T., 1973ö, Some historical perspectives in the physiology of thirst, in: The Neuropsychology of Thirst: New Findings and Advances in Concepts (A. N. Epstein, H. R. Kissileff, and E. Stellar, eds.), pp. 3–33, Winston, Washington, D. C.Google Scholar
  46. Fitzsimons, J. T., 1973b, Angiotensin as a thirst regulating hormone, in: Proceedings of the Fourth International Congress of Endocrinology, Washington, D. C., June 18–24, 1972 (R. O. Scow, F. J. G. Ebling, and I. W. Henderson, eds.), pp. 711–716, Exerpta Medica, Amsterdam.Google Scholar
  47. Fitzsimons, J. T., and Setler, P. E., 1971, Catecholaminergic mechanisms in angiotensininduced drinking, J. Physiol. (London) 218:43–44P.Google Scholar
  48. Fitzsimons, J. T., and Setler, P. E., 1975, The relative importance of central nervous catecholaminergic and cholinergic mechanisms in drinking in response to angiotensin and other thirst stimuli, J. Physiol. (London) 250:613–631.Google Scholar
  49. Fitzsimons, J. T., and Simons, B. J., 1969, The effect on drinking in the rat of intravenous infusion of angiotensin given alone or in combination with other stimuli of thirst, J. Physiol. (London) 203:45–57.Google Scholar
  50. Fitzsimons, J. T., and Szczepanska-Sadowska, E., 1974, Drinking and antidiuresis elicited by isoprenaline in the dog, J. Physiol. (London) 239:251–267.Google Scholar
  51. Fonberg, E., 1969, Effects of small dorsomedial amygdala lesions on food intake and acquisition of instrumental alimentary reactions in dogs, Physiol. Behav. 4:739–743.CrossRefGoogle Scholar
  52. Franklin, K. B., and Quartermain, D., 1970, Comparison of the motivational properties of deprivation-induced drinking with drinking elicited by central carbachol stimulation, J. Comp. Physiol. Psychol. 71:390–395.PubMedCrossRefGoogle Scholar
  53. Ganong, W. F., 1973, Catecholamines and the secretion of renin, ACTH, and growth hormone, in: Frontiers in Catecholamine Research (E. Usdin and S. Snyder, eds.), pp. 819–824, Pergamon Press, New York.Google Scholar
  54. Ganten, D., Minnich, J. L., Granger, P., Hayduk, K., Brecht, H. M., Barbeau, A., Boucher, R., and Genest, J., 1971, Angiotensin-forming enzyme in brain tissue, Science 173:64–65.PubMedCrossRefGoogle Scholar
  55. Gentil, C. G., Stevenson, J. A. F., and Mogenson, G. J., 1971, Effect of scopolamine on drinking elicited by hypothalamic stimulation, Physiol. Behav. 7:639–641.PubMedCrossRefGoogle Scholar
  56. Gerald, M. C., and Maickel, R. P., 1972, Studies on the possible role of brain histamine in behavior, Brit, J. Pharmacol. 44:462–471.Google Scholar
  57. Giardina, A. R., and Fisher, A. E., 1971, Effect of atropine on drinking induced by carbachol, angiotensin and isoproterenol, Physiol. Behav. 7:653–655.PubMedCrossRefGoogle Scholar
  58. Greer, M. A., 1955, Suggestive evidence of a primary “drinking center” in hypothalamus of rat, Proc. Soc. Exp. Biol. Med. 89:59–62.PubMedGoogle Scholar
  59. Grossman, S. P., 1960, Eating or drinking in satiated rats elicited by adrenergic or cholinergic stimulation, respectively, of the lateral hypothalamus, Science 132:301–302.PubMedCrossRefGoogle Scholar
  60. Grossman, S. P., 1962a, Direct adrenergic and cholinergic stimulation of hypothalamic mechanisms, Am. J. Physiol. 202:872–882.PubMedGoogle Scholar
  61. Grossman, S. P., 1962b, Effect of adrenergic and cholinergic blocking agents on hypothalamic mechanisms, Am. J. Physiol. 202:1230–1236.Google Scholar
  62. Grossman, S. P., and Grossman, L., 1963, Food and water intake following lesions or electrical stimulation of the amygdala, Am. J. Physiol. 205:761–765.PubMedGoogle Scholar
  63. Hainsworth, H. R., and Epstein, A. N., 1966, Severe impairment of heat-induced saliva spreading in rats recovered from lateral hypothalamic lesions, Science 153:1255–1257.PubMedCrossRefGoogle Scholar
  64. Harvey, J. A., and Hunt, H. F., 1965, Effect of septal lesions on thirst in the rat as indicated by water consumption and operant responding for water reward, J. Comp. Physiol. Psychol. 59:49–56.PubMedCrossRefGoogle Scholar
  65. Heller, A., and Moore, R. Y., 1965, Effect of central nervous system lesions on brain monoamines in the rat, J. Pharmacol. Exp. Ther. 150:1–9.PubMedGoogle Scholar
  66. Heller, A., Harvey, J. A., and Moore, R. Y., 1962, A demonstration of a fall in brain serotonin following central nervous system lesions in the rat, Biochem. Pharmacol. 11:859–866.PubMedCrossRefGoogle Scholar
  67. Hetherington, A. W., and Ranson, S. W., 1942, The spontaneous activity and food intake of rats with hypothalamic lesions, Am. J. Physiol. 136:609–617.Google Scholar
  68. Houpt, K. A., and Epstein, A. N., 1971, The complete dependence of beta-adrenergic drinking on the renal dipsogen, Physiol. Behav. 7:897–902.PubMedCrossRefGoogle Scholar
  69. Huang, Y. H., and Mogenson, G. J., 1972, Neural pathways mediating drinking and feeding in rats, Exp. Neurol. 37:269–287.PubMedCrossRefGoogle Scholar
  70. Huang, Y. H., and Mogenson, G. J., 1974, Differential effects of incertal and hypothalamic lesions on food and water intake, Exp. Neurol. 43:276–281.PubMedCrossRefGoogle Scholar
  71. Hughes, J., and Roth, R. H., 1971, Evidence that angiotensin enhances transmitter release during sympathetic nerve stimulation, Brit. J. Pharmacol. 14:239–255.Google Scholar
  72. Johnson, A. K., and Epstein, A. N., 1975, The cerebral ventricles as the avenue for the dipsogenic action of intracranial angiotensin, Brain Res. 86:399–418.PubMedCrossRefGoogle Scholar
  73. Johnson, A. K., and Fisher, A. E., 1973a, Taste preferences for sucrose solutions and water under cholinergic and deprivation thirst, Physiol. Behav. 10:607–612.PubMedCrossRefGoogle Scholar
  74. Johnson, A. K., and Fisher, A. E., 1973b, Tolerance for quinine under cholinergic versus deprivation-induced thirst, Physiol. Behav. 10:613–616.PubMedCrossRefGoogle Scholar
  75. Kelly, D. L., and Mountford, D., 1974, The motivational consequences of cholinergic stimulation of the medial septal area, Physiol. Psychol. 2:101–103.Google Scholar
  76. Khavari, K. A., and Russell, R. W., 1966, Acquisition, retention, and extinction conditions of water deprivation and of central cholinergic stimulation, J. Comp. Physiol. Psychol. 61:339–345.PubMedCrossRefGoogle Scholar
  77. Kirkstone, B. J., and Levitt, R. A., 1970, Interactions between water deprivation and chemical brain stimulation, J. Comp. Physiol. Psychol. 71:334–340.CrossRefGoogle Scholar
  78. Kissileff, H. R., and Epstein, A. N., 1969, Exaggerated prandial drinking in the recovered lateral rat without saliva, J. Comp. Physiol. Psychol. 67:301–308.PubMedCrossRefGoogle Scholar
  79. Kucharczyk, J., and Mogenson, G. J., 1975, Separate lateral hypothalamic pathways for extracellular and intracellular thirst, Am.J. Physiol. 228:295–301.PubMedGoogle Scholar
  80. Leenen, F. H. H., and McDonald, R. H., 1974, Effect of isoproterenol on blood pressure, plasma renin activity, and water intake in rats, Eur. J. Pharmacol. 26:129–135.PubMedCrossRefGoogle Scholar
  81. Lehr, D., 1973, Invited comment: comments to papers on “thirst” by Drs. Fisher, Harvey, and Setler, in: The Neuropsychology of Thirst: New Findings and Advances in Concepts (A. N. Epstein, H. R. Kissileff, and E. Stellar, eds.), pp. 307–315, Winston, Washington, D. C.Google Scholar
  82. Lehr, D., Mallow, J., and Krukowski, M., 1967, Copious drinking and simultaneous inhibition of urine elicited by beta-adrenergic stimulation and contrary effect of alphaadrenergic stimulation, J. Pharmacol. Exp. Ther. 158:150–163.PubMedGoogle Scholar
  83. Leibowitz, S. F., 1971, Hypothalamic alpha-and beta-adrenergic systems regulate both thirst and hunger in the rat, Proc. Nat. Acad. Sci. U.S.A. 68:332–334.CrossRefGoogle Scholar
  84. Leibowitz, S. F., 1973, Histamine: a stimulatory effect on drinking behavior in the rat, Brain Res. 63:440–444.PubMedCrossRefGoogle Scholar
  85. Levitt, R. A., and Boley, R. P., 1970, Drinking elicited by injection of eserine or carbachol into rat brain, Physiol. Behav. 5:693.PubMedCrossRefGoogle Scholar
  86. Levitt, R. A., and Fisher, A. E., 1966, Anticholinergic blockade of centrally induced thirst, Science 154:520–522.PubMedCrossRefGoogle Scholar
  87. Maickel, R. P., Cox, R. H., Ksir, C. J., Snodgrass, W. R., and Miller, F. P., 1970, Some aspects of the behavioral pharmacology of the amphetamines, in: International Symposium on Amphetamines and Related Compounds (E. Costa and S. Garattini, eds.), pp. 747–760, Raven Press, New York.Google Scholar
  88. Marshall, J. F., Richardson, J. S., and Teitelbaum, P., 1974, Nigrostriatal bundle damage and the lateral hypothalamic syndrome, J. Comp. Physiol. Psychol. 87:808–830.PubMedCrossRefGoogle Scholar
  89. Mendelson, J., 1970, Palatability, satiation, and thresholds for stimulus-bound drinking, Physiol. Behav. 5:1295–1297.PubMedCrossRefGoogle Scholar
  90. Meyer, D. K., Abele, M., and Hertting, G., 1974, Influence of serotonin on water intake and the renin-angiotensin system in the rat, Arch. Int. Pharmacodyn. Ther. 212:130–140.PubMedGoogle Scholar
  91. Meyer, D. K., Peskar, B., and Hertting, G., 1971, Hemmung des durch blutdruchsenkende harmaka bei Ratten ausgelösten Trinkens durch Nephrectomie, Experientia 27:65–66.PubMedCrossRefGoogle Scholar
  92. Meyer, D. K., Rauscher, W., Peskar, B., and Hertting, G., 1973, The mechanism of the drinking response to some hypotensive drugs: activation of the renin-angiotensin system by direct or reflex stimulation of beta-receptors, Naunyn-Schmiedebergs Arch.Pharmacol. 276:13–24.PubMedCrossRefGoogle Scholar
  93. Miller, N. E., and Chien, C. W., 1968, Drinking elicited by injecting eserine into preoptic area of rat brain, Commun. Behav. Biol. 1:61–63.Google Scholar
  94. Miller, N. E., Gottesman, K. S., and Emery, N., 1964, Dose response to carbachol and norepinephrine in rat hypothalamus, Am. J. Physiol. 206:1384–1388.PubMedGoogle Scholar
  95. Mogenson, G. J., and Stevenson, J. A. F., 1966, Drinking and self-stimulation with electrical stimulation of the hypothalamus, Physiol. Behav. 1:251–254.CrossRefGoogle Scholar
  96. Mogenson, G. J., and Stevenson, J. A. F., 1967, Drinking induced by electrical stimulation of the lateral hypothalamus, Exp. Neurol. 17:119–127.PubMedCrossRefGoogle Scholar
  97. Montemurro, D. G., and Stevenson, J. A. F., 1957, Adipsia produced by hypothalamic lesions in the rat, Can. J. Biochem. Physiol. 35:31–37.PubMedCrossRefGoogle Scholar
  98. Morgane, P. J., 1961, Alterations in feeding and drinking behavior of rats with lesions in globi pallidi, Am. J. Physiol. 201:420–428.PubMedGoogle Scholar
  99. Morrison, S. D., Barrnett, R. J., and Mayer, J., 1958, Localization of lesions in the lateral hypothalamus of rats with induced adipsia and aphagia, Am. J. Physiol. 193:230–234.PubMedGoogle Scholar
  100. Myers, R. D., 1964, Emotional and autonomic responses following hypothalamic chemical stimulation, Can. J. Psychol. 18:6–14.PubMedCrossRefGoogle Scholar
  101. Myers, R. D., and Martin, G. E., 1973, 6-OHDA lesions of the hypothalamus: interaction of aphagia, food palatability, set-point for weight regulation and recovery of feeding, Pharmacol. Biochem. Behav. 1:329–345.PubMedCrossRefGoogle Scholar
  102. Myers, R. D., Hall, G. D., and Rudy, T. A., 1973, Drinking in the monkey evoked by nicotine or angiotensin II microinjected in hypothalamic and mesencephalic sites, Pharmacol. Biochem. Behav. 1:15–22.PubMedCrossRefGoogle Scholar
  103. Olds, J., Allan, W. S., and Briese, E., 1971, Differentiation of hypothalamic drive and reward centers, Am. J. Physiol. 221:368–375.PubMedGoogle Scholar
  104. Palaic, D., and Khairallah, P. A., 1968, Inhibition of norepinephrine reuptake by angiotensin in brain, J. Neurochem. 15:1195–1202.PubMedCrossRefGoogle Scholar
  105. Parker, S. W., and Feldman, S. M., 1967, Effect of mesencephalic lesions on feeding behavior in rats, Exp. Neurol. 17:313–326.PubMedCrossRefGoogle Scholar
  106. Peck, J. W., and Novin, D., 1971, Evidence that osmoreceptors mediating drinking in rabbits are in the lateral preoptic area, J. Comp. Physiol. Psychol. 74:134–147.PubMedCrossRefGoogle Scholar
  107. Peres, V. L., Gentil, C. G., Graeff, F. G., and Covian, M. R., 1974, Antagonism of the dipsogenic action of intraseptal angiotensin II in the rat, Pharmacol. Biochem. Behav. 2:597–602.PubMedCrossRefGoogle Scholar
  108. Peskar, B., Meyer, D. K., Tauchmann, U., and Hertting, G., 1970, Influence of isoproterenol, hydralazine and phentolamine on the renin activity of plasma and renal cortex of rats, Eur.J. Pharmacol. 9:394–396.PubMedCrossRefGoogle Scholar
  109. Raisman, G., 1966, The connexions of the septum, Brain 89:317–348.PubMedCrossRefGoogle Scholar
  110. Robinson, B. W., and Mishkin, M., 1968, Alimentary responses to forebrain stimulation in monkeys, Exp. Brain Res. 4:330–366.PubMedCrossRefGoogle Scholar
  111. Rolls, B. J., 1970, Drinking by rats after irritative lesions in the hypothalamus, Physiol. Behav. 5:1385–1393.PubMedCrossRefGoogle Scholar
  112. Routtenberg, A., and Simpson, J. B., 1971, Carbachol-induced drinking at ventricular and subfornical organ sites of application, Life Sci. 10:481–490.CrossRefGoogle Scholar
  113. Setler, P. E., 1973, The role of catecholamines in thirst, in: The Neuropsychology of Thirst: New Findings and Advances in Concepts (A. N. Epstein, H. R. Kissileff, and E. Stellar, eds.), pp. 279–291, Winston, Washington, D. C.Google Scholar
  114. Setler, P. E., 1975, Noradrenergic and dopaminergic influences on thirst, in: Control Mechanisms of Drinking (G. Peters and J. T. Fitzsimons, eds.), pp. 62–68, Springer-Verlag, New York.CrossRefGoogle Scholar
  115. Sharpe, L. G., and Myers, R. D., 1969, Feeding and drinking following stimulation of the diencephalon with amines and other substances, Exp. Brain Res. 8:295–310.PubMedCrossRefGoogle Scholar
  116. Sharpe, L. G., and Swanson, L. G., 1974, Drinking induced by injections of angiotensin into forebrain and mid-brain sites of the monkey, J. Physiol. (London) 239:595–622.Google Scholar
  117. Shute, C. C. D., and Lewis, P. R., 1966, Cholinergic and monoaminergic pathways in the hypothalamus, Brit. Med. Bull. 22:221–226.PubMedGoogle Scholar
  118. Simpson, J. B., and Routtenberg, A., 1973, Subfornical organ: site of drinking elicitation by angiotensin II, Science 181:1172–1175.PubMedCrossRefGoogle Scholar
  119. Simpson, J. B., and Routtenberg, A., 1974, Subfornical organ: acetylcholine application elicits drinking, Brain Res. 78:49–56.Google Scholar
  120. Simpson, J. B., and Routtenberg, A., 1975, Subfornical organ lesions reduce intravenous angiotensin-induced drinking, Brain Res. 88:154–161.PubMedCrossRefGoogle Scholar
  121. Simpson, J. B., Epstein, A. N., and Comardo, J. S., 1975, Ablation or competitive blockade of subfornical organ (SFO) prevents thirst of intravenous angiotensin, Fed. Proc. 34:374.Google Scholar
  122. Singer, G., and Armstrong, S., 1973, Cholinergic and beta-adrenergic compounds in the control of drinking behavior in the rat, J. Comp. Physiol. Psychol. 85:453–462.PubMedCrossRefGoogle Scholar
  123. Smith, G. P., 1973, Introduction: Neuropharmacology of thirst, in: The Neuropsychology of Thirst: New Findings and Advances in Concepts (A. N. Epstein, H. R. Kissileff, and E. Stellar, eds.), pp. 231–241, Winston, Washington, D. C.Google Scholar
  124. Smith, G. P., Strohmayer, A. J., and Reis, D. J., 1972, Effect of lateral hypothalamic injections of 6-hydroxydopamine on food and water intake in rats, Nature (London) 235:27–29.CrossRefGoogle Scholar
  125. Sommer, S. R., Novin, D., and Levine, M., 1967, Food and water intake after intrahypothal-amic injections of carbachol in the rabbit, Science 156:983–984.PubMedCrossRefGoogle Scholar
  126. Soulairac, A., and Soulairac, M.-L., 1970, Effects of amphetamine-like substances and l-DOPA on thirst, water intake and diuresis, in: International Symposium on Amphetamines and Related Compounds (E. Costa and S. Garattini, eds.), pp. 819–840, Raven Press, New York.Google Scholar
  127. Stein, G. W., and Levitt, R. A., 1971, Lesion effects on cholinergically elicited drinking in the rat, Physiol. Behav. 7:517–522.PubMedCrossRefGoogle Scholar
  128. Stein, L., 1963, Anticholinergic drugs and the central control of thirst, Science 139:46–48.PubMedCrossRefGoogle Scholar
  129. Stevenson, J. A. F., 1949, Effects of hypothalamic lesions on water and energy metabolism in the rat, Recent Prog. Horm. Res. 4:363–394.Google Scholar
  130. Stevenson, J. A. F., Welt, L. G., and Orloff, J., 1950, Abnormalities of water and electrolyte metabolism in rats with hypothalamic lesions, Am. J. Physiol. 161:35–39.PubMedGoogle Scholar
  131. Stricker, E. M., and Wolf, G., 1967, The effect of hypovolemia on drinking in rats with lateral hypothalamic damage, Proc. Soc. Exp. Biol. Med. 124:816–820.PubMedGoogle Scholar
  132. Stricker, E. M., and Zigmond, M. J., 1974, Effect on homeostasis of intraventricular injections of 6-hydroxydopamine in rats, J. Comp. Physiol. Psychol. 86:973–994.PubMedCrossRefGoogle Scholar
  133. Tang, M., and Falk, J. L., 1974, Sar1-Ala8 angiotensin II blocks renin-angiotensin but not beta-adrenergic dipsogeneses, Pharmacol. Biochem. Behav. 2:401–408.PubMedCrossRefGoogle Scholar
  134. Teitelbaum, P., and Epstein, A. N., 1962, The lateral hypothalamic syndrome: recovery of feeding and drinking after lateral hypothalamic lesions, Psychol. Rev. 69:74–90.PubMedCrossRefGoogle Scholar
  135. Teitelbaum, P., and Stellar, E., 1954, Recovery from the failure to eat produced by hypothalamic lesions, Science 120:894–895.PubMedCrossRefGoogle Scholar
  136. Ungerstedt, U., 1971a, Stereotaxic mapping of the monoamine pathways in the rat brain, Acta Physiol. Scand. Suppl. 367:1–48.PubMedGoogle Scholar
  137. Ungerstedt, U., 1971b, Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the nigrostriatal dopamine system, Acta Physiol. Scand. Suppl. 367:95–122.PubMedGoogle Scholar
  138. Verney, E. B., 1947, The antidiuretic hormone and the factors which determine its release, Proc. Roy. Soc. London, Ser. B. 135:25–106.CrossRefGoogle Scholar
  139. Vincent, J. D., Arnauld, E., and Bioulac, B., 1972, Activity of osmosensitive single cells in the hypothalamus of the behaving monkey during drinking, Brain Res. 44:371–384.PubMedCrossRefGoogle Scholar
  140. Walsh, L. L., and Grossman, S. P., 1973, Zona incerta lesions: disruption of regulatory water intake, Physiol. Behav. 11:885–887.PubMedCrossRefGoogle Scholar
  141. Walsh, L. L., and Grossman, S. P., 1974, Effects of zona incerta lesions and knife cuts on water intake following cellular and extracellular dehydration, presented at the Society for Neurosciences, St. Louis, Missouri, October, 1974.Google Scholar
  142. Westfall, T. C., 1973, Effects of acetylcholine and the release of H3-norepinephrine by nicotine and potassium chloride from rat brain slices, in: Frontiers in Catecholamine Research (E. Usdin and S. Snyder, eds.), pp. 618–619, Pergamon Press, New York.Google Scholar
  143. Winson, J., and Miller, N. E., 1970, Comparison of drinking elicited by eserine or DFP injected into the preoptic area of the rat brain, J. Comp. Physiol. Psychol. 73:233–237.PubMedCrossRefGoogle Scholar
  144. Wise, R. A., 1971, Individual differences in effects of hypothalamic stimulation: the role of stimulation locus, Physiol. Behav. 6:569–572.PubMedCrossRefGoogle Scholar
  145. Wishart, T. B., and Mogenson, G. J., 1970, Reduction of water intake by electrical stimulation of the septal region of the rat brain, Physiol. Behav. 5:1399–1404.PubMedCrossRefGoogle Scholar
  146. Wolf, A. V., 1950, Osmometric analysis of thirst in man and dog, Am.J. Physiol. 161:75–86.PubMedGoogle Scholar
  147. Wolf, G., and Miller, N. E., 1964, Lateral hypothalamic lesion effects on drinking elicited by carbachol in preoptic area and posterior hypothalamus, Science 143:585–587.PubMedCrossRefGoogle Scholar
  148. Yang, H. Y. T., and Neff, N. H., 1972, Distribution and properties of angiotensinconverting enzyme of the rat brain, J. Neurochem. 19:2443–2450.PubMedCrossRefGoogle Scholar
  149. Zigmond, M. J., and Stricker, E. M., 1972, Deficits in feeding behavior after intraventricular injection of 6-hydroxydopamine in rats, Science 177:1211–1214.PubMedCrossRefGoogle Scholar
  150. Zigmond, M. J., and Stricker, E. M., 1973, Recovery of feeding and drinking by rats after intraventricular 6-hydroxydopamine or lateral hypothalamic lesions, Science 182:717–720.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Paulette E. Setler
    • 1
  1. 1.Biological Research DivisionSmith Kline and French LaboratoriesPhiladelphiaUSA

Personalised recommendations