Advertisement

The Role of Prefrontal Cortex in Intracranial Self-Stimulation

A Case History of Anatomical Localization of Motivational Substrates
  • Aryeh Routtenberg
  • Rebecca Santos-Anderson
Part of the Handbook of Psychopharmacology book series (HBKPS)

Abstract

Intracranial self-stimulation remains enigmatic. There is one view that its demonstration lies at the heart of our understanding of the brain substrates of behavior, and there is another, but quite opposite view, that suggests that it is to be dismissed as an artifact, and cannot provide any meaningful insights. Regardless of viewpoint, it does seem refractory to study with the logical building-block approach used in a variety of scientific lines of research. Perhaps the problem is that one does not know the appropriate initiation point. As a consequence, a variety of investigators have begun at quite different starting points.

Keywords

Prefrontal Cortex Frontal Cortex Locus Coeruleus Fiber Pathway Lateral Hypothalamus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amaral, D. G., and Foss, J. A., 1975, Locus coeruleus lesions in learning, Science 188:377–378.PubMedCrossRefGoogle Scholar
  2. Amaral, D. G., and Routtenberg, A., 1975, Locus coeruleus and intracranial self-stimulation: a cautionary note, Behav. Biol. 13:331–338.PubMedCrossRefGoogle Scholar
  3. Anlezark, G. M., Crow, T. J., and Greenway, A. P., 1973, Impaired learning and decreased cortical norepinephrine after bilateral locus coeruleus lesions, Science 181:682–684.PubMedCrossRefGoogle Scholar
  4. Asdourian, D., Stutz, R. M., and Rocklin, K. W., 1966, Effects of thalamic and limbic system lesions on self-stimulation, J. Comp. Physiol. Psychol. 61:468–472.PubMedCrossRefGoogle Scholar
  5. Bondareff, W., Narotzky, R., and Routtenberg, A., 1971, Intrastriatal spread of catechol-amines in senescent rats, J. Gerontol. 26:163–167.PubMedGoogle Scholar
  6. Bondareff, W., Routtenberg, A., Narotzky, R., and McLone, D. G., 1970, Intrastriatal spreading of biogenic amines, Exp. Neurol. 28:213–229.PubMedCrossRefGoogle Scholar
  7. Bresnahan, E., and Routtenberg, A., 1972, Memory disruption by unilateral, low-level, sub-seizure stimulation of the medial amygdaloid nucleus, Physiol. Behav. 9:513–525.PubMedCrossRefGoogle Scholar
  8. Buggy, J., Fisher, A. E., Hoffman, W. E., Johnson, A. K., and Phillips, M. I., 1975, Ventricular obstruction: effect on drinking induced by intracranial injection of angiotensin, Science 190:72–74PubMedCrossRefGoogle Scholar
  9. Clavier, R. M., 1973, Ascending monoamine-containing fiber pathways related to intracranial self-stimulation: histochemical fluorescence study, unpublished master’s thesis, Northwestern University, Evanston, Illinois.Google Scholar
  10. Clavier, R. M., 1974, Ascending catecholamine fiber systems and brainstem intracranial self-stimulation, unpublished doctoral dissertation, Northwestern University, Evanston, Illinois.Google Scholar
  11. Clavier, R. M., and Routtenberg, A., 1974, Ascending monoamine-containing fiber pathways related to intracranial self-stimulation: histochemical fluorescence study, Brain Res. 72:25–40.PubMedCrossRefGoogle Scholar
  12. Clavier, R. M., and Routtenberg, A., 1976a, Brainstem self-stimulation attenuated by lesions of medial forebrain bundle but not by lesions of locus coeruleus or caudal ventral norepinephrine bundle, Brain Res. 101:251–271.PubMedCrossRefGoogle Scholar
  13. Clavier, R. M., and Routtenberg, A., 1976b, Fibers associated with brainstem self-stimulation: Fink-Heimer study, Brain Res. 105:323–325.CrossRefGoogle Scholar
  14. Crow, T. J., Spear, P. J., and Arbuthnott, G. W., 1972, Intracranial self-stimulation with electrodes in the region of the locus coeruleus, Brain Res. 36:275–287.PubMedCrossRefGoogle Scholar
  15. Dresse, A., 1966, Importance du système mesencephalo-telencephalique noradrenergique comme substratum anatomique du comportement d’autostimulation, Life Sci. 5:1003–1014.PubMedCrossRefGoogle Scholar
  16. Epstein, A. N., Kisseleff, H. R., and Stellar, E., 1973, The Neuropsychology of Thirst, Winston, Washington, D.C.Google Scholar
  17. Falck, B., Hillarp, N.-A., Thieme, G., and Torp, A., 1962, Fluorescence of catecholamines and related compounds condensed with formaldehyde, J. Histochem. Cytochem. 10:348–354.CrossRefGoogle Scholar
  18. Fink, R. P., and Heimer, L., 1967, Two methods for selective silver impregnation of degenerating axons, and their synaptic endings in the central nervous system, Brain Res. 4:369–374.PubMedCrossRefGoogle Scholar
  19. Fuxe, K., and Lindbrink, P., 1970, On the function of central catecholamine neurons—their role in cardiovascular and arousal mechanisms, paper presented at the Congress on the Pharmacology and Physiology of Monoamines in the Central Nervous System, Palo Alto, California.Google Scholar
  20. German, D. C, and Bowden, D. M., 1974, Catecholamine systems as the neural substrate for intracranial stimulation: an hypothesis, Brain Res. 73:381–419.PubMedCrossRefGoogle Scholar
  21. Guillery, R. W., 1959, Afferent fibers to the dorsomedial thalamic nucleus in the cat, J. Anat. 93:403–419.PubMedGoogle Scholar
  22. Harting, J. K., and Martin, G. F., 1970, Neocortical projections to the mesencephalon of the armadillo, Dasypus novemcinctus, Brain Res. 17:447–462.Google Scholar
  23. Hess, W. R., 1942, Die stimulations-eliminations-degenerations-Methode in der Hirnforschung, Verh. Ver. Schweiz. Physiol., Juni. Cited by Hess, W. R., 1957, in: The Functional Organization of the Diencephalon (J. R. Hughes, ed.), Grune and Stratton, New York.Google Scholar
  24. Huang, Y. H., and Routtenberg, A., 1971, Lateral hypothalamic self-stimulation pathways in Rattus norvegicns, Physiol. Behav. 7:419–432.PubMedCrossRefGoogle Scholar
  25. Huston, J. P., and Borbély, A. A., 1973, Operant conditioning in forebrain-ablated rats by use of rewarding hypothalamic stimulation, Brain Res. 50:467–472.PubMedCrossRefGoogle Scholar
  26. Keene, J. J., and Casey, K. L., 1973, Rewarding and aversive brain stimulation: opposite effects on medial thalamic units, Physiol. Behav. 10:283–287.PubMedCrossRefGoogle Scholar
  27. Kemp, J. M., and Powell, T. P. S., 1971a, The site of termination of afferent fibres in the caudate nucleus, Phil Trans. Roy. Soc. London 262:413–427.CrossRefGoogle Scholar
  28. Kemp, J. M., and Powell, T. P. S., 1971b, The termination of fibres from the cerebral cortex and thalamus upon dendritic spines in the caudate nucleus: a study with the Golgi method, Phil. Trans. Roy. Soc. London 262:429–439.CrossRefGoogle Scholar
  29. Koob, G. F., Balcom, G. J., and Meyerhoff, J. L., 1976, Increases in intracranial self-stimulation in the posterior hypothalamus following unilateral lesions in the locus coeruleus, Brain Res 101:554–560.PubMedCrossRefGoogle Scholar
  30. Laser, R., Joseph, B. S., and Whitlock, D. G., 1968, Evaluation of a radioautographic neuroanatomical tracing method, Brain Res. 8:319–336.CrossRefGoogle Scholar
  31. LaVail, J. H., and LaVail, M. M., 1972, Retrograde axonal transport in the central nervous system, Science 176:1416–1417.PubMedCrossRefGoogle Scholar
  32. Leonard, C. M., 1969, The prefrontal cortex of the rat. I. Cortical projections of the mediodorsal nucleus. II. Efferent connections, Brain Res. 12:321–343.PubMedCrossRefGoogle Scholar
  33. Lippa, A. S., Antelman, S. M., Fisher, A. E., and Canfield, D. R. 1973, Neurochemical mediation of reward: a significant role for dopamine?, Physiol Behav. 1:23–28.Google Scholar
  34. Lynch, G. S., Mosko, S., Parks, T., and Cotman, C. W., 1973, Relocation and hyperdevelopment of the dentate gyrus commissural system after entorhinal lesions in immature rats, Brain Res. 50:174–178.PubMedCrossRefGoogle Scholar
  35. Millhouse, O. E., 1969, A Golgi study of the descending medial forebrain bundle, Brain Res. 15:341–363.PubMedCrossRefGoogle Scholar
  36. Mogenson, G. J., 1964, Effects of sodium pentobarbital on brain self-stimulation, J. Comp. Physiol Psychol. 58:461–462.PubMedCrossRefGoogle Scholar
  37. Nauta, W. J. H., 1957, Silver impregnation of degenerating axons, in: New Research Techniques in Neuroanatomy (W. F. Windle, ed.), Thomas, Springfield, Illinois.Google Scholar
  38. Nicolaïdis, S., and Fitzsimons, J. T., 1975, La dépendance de la prise d’eau induite par l’angiotensine II envers la fonction vasomotrice cérébrale locale chez le rat, C. R. Acad Sci. Paris 281:1417–1420.Google Scholar
  39. Olds, M. E., and Olds, J., 1963, Approach-avoidance analysis of rat diencephalon, J. Comp. Neurol. 120:259–295.PubMedCrossRefGoogle Scholar
  40. Olds, J., Yuwiler, A., Olds, M. E., and Yun, C. 1964, Neurohumors in hypothalamic substrates of reward, Am. J. Physiol. 207:242–254.PubMedGoogle Scholar
  41. Panksepp, J., and Trowill, J., 1969, Positive and negative contrast effects with hypothalamic reward, Physiol. Behav. 4:173–175.CrossRefGoogle Scholar
  42. Panksepp, J., and Trowill, J., 1970, Positive incentive contrast with rewarding electrical stimulation of the brain, J. Comp. Physiol. Psychol. 70:358–363.CrossRefGoogle Scholar
  43. Phillips, A., and Fibiger, H. C, 1973, Dopaminergic and noradrenergic substrates of positive reinforcement: differential effects of d-and l-amphetamine, Science 179:575–577.PubMedCrossRefGoogle Scholar
  44. Raisman, G., 1969, Neuronal plasticity in the septal nuclei of the adult rat, Brain Res. 14:25–48.PubMedCrossRefGoogle Scholar
  45. Ritter, S., and Stein, L., 1973, Self-stimulation of noradrenergic cell group (A6) in locus coeruleus of rats, J. Comp. Physiol. Psychol. 85:443–452.PubMedCrossRefGoogle Scholar
  46. Rolls, E. T., and Cooper, S. J., 1973, Activation of neurones in prefrontal cortex by brain-stimulation reward in the rat, Brain Res. 60:351–368.PubMedCrossRefGoogle Scholar
  47. Rolls, E. T., and Cooper, S. J., 1974a, Connection between the prefrontal cortex and pontine brain-stimulation reward sites in the rat, Exp. Neurol. 42:687–699.PubMedCrossRefGoogle Scholar
  48. Rolls, E. T., and Cooper, S. J., 1974b, Anesthetization and stimulation of the sulcal prefrontal cortex and brain-stimulation reward, Physiol. Behav. 12:563–571.PubMedCrossRefGoogle Scholar
  49. Routtenberg, A., 1967, Drinking induced by carbachol: thirst circuit or ventricular modification?, Science 157:838–839.PubMedCrossRefGoogle Scholar
  50. Routtenberg, A., 1970, Forebrain pathways of reward in Rattus norvegicus, J. Comp. Physiol. Psychol. 75:269–276.CrossRefGoogle Scholar
  51. Routtenberg, A., 1972, Intracranial chemical injection and behavior: a critical review, Behav. Biol. 7:601–641.PubMedCrossRefGoogle Scholar
  52. Routtenberg, A., 1973, Intracranial self-stimulation pathways as substrate for stimulusresponse integration, in: Efferent Organization and the Integration of behavior (J. D. Maser, ed.), pp. 263–318, Academic Press, New York.Google Scholar
  53. Routtenberg, A., 1975 a, Intracranial self-stimulation catecholamine brain pathways and memory consolidation, in: Nebraska Symposium on Motivation (J. K. Cole and T. Sonderegger, eds.), pp. 161–182, Univ. of Nebraska Press, Lincoln, Nebraska.Google Scholar
  54. Routtenberg, A., 1975b, Significance of intracranial self-stimulation pathways for memory consolidation, in: Methods in Brain Research (P. B. Bradley, ed.), pp. 453–474, Wiley, New York.Google Scholar
  55. Routtenberg, A., 1976a, Doubts about the locus coeruleus role in learning and the phosphorylation mechanisms it engages in cerebellum, Nature 260:79–80.PubMedCrossRefGoogle Scholar
  56. Routtenberg, A., 1976b, Self-stimulation pathways: origins and terminations—a three-stage technique, in: Brain-Stimulation Reward (A. Wauquier and E. T. Rolls, eds.), pp. 31–39, Elsevier, New York.Google Scholar
  57. Routtenberg, A., and Bondareff, W., 1969, Histochemical fluorescence as an index of spread of centrally applied chemicals, Science 165:1032.Google Scholar
  58. Routtenberg, A., and Bulloch, G. C, 1970, Self-starvation and rewarding brain stimulation: effects of chlorpromazine and pentobarbital, Learn. Motiv. 2:83–94.CrossRefGoogle Scholar
  59. Routtenberg, A., and Holzman, N., Electrical stimulation of substantia nigra, pars compacta disrupts memory, Science 181:83–86.Google Scholar
  60. Routtenberg, A., and Malsbury, C., 1969, Brainstem pathways of reward, J. Comp. Physiol. Psychol. 68:22–30.PubMedCrossRefGoogle Scholar
  61. Routtenberg, A., and Olds, J., 1963, The attenuation of response to an aversive brain stimulus by concurrent rewarding septal stimulation, Fed. Proc. 22:515.Google Scholar
  62. Routtenberg, A., and Olds, J., 1966, Stimulation of dorsal midbrain during septal and hypothalamic self-stimulation, J. Comp. Physiol. Psychol. 62:250–255.PubMedCrossRefGoogle Scholar
  63. Routtenberg, A., and Simpson, J., 1971, Carbachol-induced drinking at ventricular and subfornical organ sites of application, Life Sci. 10:481–490.CrossRefGoogle Scholar
  64. Routtenberg, A., and Sloan, M., 1972, Self-stimulation in the frontal cortex of Rattus norvegicus, Behav. Biol. 7:567–572.PubMedCrossRefGoogle Scholar
  65. Routtenberg, A., Sladek, J., and Bondareff, W., 1968, Histochemical fluorescence after application of neurochemicals to caudate nucleus and septal area in vivo, Science 161:272–274.PubMedCrossRefGoogle Scholar
  66. Routtenberg, A., Gardner, E. L., and Huang, Y. H., 1971, Self-stimulation pathways in the monkey, Macaca mulatta, Exp. Neurol. 33:213–224.PubMedCrossRefGoogle Scholar
  67. Santos-Anderson, R., and Routtenberg, A., 1976, Stimulation of rat medial or sulcal prefrontal cortex during passive avoidance learning selectively influences retention performance, Brain Res. 103:243–259.PubMedCrossRefGoogle Scholar
  68. Severs, W. B., and Summy-Long, J., 1975, The role of angiotensin in thirst, Life Sci. 17:1513–1526.PubMedCrossRefGoogle Scholar
  69. Simon, H., LeMoal, M., and Cardo, B., 1975, Self-stimulation in the dorsal pontine tegmentum in the rat, Behav. Biol. 13:339–348.PubMedCrossRefGoogle Scholar
  70. Simpson, J., and Routtenberg, A., 1972, The subfornical organ and carbachol-induced drinking, Brain Res. 45:135–152.PubMedCrossRefGoogle Scholar
  71. Simpson, J. B., and Routtenberg, A., 1973, Subfornical organ: site of drinking induction initiation by angiotensin II, Science 181:83–86.CrossRefGoogle Scholar
  72. Simpson, J. B., and Routtenberg, A., 1974, Subfornical organ: acetylcholine application elicits drinking, Brain Res. 79:157–164.PubMedCrossRefGoogle Scholar
  73. Simpson, J. B., and Routtenberg, A., 1975, Subfornical organ lesions reduce intravenous angiotensin-induced drinking, Brain Res. 88:154–161.PubMedCrossRefGoogle Scholar
  74. Stinus, L., Thierry, A-M., and Cardo, B., 1975, Self-stimulation and local injections of 6-hydroxydopamine into the rat brain. Enhanced behavioural depressive effects of α-methylparatyrosine, Physiol. Behav. 3:19–23.Google Scholar
  75. Taylor, J. (ed.), 1931, Selected Writings of John Hughlings Jackson, 2 vols., Hodder and Stoughton, London.Google Scholar
  76. Ungerstedt, U., 1971, Stereotaxic mapping of the monoamine pathways in the rat brain, Acta Physiol. Scand., Suppl. 367:1–48.Google Scholar
  77. Valenstein, E. S., Problems of measurement and interpretation with reinforcing brain stimulation, Psychol. Rev. 71:415–437.Google Scholar
  78. Valenstein, E. S., and Campbell, J. F., 1966, Medial forebrain bundle-lateral hypothalamic area and reinforcing brain stimulation, Am. J. Physiol. 210:270–274.PubMedGoogle Scholar
  79. Wauquier, A., Niemegeers, C. J. E., and Geivers, H. A., 1972, Intracranial self-stimulation in rats as a function of various stimulus parameters. I. An empirical study with monopolar electrodes in the medial forebrain bundle, Pyschopharmacologia 23:238–260.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Aryeh Routtenberg
    • 1
  • Rebecca Santos-Anderson
    • 1
  1. 1.Cresap Neuroscience LaboratoryNorthwestern UniversityEvanstonUSA

Personalised recommendations