Neuropharmacology of Reward and Punishment

  • Larry Stein
  • C. David Wise
  • James D. Belluzzi
Part of the Handbook of Psychopharmacology book series (HBKPS)


A hungry pigeon is easily trained to peck at a target to obtain food. A frightened rat, periodically subjected to electrical foot shock, learns equally well to avoid the painful stimulation by pressing a pedal. These demonstration experiments illustrate a high form of behavioral adaptation which Skinner (1938) has termed operant reinforcement. The term operant emphasizes the fact that the behavior operates on the environment to generate consequences. The term reinforcement refers to the fact that the behavior is strengthened when its consequences are favorable or rewarding.


Locus Coeruleus Dorsal Raphe Nucleus Fusaric Acid Medial Forebrain Bundle Intraventricular Injection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aghajanian, G. K., and Bloom, F. E., 1967, Localization of tritiated serotonin in rat brain by electron-microscopic autoradiography, J. Pharmacol. Exp. Ther. 156:23–30.PubMedGoogle Scholar
  2. Amaral, D. G., and Routtenberg, A., 1975, Locus coeruleus and intercranial self-stimulation: a cautionary note, Behav. Biol. 13:331–338.PubMedCrossRefGoogle Scholar
  3. Anlezark, G. M., Crow, T. J., and Greenway, A. P., 1973, Impaired learning and decreased cortical norepinephrine after bilateral locus coeruleus lesions, Science 181:682–684.PubMedCrossRefGoogle Scholar
  4. Anlezark, G. M., Arbuthnott, G. W., Christie, J. E., Crow, T. J., and Spear, P. J., 1974, Electrical self-stimulation in relation to cells of origin of catecholamine-containing neural systems ascending from the brain stem, J. Physiol. 237:31–32.Google Scholar
  5. Aprison, M. H., and Ferster, C. B., 1961, Neurochemical correlates of behavior. II. Correlation of brain monoamine oxidase activity with behavioral changes after iproniazid and 5-hydroxytryptophan, J. Neurochem. 6:350–357.PubMedCrossRefGoogle Scholar
  6. Arbuthnott, G., Fuxe, K., and Ungerstedt, U., 1971, Central catecholamine turnover and self-stimulation behavior, Brain Res. 27:406–413.PubMedCrossRefGoogle Scholar
  7. Atrens, D. M., 1973, A reinforcement analysis of rat hypothalamus, Am. J. Physiol. 224:62–65.PubMedGoogle Scholar
  8. Baumgarten, H. G., Björklund, A., Lachenmayer, L., Nobin, A., and Stenevi, U., 1971, Long-lasting selective depletion of brain serotonin by 5, 6-dihydroxytryptamine, Acta Physiol. Scand. Suppl. 373:1–15.PubMedGoogle Scholar
  9. Baxter, B. L., Gluckman, M. L, Stein, L., and Scerni, R. A., 1974, Self-injection of apomorphine in the rat: positive reinforcement by a dopamine receptor stimulant, Pharm. Biochem. Behav. 2:387–392.CrossRefGoogle Scholar
  10. Baxter, B. L., Gluckman, M. I., and Scerni, R. A., 1976, Apomorphine self-injection is not affected by alpha-methylparatyrosine treatment: support for dopaminergic reward, Pharm. Biochem. Behav. 4:611–612.CrossRefGoogle Scholar
  11. Belluzzi, J. D., Ritter, S., Wise, C. D., and Stein, L., 1975, Substantia nigra self-stimulation: dependence on noradrenergic reward pathways, Behav. Biol. 13:103–111.PubMedCrossRefGoogle Scholar
  12. Carter, D. A., and Phillips, A. G., 1975, Intracranial self-stimulation at sites in the dorsal medulla oblongata, Brain Res. 94:155–160.PubMedCrossRefGoogle Scholar
  13. Chase, T. N., Katz, R. I., and Kopin, I. J., 1970, Effects of diazepam on fate of intracisternally injected serotonin-C14, Neuropharmacology 9:103–108.PubMedCrossRefGoogle Scholar
  14. Clavier, R. M., and Routtenberg, A., 1974, Ascending monoamine-containing fiber pathways related to intracranial self-stimulation: histochemical fluorescence study, Brain Res. 72:25–40.PubMedCrossRefGoogle Scholar
  15. Cook, L., and Davidson, A. B., 1973, Effects of behaviorally active drugs in a conflictpunishment procedure in rats, in: The Benzodiazepines (S. Garattini, ed.), pp. 327–345, Raven Press, New York.Google Scholar
  16. Cook, L., and Sepinwall, J., 1975, Behavioral analysis of the effects and mechanisms of action of benzodiazepines, in: Mechanism of Action of Benzodiazepines (E. Costa and P. Greengard, eds.), pp. 1–28, Raven Press, New York.Google Scholar
  17. Corrodi, H., Fuxe, K., and Hokfelt, T., 1967, The effect of some psychoactive drugs on central monoamine neurons, Eur. J. Pharmacol. 1:363–368.PubMedCrossRefGoogle Scholar
  18. Crow, T. J., 1968, Cortical synapses and reinforcement: a hypothesis, Nature (London) 219:736–737.CrossRefGoogle Scholar
  19. Crow, T. J., 1972a, Catecholamine-containing neurons and electrical self-stimulation. 1. A review of some data, Psychol. Med. 2:414–421.PubMedCrossRefGoogle Scholar
  20. Crow, T. J., 1972b, A map of the rat mesencephalon for electrical self-stimulation, Brain Res. 36:265–273.PubMedCrossRefGoogle Scholar
  21. Crow, T. J., Spear, P. J., and Arbuthnott, G. W., 1972, Intracranial self-stimulation with electrodes in the region of the locus coeruleus, Brain Res. 36:275–287.PubMedCrossRefGoogle Scholar
  22. Dahlström, A., and Fuxe, K., 1964, Evidence for the existence of monoamine-containing neurons in the central nervous system. 1. Demonstration of monoamines in the cell bodies of brain stem neurons, Acta Physiol. Scand. 62(232): 1–55.Google Scholar
  23. Davis, W. M., and Smith, S. G., 1975, Self-administration of noradrenergic and dopaminergic agonists, Neurosci. Abst. 1:276.Google Scholar
  24. Davis, W. M., Smith, S. G., and Khalsa, J. H., 1975, Noradrenergic role in the self-administration of morphine or amphetamine, Pharm. Biochem. Behav. 3:477–484.CrossRefGoogle Scholar
  25. Deutsch, J. A., 1960, The Structural Basis of behavior, University of Chicago Press, Chicago.Google Scholar
  26. Fernandez deMolina, A. F., and Hunsperger, R. W., 1962, Organization of the subcortical system governing defense and flight reactions in the cat, J. Physiol. 160:200–213.Google Scholar
  27. Franklin, K. B. J., and Herberg, L. J., 1974, Self-stimulation and catecholamines: drug-induced mobilization of the “reverse”-pool reestablished responding in catecholamine-depleted rats, Brain Res. 67:429–437.PubMedCrossRefGoogle Scholar
  28. Franklin, K. B. J., and Herberg, L. J., 1975, Self-stimulation and noradrenaline: evidence that inhibition of synthesis abolishes responding only if the “reserve” pool is dispersed first, Brain Res. 97:127–132.PubMedCrossRefGoogle Scholar
  29. Fuxe, K., Hokfelt, T., and Ungerstedt, U., 1968, Localization of indolealkylamines in CNS, in: Advances in Pharmacology (S. Garattini and P. A. Shore, eds.), pp. 235–251, Academic Press, New York.Google Scholar
  30. Fuxe, K., Hokfelt, T., and Ungerstedt, U., 1970, Morphological and functional aspects of central monoamine neurons, Int. Rev. Neurobiol. 13:93–126.CrossRefGoogle Scholar
  31. Gallistel, C. R., 1973, The neurophysiology of reward and motivation, in: The Physiological Basis of Memory (J. A. Dseutsch, ed.), pp. 176–267, Academic Press, New York.Google Scholar
  32. Geller, I., and Blum, K., 1970, The effects of 5-HT on para-chlorophenylalanine (p-CPA) attenuation of “conflict” behavior, Eur. J. Pharmacol. 9:319–324.PubMedCrossRefGoogle Scholar
  33. Geller, I., and Seifter, J., 1960, The effects of meprobamate, barbiturates, d-amphetamine and promazine on experimentally induced conflict in the rat, Psychopharmacologia 1:482–492.CrossRefGoogle Scholar
  34. Geller, I., Kulak, J. T., Jr., and Seifter, J., 1962, The effects of chlordiazepoxide and chlorpromazine on a punishment discrimination, Psychoppharmacologia 3:374–385.CrossRefGoogle Scholar
  35. Geller, I., Bachman, E., and Seifter, J., 1963, Effects of reserpine and morphine on behavior suppressed by punishment, Life Sci. 4:226–231.PubMedCrossRefGoogle Scholar
  36. Geller, L, Hartmann, R. J., and Croy, D. J., 1974, Attenuation of conflict behavior with cinanserin, a serotonin antagonist: reversal of the effect with 5-hydroxytryptophan and α-methyltryptamine, Res. Commun. Chem. Pathol. Pharmacol. 7:165–174.PubMedGoogle Scholar
  37. German, D. C., and Bowden, D. M., 1974, Catecholamine systems as the neural substrate for intracranial self-stimulation: a hypothesis, Brain Res. 73:381–419.PubMedCrossRefGoogle Scholar
  38. Glowinski, J., and Axelrod, J., 1965, Effect of drugs on the uptake, release, and metabolism of H3-norepinephrine in the rat brain, J. Pharmacol. Exp. Ther. 149:43–49.PubMedGoogle Scholar
  39. Gold, R. M., Kapatos, G., and Carey, R. J., 1973, A retracting wire knife for stereotaxic brain surgery made from a microliter syringe, Physiol. Behav. 10:813–815.PubMedCrossRefGoogle Scholar
  40. Goldberg, M. E., Manian, A. A., and Efron, D. H., 1967, A comparative study of certain pharmacological responses following acute and chronic administration of chlordiazepoxide, Life Sci. 6:481–491.PubMedCrossRefGoogle Scholar
  41. Graeff, F. G., and Schoenfeld, R. I., 1970, Tryptaminergic mechanisms in punished and nonpunished behavior, J. Pharmacol. Exp. Ther. 173:277–283.PubMedGoogle Scholar
  42. Herberg, L. J., Stephens, D. N., and Franklin, K. B. J., 1976, Catecholamines and self-stimulation: evidence suggesting a reinforcing role for noradrenaline and a motivating role for dopamine, Pharmacol. Biochem. Behav. 4:575–582.PubMedCrossRefGoogle Scholar
  43. Jacobwitz, D. M., 1973, Effects of 6-hydroxydopa, in: Frontiers in Catecholamine Research (E. Usdin and H. S. Snyder, eds.), pp. 729–739, Pergamon Press, New York.Google Scholar
  44. Kelleher, R. T., and Morse, W. H., 1964, Escape behavior and punished behavior, Fed. Proc. 23:808–835.PubMedGoogle Scholar
  45. Kety, S. S., 1970, The biogenic amines in the central nervous system: their possible roles in arousal, emotion and learning, in: The Neurosciences: Second Study Program (F. O. Schmitt, ed.), pp. 324–336, Rockefeller University Press, New York.Google Scholar
  46. Kety, S. S., 1972, The possible role of the adrenergic systems of the cortex in learning, in: Neurotransmitters (I. J. Kopin, ed.), pp. 376–389, Williams and Wilkins, Baltimore.Google Scholar
  47. Klüver, H., and Barrera, E., 1953, Method for combined staining of cells and fibers in the nervous system, J. Neuropathol. Exp. Nenrol. 12:400–403.CrossRefGoogle Scholar
  48. Koella, W. P., and Czicman, J., 1966, Mechanism of the EEG-synchronizing action of serotonin, Am.J. Physiol. 211:926–934.PubMedGoogle Scholar
  49. Kojima, H., Ritter, S., Wise, C. D., and Stein, L., unpublished data (cited in Stein and Wise, 1973).Google Scholar
  50. Leibowitz, S. F., 1972, Central adrenergic receptors and the regulation of hunger and thirst, in: Neurotransmitters (I. J. Kopin, ed.), pp. 327–358, Williams and Wilkins, Baltimore.Google Scholar
  51. Liebman, J. M., and Butcher, L. L., 1973, Effects on self-stimulation behavior of drugs influencing dopaminergic neurotransmission mechanisms, Naunyn-Schmiedebergs Archiv. Pharmacol. 277:305–318.CrossRefGoogle Scholar
  52. Liebman, J. M., Mayer, D. J., and Liebeskind, J. C., 1973, Self-stimulation in the midbrain central gray matter of the rat, Behavioral Biology 9:299–306.PubMedCrossRefGoogle Scholar
  53. Lindvall, O., and Björklund, A., 1974, The organization of the ascending catecholamine neuron systems in the rat brain as revealed by the glyoxylic acid fluorescence method, Ada Physiol. Scand. Suppl. 412:1–48.Google Scholar
  54. Lippa, A. S., Antelman, S. M., Fisher, A. E., and Canfield, D. R., 1973, Neurochemical mediation of reward: a significant role for dopamine, Pharmacol. Biochem. Behav. 1:23–25.PubMedCrossRefGoogle Scholar
  55. Mackintosh, N. J., 1974, The Psychology of Animal Learning, Academic Press, New York.Google Scholar
  56. Margules, D. L., 1969, Noradrenergic rather than serotonergic basis of reward in dorsal tegmentum, J. Comp. Physiol. Psychol. 67:32–35.PubMedCrossRefGoogle Scholar
  57. Margules, D. L., and Stein, L., 1967, Neuroleptics vs. tranquilizers: evidence from animal studies of mode and site of action, in: Neuropsychopharmacology (H. Brill, J. O. Cole, P. Deniker, H. Hippinus, and P. B. Bradley, eds.), pp. 108–120, Excerpta Medica Foundation, Amsterdam.Google Scholar
  58. Margules, D. L., and Stein, L., 1968, Increase of “antianxiety” activity and tolerance of behavioral depression during chronic administration of oxazepam, Phychopharmacologia 13:74–80.CrossRefGoogle Scholar
  59. Mayer, D. J. and Liebeskind, J. C., 1974, Pain reduction by focal electrical stimulation of the brain: an anatomical and behavioral analysis, Brain Res. 68:73–93.PubMedCrossRefGoogle Scholar
  60. Olds, J., 1962, Hypothalamic substrates of reward, Physiol. Rev. 42:554–604.PubMedGoogle Scholar
  61. Olds, J., and Milner, P., 1954, Positive reinforcement produced by electrical stimulation of septal area and other regions, J. Comp. Physiol. Psychol. 47:419–427.PubMedCrossRefGoogle Scholar
  62. Olds, J., and Olds, M. E., 1963, Approach-avoidance analysis of rat diencephalon, J. Comp. Neurol. 120:259–295.PubMedCrossRefGoogle Scholar
  63. Olson, L., and Fuxe, K., 1972, Further mapping out of central noradrenaline neuron systems: projections of the “subcoeruleus” area, Brain Res. 43:289–295.PubMedCrossRefGoogle Scholar
  64. Phillips, A. G., and Fibiger, H. C., 1973, Dopaminergic and noradrenergic substrates of positive reinforcement: differential effects of d-and l-amphetamine, Science 179:575–576.PubMedCrossRefGoogle Scholar
  65. Poschel, B. P. H., and Ninteman, F. W., 1963, Norepinephrine: a possible excitatory neurohormone of the reward system, Life Sci. 2:782–788.CrossRefGoogle Scholar
  66. Ritter, S., and Stein, L., 1973, Self-stimulation of noradrenergic cell group (A6) in the locus coeruleus of rats, J. Camp. Physiol. Psychol. 85:443–452.CrossRefGoogle Scholar
  67. Ritter, S., and Stein, L., 1974, Self-stimulation in the mesencephalic trajectory of the ventral noradrenergic bundle, Brain Res. 81:145–157.PubMedCrossRefGoogle Scholar
  68. Robichaud, R. C., and Sledge, K. L., 1969, The effects of p-chlorophenylalanine on experimentally induced conflict in the rat, Life Sci. 8:965–969.PubMedCrossRefGoogle Scholar
  69. Roll, S. K., 1970, Intracranial self-stimulation and wakefulness: effects of manipulating ambient brain catecholamines, Science 168:1370–1372.PubMedCrossRefGoogle Scholar
  70. Rolls, E. T., Kelly, P. H., and Shaw, S. G., 1974, Noradrenaline, dopamine, and brain-stimulation reward, Pharmacol. Biochem. Behav. 2:735–740.PubMedCrossRefGoogle Scholar
  71. Routtenberg, A., and Malsbury, C., 1969, Brainstem pathways of reward, J. Comp. Physiol. Psychol. 68:22–30.PubMedCrossRefGoogle Scholar
  72. Sclafani, A., and Grossman, S. P., 1969, Hyperphagia produced by knife cuts between the medial and lateral hypothalamus in the rat, Physiol. Behav. 4:533–537.CrossRefGoogle Scholar
  73. Simon, H., LeMoal, M., and Cardo, B., 1975, Self-stimulation in the dorsal pontine tegmentum in the rat, Behav. Biol. 13:339–347.PubMedCrossRefGoogle Scholar
  74. Skinner, B. F., 1938, The Behavior of Organisms, Appleton-Century-Crofts, New York.Google Scholar
  75. Stein, L., 1962, Effects and interactions of imipramine, chlorpromazine, reserpine and amphetamine on self-stimulation: possible neurophysiological basis of depression, in: Recent Advances in Biological Psychiatry, Vol. 4 (J. Wortis, ed.), pp. 288–308, Plenum Press, New York.CrossRefGoogle Scholar
  76. Stein, L., 1964a, Reciprocal action of reward and punishment mechanisms, in: The Role of Pleasure in behavior (R. G. Heath, ed.), pp. 113–139, Hoeber Medical Division, Harper and Row, New York.Google Scholar
  77. Stein, L., 1964b, Self-stimulation of the brain and the central stimulant action of amphetamine, Fed. Proc. 23:836–850.PubMedGoogle Scholar
  78. Stein, L., 1965, Facilitation of avoidance behavior by positive brain stimulation, J. Comp. Physiol. Psychol. 60(1):9–19.PubMedCrossRefGoogle Scholar
  79. Stein, L., 1968, Chemistry of reward and punishment, in Psychopharmacology, A Review of Progress (D. H. Efron, ed.), pp. 105–123, U.S. Government Printing Office, Washington, D.C.Google Scholar
  80. Stein, L., and Ray, O. S., 1960, Brain stimulation reward “thresholds” self-determined in rat, Psychopharmacologia 1:251–256.PubMedCrossRefGoogle Scholar
  81. Stein, L., and Wise, C. D., 1969, Release of norepinephrine for hypothalamus and amygdala by rewarding forebrain bundled stimulation and amphetamine, J. Comp. Physiol. Psychol. 67:189–198.PubMedCrossRefGoogle Scholar
  82. Stein, L., and Wise, C. D., 1971, Possible etiology of schizophrenia: progressive damage to the noradrenergic reward system by 6-hydroxydopamine, Science 171:1032–1036.PubMedCrossRefGoogle Scholar
  83. Stein, L., and Wise, C. D., 1973, Amphetamine and noradrenergic reward pathways, in: Frontiers in Catecholamine Research (E. Usdin and S. H. Snyder, eds.), pp. 963–968, Pergamon Press, New York.Google Scholar
  84. Stein, L., Wise, C. D., and Berger, B. D., 1972, Noradrenergic reward mechanisms, recovery of function, and schizophrenia, in: The Chemistry of Mood, Motivation, and Memory (J. L. McGaugh, ed.), pp. 81–103, Plenum Press, New York.Google Scholar
  85. Stein, L., Wise, C. D., and Berger, B. D., 1973, Antianxiety action of benzodiazepines: decrease in activity of serotonin neurons in the punishment system, in: The Benzodiazepines (S. Garattini, E. Mussine, and L. Randall, eds.), pp. 299–326, Raven Press, New York.Google Scholar
  86. Stein, L., Wise, C. D., and Belluzzi, J. D., 1975, Effects of benzodiazepines on central serotonergic mechanisms, in: Mechanism of Action of Benzodiazepines (E. Costa and P. Greengards, eds.), pp. 29–44, Raven Press, New York.Google Scholar
  87. Stenevi, U., Bjerre, B., Björklund, A., and Mobley, W., 1974, Effects of localized intracerebral injections of nerve growth factor on the regenerative growth of lesioned central noradrenergic neurons, Brain Res. 69:217–234.PubMedCrossRefGoogle Scholar
  88. Stephens, D. N., Franklin, K. B. J., and Herberg, L. J., 1975, Differing but complementary functions of brain noradrenaline and dopamine in self-stimulation, in: Proceedings of the 1st International Conference on Brain-Stimulation Reward, Beerse, Belgium, pp. 79–80.Google Scholar
  89. Stinus, L., and Thierry, A. M., 1973, Self-stimulation and catecholamines. II. Blockade of self-stimulation by treatment with alpha-methylparatyrosine and reinstatement by catecholamine precursor administration, Brain Res. 64:189–198.PubMedCrossRefGoogle Scholar
  90. Taylor, K. M., and Laverty, R., 1969, The effects of chlordiazepoxide, diazepam and nitrazepam on catecholamine metabolism in regions of the rat brain, Eur. J. Pharmacol. 8:296–301.PubMedCrossRefGoogle Scholar
  91. Ungerstedt, U., 1971a, Histochemical studies of the effect of intracerebral and intraventricular injections of 6-hydroxydopamine on monoamine neurons in the rat brain, in: 6-Hydroxydopamine and Catecholamine Neurons (T. Malmfors and H. Thoenen, eds.), pp. 101–127, American Elsevier, New York.Google Scholar
  92. Ungerstedt, U., 1971b, Stereotaxic mapping of the monoamine pathways in the rat brain, Acta Physiol. Scand. Suppl. 367 82:1–48.Google Scholar
  93. Wauquier, A., and Niemegeers, C. J. E., 1972, Intracranial self-stimulation in rats as a function of various stimulus parameters. II. Influence of haloperidol, pimozide and pipampherone on medial forebrain bundle stimulation with monopolar electrodes, Psychopharmacologia, 27:191–202.PubMedCrossRefGoogle Scholar
  94. Wauquier, A., and Rolls, E. T. (eds.), 1976, Brain-Stimulation Reward, North-Holland, Amsterdam.Google Scholar
  95. Weight, F. F., and Salmoiraghi, G. C., 1968, Serotonin effects on central neurons, in: Advances in Pharmacology (S. Garattini and P. A. Shore, eds.), pp. 395–413, Academic Press, New York.Google Scholar
  96. Wise, C. D., and Stein, L., 1969, Facilitation of brain self-stimulation by central administration of norepinephrine, Science 163:299–301.PubMedCrossRefGoogle Scholar
  97. Wise, C. D., and Stein, L., 1970, Amphetamine: facilitation of behavior by augmented release of norepinephrine from the medial forebrain bundle, in: Amphetamines and Related Compounds (E. Costa and S. Garattini, eds.), pp. 463–485, Raven Press, New York.Google Scholar
  98. Wise, C. D., Berger, B. D., and Stein, L., 1972, Benzodiazepines: anxiety-reducing activity by reduction of serotonin turnover in the brain, Science 177:180–183.PubMedCrossRefGoogle Scholar
  99. Wise, C. D., Berger, B. D., and Stein, L., 1973, Evidence of α-noradrenergic reward receptors and serotonergic punishment receptors in the rat brain, Biol. Psychiat. 6:3–21.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Larry Stein
    • 1
  • C. David Wise
    • 1
  • James D. Belluzzi
    • 1
  1. 1.Department of PsychopharmacologyWyeth LaboratoriesPhiladelphiaUSA

Personalised recommendations