• John Daly
Part of the Handbook of Psychopharmacology book series (HBKPS, volume 5)


Adenylate Cyclase Biogenic Amine Cyclic Nucleotide Adenylate Cyclase Activity Superior Cervical Ganglion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. Burkard, W. P., 1975, Adenylate cyclase in the central nervous system, in Progress in Neurobiology, Vol. 4 (G. A. Kerkut, and J. W. Phillis, eds.), pp. 241–267, Pergamon Press, New York.Google Scholar
  2. Daly, J. W., 1975, Cyclic adenosine 3’,5’-monophosphate role in the physiology and pharmacology of the central nervous system, Biochem. Pharmacol. 24: 159–164.PubMedGoogle Scholar
  3. Drummond, G. I., and MA, Y., 1973, Metabolism and functions of cyclic AMP in nerve, in Progress in Neurobiology (G. W. Kerkut, and J. W. Phillis, ed.), pp. 119–176, Pergamon Press, Oxford and New York.Google Scholar
  4. Schorderet, M., 1974, Amp cyclique et système nerveux, J. Physiol. (Paris) 68: 471–505.Google Scholar
  5. VON Hungen, K. and Roberts, S., 1974, Neurotransmitter-sensitive adenylate cyclase systems in the brain, in Reviews of Neuroscience, Vol. 1 (S. Ehrenpreis, and I. J. Kopin, eds.), pp. 231–281, Raven Press, New York.Google Scholar

Adenylate Cyclases

  1. Brostrom, C. O., Huang, Y-C., Breckenridge, B. MCL., and Wolff, D. J., 1975, Identification of a calcium-binding protein as a calcium-dependent regulator of brain adenylate cyclase, Proc. Nat. Acad. Sci. 72: 64–68.PubMedGoogle Scholar
  2. Clement-Cormier, Y. C.,Kebabian, J. W., Petzold, G. L., and Greengard, P., 1974, Dopamine-sensitive adenylate cyclase in mammalian brain: A possible site of action of antipsychotic drugs, Proc. Nat. Acad. Sci. 17:1113–1117.Google Scholar
  3. Collier, J. O. J., and Roy, A. C., Hypothesis inhibition of E-prostaglandin-sensitive adenyl cyclase as the mechanism of morphine analgesia, Prostaglandins 7:361–376.Google Scholar
  4. Drummond, G. I., Severson, D. L., and Duncan, L., 1971, Adenyl cyclase: Kinetic properties and fluoride and hormone stimulation, J. Biol. Chem. 246: 4166–4173.PubMedGoogle Scholar
  5. Duffy, M. J. and Powell, D., 1975, Stimulation of brain adenylate cyclase activity by the undecapeptide substance P and its modulation by the calcium ion, Biochim. Biophys. Acta 385:275–280.Google Scholar
  6. Franks, D. J., Perrin, L. S., and Malamud, D., 1974, Calcium ion: A modulator of parotid adenylate cyclase activity, FEBS Letters 42: 267–270.PubMedGoogle Scholar
  7. Horn, A. S., Cuello, A. C., and Miller, R. J., 1974, Dopamine in the mesolimbic system of the rat brain: Endogenous levels and the effects of drugs on the uptake mechanism and stimulation of adenylate cyclase activity, J. Neurochem. 22: 265–270.PubMedGoogle Scholar
  8. Karobath, M. E., 1975, Tricyclic antidepressive drugs and dopamine-sensitive adenylate cyclase from rat brain striatum, Europ. J. Pharmacol. 30: 159–163.Google Scholar
  9. Karobath, M., and Leitich, H., 1974, Antipsychotic drugs and dopamine-stimulated adenylate cyclase prepared from corpus striatum of rat brain, Proc. Nat. Acad. Sci. 71: 2915–2918.PubMedGoogle Scholar
  10. Lippmann, W., Pugsley, T., and Merker, J., 1975, Effect of butaclamol and its enantiomers upon striatal homovanillic acid and adenyl cyclase of olfactory tubercle in rats, Life Sci. 16: 213–224.PubMedGoogle Scholar
  11. Macdonald, I. A., 1974, A convenient colorimetric method for routine assay of brain adenylate cyclase, Experientia 30:1485–1486.Google Scholar
  12. Menon, K. M. J., Giese, S., and Jaffe, R. B., 1973, Hormone-and fluoride-sensitive adenylate cyclases in human fetal tissues, Biochim. Biophys. Acta 304: 203–209.PubMedGoogle Scholar
  13. Miller, R. J. and Iversen, L. L., 1974, Stimulation of a dopamine-sensitive adenylate cyclase in homogenates of rat striatum by a metabolite of piribedil (ET 495), Naunyn-Schmiedeberg’s Arch. Pharmacol. 282:213–216.Google Scholar
  14. Miller, R. J., Horn, A. S., and Iversen, L. L., 1975, Effect of butaclamol on dopamine-sensitive adenylate cyclase in the rat striatum, J. Pharm. Pharmacol. 27: 212–213.PubMedGoogle Scholar
  15. Miller, R. J., Horn, A. S., and Iversen, L. L., 1974, The action of neuroleptic drugs on dopamine-stimulated adenosine cyclic 3’,5’-monophosphate production in rat neostriatum and limbic forebrain, Mol. Pharmacol. 10: 759–766.Google Scholar
  16. Palmer, G. C., and Manian, A. A., 1973, Inhibition of the catalytic site of adenylate cyclase in the central nervous system by phenothiazine derivatives, Neuropharmacology 13: 651–664.Google Scholar
  17. Pieri, L., Pieri, M., and Haefely, W., 1974, LSD as an agonist of dopamine receptors in the striatum, Nature 252: 586–688.PubMedGoogle Scholar
  18. Pinder, R., 1974, Effects of dopamine-like drugs on rat striatal adenyl cyclase have implications for CNS dopamine receptor topography, Nature 250: 238–241.PubMedGoogle Scholar
  19. Prasad, K. N., 1974, Manganese inhibits adenylate cyclase activity and stimulates phosphodiesterase activity in neuroblastoma cells: Its possible implication in manganese-poisoning, Exp. Neurol. 3: 554–557.Google Scholar
  20. Sheppard, H., and Burghardt, C. R., 1974, Effects of tetrahydroisoquinoline derivatives on the adenylate cyclases of the caudate nucleus (dopamine-type) and erythrocyte (fi -type) of the rat, Res. Comm. Chem. Path. Pharmacol. 3: 527–534.Google Scholar
  21. Sheppard, H., and Burghardt, C. R., 1974, The dopamine-sensitive adenylate cyclase of rat caudate nucleus. I. Comparison with the isoproterenol-sensitive adenylate cyclase (beta receptor system) of rat erythrocytes in response of dopamine derivatives, Mol. Pharmacol. 10: 721–726.Google Scholar
  22. Shimizu, H., Ichishita, H., and Miaokami, Y., 1975, Stimulation of the cell-free adenylate cyclase from guinea pig cerebral cortex by acidic amino acids and veratridine, J. Cyclic Nucleotide Research 1: 61–67.Google Scholar
  23. Sutherland, E. W., Rall, T. W., and Menon, T., 1962, Adenyl cyclasoba12012400571se. I. Distribution preparation and properties, J. Biol. Chem. 237: 1220–1227.PubMedGoogle Scholar
  24. VON Hungen, K., Roberts, S., and Hill, D. F., 1973, Developmental and regional variations in neurotransmitter-sensitive adenylate cyclase systems in cell-free preparations from rat brain, J. Neurochem. 22: 811–819.Google Scholar
  25. Von Hungen, K., Roberts, S., and Hill, D. F., 1975, Serotonin-sensitive adenylate cyclase activity in immature rat brain, Brain Res. 84: 257–268.Google Scholar
  26. Zimmerman, I., and BERG, A., 1973, Levels of adenosine 3’,5’ cyclic monophosphate in the cerebral cortex of aging rats, Mech. Ageing and Devel. 3: 33–36.Google Scholar

Guanylate Cyclases

  1. Goridis, C., Massarelli, R., Sensenbrenner, M., and Mandel, P., 1974, Guanyl cyclase in chick embryo brain cell cultures: Evidence of neuronal localization, J. Neurochem. 23: 135–138.PubMedGoogle Scholar
  2. Nakazawa, K., and Sano, M., 1974, A new assay method for guanylate cyclase and properties of the cyclase from rat brain, J. Biol. Chem. 249: 4207–4211.PubMedGoogle Scholar


  1. Adinolfi, A. M., and Schmidt, S. Y., 1974, Cytochemical localization of cyclic nucleotide phosphodiesterase activity of developing synapses, Brain Res. 76: 21–31.PubMedGoogle Scholar
  2. Amer, M. S., and Kreighbaum, W. E., 1975, Cyclic nucleotide phosphodiesterases: Properties, activators, inhibitors, structure-activity relationships, and possible role in drug development, J. Pharmaceut. Sciences 64: 1–37.Google Scholar
  3. Brostrom, C. O., and Wolff, D. J., 1974, Calcium-dependent cyclic nucleotide phosphodiesterase from glial tumor cells, Arch. Biochem. Biophys. 165: 715–727.PubMedGoogle Scholar
  4. Bublitz, C., 1973, Effects of lipids on cyclic-nucleotide phosphodiesterases, Biochem. Biophys. Res. Commun. 52: 173–180.PubMedGoogle Scholar
  5. Butcher, R. W., and Sutherland, E. W., 1962, Adenosine 3’,5’-phosphate in biological materials. I. Purification and properties of cyclic 3’,5’-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3’,5’-phosphate in human urine, J. Biol. Chem. 237:1244–1250.Google Scholar
  6. Drummond, G. I. Gilgan, M. W., Reiner, E. J. and Smith, M., 1964, Deoxyribonucleoside3’,5’-cyclic phosphates. Synthesis and acid catalyzed and enzymic hydrolysis, J. Am. Chem. Soc. 86:1626–1630.Google Scholar
  7. Gadd, R. E. A., Clayman, S., and Hebert, D., 1973, Inhibition of cyclic 3’,5’-nucleotide phosphodiesterase activity by diuretics and other agents, Experientia 29: 1217–1219.PubMedGoogle Scholar
  8. Ho, R. J., Russell, T. R. Asakawa, T., and Hucks, M. W., 1975, Inhibition of cyclic nucleotide phosphodiesterase activity by an endogenous factor, J. Cyclic Nucleotide Res. 1:81–88.Google Scholar
  9. Kakiuchi, S., Yamazaki, R., Teshima, Y., Uenishi, K., and Miyamoto, E., 1975, Multiple cyclic nucleotide phosphodiesterase activities from rat tissues and occurrence of calcium plusmagnesium-ion-dependent phosphodiesterase and its protein activator, Biochem. J. 146: 109–120.PubMedGoogle Scholar
  10. LIN, Y. M., Liu, Y. P., and Cheung, W. Y., 1975, Cyclic 3’,5’-nucleotide phosphodiesterase Ca“-dependent formation of bovine brain enzyme-activator complex, FEBS Letters 49:356–360.Google Scholar
  11. Pledger, W. J., Stancel, G. M., Thompson, W. J., and Strada, S. J., 1974, Separation of multiple forms of cyclic nucleotide phosphodiesterases from rat brain by isoelectrofocusing, Biochim. Biophys. Acta 37: 242–248.Google Scholar
  12. Smoake, J. A., Song, S.-Y., and Cheung, W. Y., 1974, Cyclic 3’,5’-nucleotide phosphodiesterase. Distribution and developmental changes of the enzyme and its protein activator in mammalian tissues and cells, Biochim. Biophys. Acta 341: 402–411.PubMedGoogle Scholar
  13. Stefanovich, V., 1974, Concerning specificity of the influence of pentoxifylline on various cyclic AMP phosphodiesterases, Res. Comm. Chem. Path. Pharmacol. 8: 673–680.Google Scholar
  14. StradaS. J. Uzunov P., and Weiss B., 1974, Ontogenetic development of a phosphodiesterase activator and the multiple forms of cyclic AMP phosphodiesterase of rat brain, J. Neurochem. 23:1097–1104.Google Scholar
  15. Teshima Y., YamazakiR. and KakiuchiS. 1974, Effects of ATP on the activity of nucleoside 3’,5’-cyclic monophosphate phosphodiesterase from brain, J. Neurochem. 22:789–791.Google Scholar
  16. Weiss B., FertelR. Figlin R., and Uzunov P., 1974, Selective alteration of the activity of the multiple forms of adenosine 3’,5’-monophosphate phosphodiesterase of rat cerebrum, Mol. Pharmacol. 19:615–625.Google Scholar
  17. Uzunov P., Shein H. M., and Weiss B.,1974, Multiple forms of cyclic 3’,5’-AMP phosphodiesterase of rat cerebrum and cloned astrocytoma and neuroblastoma cells, Neuropharnuacology 13:377–392.Google Scholar
  18. Wolff D. J., and BrostromC. 0. 1974, Calcium-binding phosphoprotein from pig brain: Identification as a calcium-dependent regulator of brain cyclic nucleotide phosphodiesterase, Arch. Biochem. Biophys. 163:349–358.Google Scholar

Protein Kinases

  1. Agren G., and Ronquist G., 1974, (52P)Phosphoryl transfer by endogenous protein kinase at the glia and glioma cell membranes, Acta Physiol. Scand. 92:430–432.Google Scholar
  2. Albin, E. E., and Newburgh, R. W., 1975, Cyclic nucleotide-stimulable protein kinases in the central nervous system of Manduca sexta, Biochim. Biophys. Acta 377: 389–401.PubMedGoogle Scholar
  3. CasnellieJ. E., and Greengard P., 1974, Guanosine 3’,5’-cyclic monophosphatedependent phosphorylation of endogeneous substrate proteins in membranes of mammalian smooth muscle, Proc. Nat. Acad. Sci. 71:1891–1895.Google Scholar
  4. Casola, L., Matteo, G., and AuGusTI-Tocco, G., 1974, Neuroblastoma cells in culture: 32P-phosphoprotein labeling and protein kinase activity, Exp. Neurol. 44: 417–423.PubMedGoogle Scholar
  5. Ehrlich, Y. H., and Routfenberg, A., 1974, Cyclic AMP regulates phosphorylation of three protein components of rat cerebral cortex membranes for thirty minutes, FEBS Letters 45: 237–243.PubMedGoogle Scholar
  6. Kuo, J. F., 1974, Guanosine 3’,5’-monophosphate-dependent protein kinases in mammalian tissue, Proc. Nat. Acad. Sci. 71:4037–4041.Google Scholar
  7. Kuo, J. F., Miyamoto, E., and Reyes, P. L., 1974, Activation and dissociation of adenosine 3’,5’-monophosphate-dependent and guanosine 3’,5’-monophosphate-dependent protein kinases by various cyclic nucleotide analogs, Biochem. Pharmacol. 23: 2011–2021.PubMedGoogle Scholar
  8. LeterrierJ. F., Rappaport L., and NunezJ. 1974, Neurotubulin polymerization and phosphorylation reactions catalyzed by ‘associated’ protein kinase, FEBS Letters 46:285–288.Google Scholar
  9. LeterrierJ. F., Rappaport L., and NunezJ. 1974, Phosphorylation and aggregation of neurotubulin and ‘associated’ protein-kinase, Mol. Cell. Endocrinol. 1:65–76.Google Scholar
  10. Levitan I. B., and BarondesS. H. 1974, Octopamine-and serotonin-stimulated phosphorylation of specific protein in the abdominal ganglion of Aplysia californica, Proc. Nat. Acad. Sci. 71:1145–1148.Google Scholar
  11. MeyerR. B. Jr. Shuman D. A., and Robins R. K., 1974, A new purine ring closure and the synthesis of 2-substituted derivatives of adenosine cyclic 3’,5’-phosphate, J. Am. Chem. Soc. 96:4962–4966.Google Scholar
  12. MillerJ. P., Boswell K. H. Muneyama K., Tolman R. L., ScholtenM. B., Robins R. K., Simon L. N., and Shuman D. A., 1973, Activity of tubercidin-, toyocomycin-, and sangivamycin-3’,5’-cyclic phosphates and related compounds with some enzymes of adenosine-3’,5’-cyclic phosphate metabolism, Biochem. Biophys. Res. Commun. 55:843–849.Google Scholar
  13. Miyamoto, T., 1975, Protein kinases in myelin of rat brain: Solubilization and characterization. J. Neurochem. 24: 503–512.PubMedGoogle Scholar
  14. Miyamoto, E., and Kakiuchi, S., 1974, In vitro and in vivo phosphorylation of myelin basic protein by exogenous and endogenous adenosine 3’,5’-monophosphate-dependent protein kinases in brain, J. Biol. Chem. 249: 2769–2777.Google Scholar
  15. Muneyama, K., Shuman, D. A., Boswell, K. H., Robins, R. K., Simon, L. N., and Miller, J. P., 1974, Synthesis and biological activity of 8-halo-adenosine 3’,5’-cyclic phosphates, J. Carbohydrates Nucleosides Nucleotides 1: 55–60.Google Scholar
  16. Nesterova, M. V., Saschenko, L. P., Vasiliev, V. UY., and Severin, E. S., 1975, Cyclic adenosine 3’,5’-monophosphate-dependent histone kinase from pig brain, Purification and some properties of the enzyme, Biochim. Biophys. Acta 377: 271–281.PubMedGoogle Scholar
  17. Schmidt, M. J. 1974, Effects of neonatal hyperthyroidism on activity of cyclic AMP-dependent microsomal protein kinase, J. Neurochem. 22:469–471.Google Scholar
  18. Severin, E. S., Nesterova, M. V., Sashchenko, L. P., Rasumova, V. V., Tunitskaya, V. L., Kochetkov, S. N., and Gulyaev, N. N., 1975, Investigation of the adenosine 3’,5’-cyclic phosphate binding site of pig brain histone kinase with the aid of some analogues of adenosine 3’,5’-cyclic phosphate, Biochim. Biophys. Acta 384: 413–422.PubMedGoogle Scholar
  19. Shigekawa, B. L., and Olsen, R. W., 1975, Resolution of cyclic AMP-stimulated protein kinase from polymerization-purified brain microtubules. Biochem. Biophys. Res. Commun. 63: 455–462.PubMedGoogle Scholar
  20. Sloboda, R. D., Rudolph, S. A., Rosenbaum, J. L., and Greengard, P., 1975, Cyclic AMP-dependent endogeneous phosphorylation of microtubule-associated protein, Proc. Nat. Acad. Sci. 72: 177–181.PubMedGoogle Scholar
  21. Sold, G., and Hofmann, F., 1974, Evidence for a guanosine-3’,5’-monophosphate-binding protein from rat cerebellum, Eur. J. Biochem. 44: 143–149.PubMedGoogle Scholar
  22. Soifer, D., 1975, Enzymatic activity in tubulin preparations: Cyclic-AMP dependent protein kinase activity of brain microtubule protein, J. Neurochem. 24: 21–33.PubMedGoogle Scholar
  23. Takahashi, T., Matsuzaki, S., and Nunez, J., 1975, Modifications in soluble protein kinase and cyclic-AMP binding capacity in developing rat brain, J. Neurochem. 24: 303–310.PubMedGoogle Scholar
  24. Walsh, D. A., Ashby, C. D. Gonzalez, C., Calkins, D., Fischer, E. H., and Krebs, E. G., 1971, Purification and characterization of a protein inhibitor of adenosine 3’,5’-monophosphatedependent protein kinases, J. Biol. Chem. 246:1977–1985.Google Scholar
  25. Williams, M., and Rodnight, R. 1974, Evidence for a role for protein phosphorylation in synaptic function in the cerebral cortex mediated through a ß-noradrenergic receptor, Brain Res. 77:502–506.Google Scholar
  26. Williams, M., and Rodnight, R., 1975, Stimulation of protein phosphorylation in brain slices by electrical pulses: Speed of response and evidence for net phosphorylation, J. Neurochem. 24: 601–603.PubMedGoogle Scholar
  27. Williams, M., Pavlik, A., and Rodnight, R., 1969, Cellular localization of phosphoproteins in guinea pig cerebral cortex slices sensitive to noradrenaline, histamine and 5hydroxytryptamine, Transac. Biochem. Soc. 2: 259–261.Google Scholar
  28. Williams, M., Pavlik, A., and Rodnight, R., 1974, Turnover of protein phosphorus in respiring slices of guinea pig cerebral cortex: Cellular localization of phosphoprotein sensitive to electrical stimulation, j. Neurochem. 22: 373–376.PubMedGoogle Scholar

Phosphoprotein Phosphates

  1. Albin, E. E., and Newburgh, R. W., 1975, Phosphoprotein phosphatase in the central nervous system of Manduca sexta, Biochim. Biophys. Acta 377: 381–388.PubMedGoogle Scholar
  2. Kobayashi, M., Kato, K., and SATO, S., 1975, Multiple molecular forms of phosphoprotein phosphatase. III. Phosphorylase phosphatase and phosphohistone phosphatase of rabbit liver, Biochim. Biophys. Acta 377: 343–355.Google Scholar
  3. Maeno, H., Ueda, T., and Greengard, P., 1975, Adenosine 3’,5’-monophosphate-dependent protein phosphatase activity in synaptic membrane fractions, J. Cyclic Nucleotide Res. 1: 37–48.Google Scholar
  4. Miyamoto, E., and Kakiuchi, S., 1975, Phosphoprotein phosphatases for myelin basic protein in myelin and cytosol fraction of brain, Biochim. Biophys. Acta 384: 458–465.PubMedGoogle Scholar

Cyclic AMP in Brain Slices

  1. De LA Paz, R. L., Dickman, S. R., and Grosser, B. I. 1975, Effects of stress on rat brain adenosine 3’,5’-monophosphate in vivo, Brain Res. 85:171–176.Google Scholar
  2. Guidotti, A., Cheney, D. L., Trabucchi, M., Doteuchi, M., Wang, C., and Hawkins, R. A., 1974, Focussed microwave radiation: A technique to minimize postmortem changes of cyclic nucleotides, dopa and choline and to preserve brain morphology, Neuropharmacology 13: 1115–1122.PubMedGoogle Scholar
  3. Jones, D. J., Medina, M., Ross, D. H., and Stavinoha, W. B. 1974, Rate of inactivation of adenyl cyclase and phosphodiesterase: Determinants of brain cyclic AMP, Life Sci. 14:1577–1585.Google Scholar
  4. Kimura, H., Thomas, E., and Murad, F., 1974, Effects of decapitation, ether and pentobarbital on guanosine 3’,5’-phosphate and adenosine 3’,5’-phosphate levels in rat tissues, Biochim. Biophys. Acta 343: 519–528.PubMedGoogle Scholar
  5. Nahorski, S. R., Rogers, K. J., and Smith, B. M., 1974, Histamine H2-receptors and cyclic AMP in brain, Life Sci. 15: 1887–1894.Google Scholar
  6. Sato, A., Onaya, T., Kotani, H., and Yamada, T., Effects of biogenic amines on the formation of adenosine 3’,5’-monophosphate in porcine cerebral cortex, hypothalamus and anterior pituitary slices, Endocrinology 94:1311–1318.Google Scholar
  7. Stefanovich, V., and John, J. P., 1974, Increase of cyclic AMP in rat brain during anoxia, Res. Commun. Chem. Pathol. Pharmacol. 9: 591–593.PubMedGoogle Scholar
  8. Watanabe, H., and Passonneau, J. V., 1974, The effect of trauma on cerebral glycogen and related metabolites and enzymes, Brain. Res. 66: 147–159.Google Scholar
  9. Watanabe, H., and Passonneau, J. V., 1975, Cyclic adenosine monophosphate in cerebral cortex. Alterations following trauma, Arch. Neurol. 32: 181–184.PubMedGoogle Scholar

Guinea Pig Brain Slices

  1. Baudry, M., Martres, M. P., and Schwartz, J. C., 1975, H,- and H2-receptors in the histamine-induced accumulation of cyclic AMP in guinea pig brain slices, Nature 253: 362–363.PubMedGoogle Scholar
  2. Free, C. A., Paik, V. S., and Shada, J. D., 1974, Inhibition by phenothiazines of adenylate cyclase in adrenal and brain tissue, in The Phenothiazines and Structurally Related Drugs, (I. S, Forrest, C. J. Carr, and E. Usin, eds.) pp. 789–748, Raven Press, New York.Google Scholar
  3. Rogers, M., Dismukes, K., and Daly, J. W., 1975, Histamine-elicited accumulations of cyclic adenosine 3’,5’-monophosphate in guinea pig brain slices: Effect of H,- and H2-antagonists, J. Neurochem.,in press.Google Scholar
  4. Sattin, A., Rall, T. W., and Zanella, J., 1975, Regulation of cyclic adenosine 3’,5’monophosphate levels in guinea-pig cerebral cortex by interaction of alpha adenergic and adenosine receptor activity, J. Pharmacol. Exp. Ther. 192: 22–32.PubMedGoogle Scholar
  5. Schultz, J. 1974, Inhibition of phosphodiesterase activity in brain cortical slices from guinea pig and rat, Pharmacol. Res. Comm. 6:335–341.Google Scholar
  6. Schultz, J., 1975, Cyclic adenosine 3’,5’-monophosphate in guinea pig cerebral cortical slices: Possible regulation of phosphodiesterase activity by cyclic adenosine 3’,5’-monophosphate and calcium ions, J. Neurochem. 24: 495–501.PubMedGoogle Scholar
  7. Shimizu, H., Ichishita, H., Tateishi, M., and Umeda, I., 1974, Characteristics of the amino acid receptor site mediating formation of cyclic adenosine 3’,5’-monophosphate in mammalian brains, Mol. Pharmacol. 11: 223–231.Google Scholar
  8. Shimizu, H., Ichishita, H., and Odagiri, H., 1974, Stimulated formation of cyclic adenosine 3’,5’-monophosphate by aspartate and glutamate in cerebral cortical slices of guinea pig, J. Biol. Chem. 249: 5955–5962.PubMedGoogle Scholar

Rat Brain Slices

  1. Blumbert, J. B., Taylor, R. E., and Sulser, F., 1975, Blockade by pimozide of a noradrenaline sensitive adenylate cyclase in the limbic forebrain: Possible role of limbic noradrenergic mechanisms in the mode of action of antipsychotics, J. Pharm. Pharmacol. 27: 125–128.Google Scholar
  2. Forn, J., Krueger, B. K., and Greengard, P., 1974, Adenosine 3’,5’-monophosphate content in rat caudate nucleus: Demonstration of dopaminergic and adrenergic receptors, Science 186: 1118–1120.PubMedGoogle Scholar
  3. Gunaga, K. P., Kawano, A., and Menon, K. M. J., 1974, In vivo effect of estradiol benzoate on the accumulation of adenosine 3’,5’-cyclic monophosphate in the rat hypothalamus, Neuroendocrinology 16: 273–281.Google Scholar
  4. Munday, K. A., Poat, J. A., and Woddruff, G. N., 1974,Increase in the cyclic AMP content of rat striatum produced by a cyclic analogue of dopamine, J. Physiol. 241:119–12OP.Google Scholar
  5. Palmer, G. C., and Manian, A. A., 1974,Effects of phenothiazines and phenothiazine metabolites on adenyl cyclase and the cyclic AMP response in the rat brain, in The Phenothiazines and Structurally Related Drugs (I. S. Forrest, C. J. Carr, and E. Usdin, eds.) pp. 749–767,Raven Press, New York.Google Scholar
  6. Palmer, G. C., and Manian, A. A., 1974,Modification of the receptor component of adenylate cyclase in the rat brain by phenothiazine derivatives, Neuropharmacology 13:851–866.Google Scholar
  7. Skolnick, P., and DALY, J. W., 1975, Stimulation of adenosine 3’,5’-monophosphate formation in rat cerebral cortical slices by methoxamine: Interaction with an alpha-adrenergic receptor, J. Pharmacol. Exp. Ther., 193: 549–558PubMedGoogle Scholar
  8. Skolnick, P., Schultz, J., and Daly, J. W., 1975, Repetitive stimulation of cyclic adenosine 3’,5’-monophosphate formation by adrenergic agonists in incubated slices from rat cerebral cortex, J. Neurochem., 24: 451–456.PubMedGoogle Scholar

Mouse Brain Slices

  1. Barchas, J. D., Ciaranello, R. D., Dominic, J. A., Deguchi, T., Orenberg, E., Renson, J., and Kessler, S., 1974, Genetic aspects of monoamine mechanisms, Adv. Biochem. Psychopharmacology 12: 195–215.Google Scholar
  2. Wong, P. C. L., and Henderson, J. F., 1972,Purine ribonucleotide biosynthesis intraconversion and catabolism in mouse brain in vitro, Biochem. J. 129 :1085–1094.Google Scholar

Conversion of Adenine and Adenosine-labeled Nucleotides to Cyclic Ampkuroda, J., and Mcilwain, H., 1974, Uptake and release of [’4C]adenine derivatives at beds of mammalian cortical synaptasomes in a superfusion system, J. Neurochem. 22:691-700

  1. Pull, I., and Mclwain, H., 1974, Uptake of neurohumoral agents and cerebral metabolites on output of adenine derivatives from superfused tissues of the brain, J. Neurochem. 24: 695–700.Google Scholar
  2. Sturgill, T. W., Schrier, M. B. K., and Gilman, A. G. 1975, Stimulation of cyclic AMP accumulation by 2-chloroadenosine: Lack of incorporation of nucleoside into cyclic nucleotides, J. Cyclic Nucleotide Res. 1: 21–30.Google Scholar

Effects of Drug and other Treatments of Animals on the Cyclic AMP-Generating Systems in Brain Slices

  1. Arbuthnott, G. W., Attree, T. J., Eccleston, D. LoosE, R. W., and Martin, M. J., 1974, Is adenylate cyclase the dopamine receptor? Medical Biology 52: 350–353.Google Scholar
  2. Dismukes. K., and Daly, W., 1974, Norepinephrine-sensitive systems generating adenosine 3’,5’-monophosphate: Increased responses in cerebral cortical slices from reserpinetreated rats, Mol. Pharmacol. 10: 933–940.Google Scholar
  3. Dismukes, R. K. and Daly, J. W., 1975, Altered responsiveness of adenosine 3’,5’monophosphate generating systems in brain slices from adult rats after neontal treatment with 6-hydroxydopamine, Exp. Neurol.,in press.Google Scholar
  4. Dolby, T. W., and Kleinsmeith, L. J., 1974, Effects of 49-tetrahydrocannabinol on the levels of cyclic adenosine 3’,5’-monophosphate in mouse brain, Biochem. Pharmacol. 23: 1817–1825.PubMedGoogle Scholar
  5. Frazer, A., Pandey, G., Mendels, J., Neeley, S., Kane, M., and Hess, M. E., 1974, The effect of tri-iodothyronine in combination with imipramine on [3H]-cyclic AMP production in slices of rat cerebral cortex, Neuropharmacology 13: 1131–1140.Google Scholar
  6. French, S. W., Reid, P. E., Palmer, D. S., Narod, M. E., and Ramey, C. W., 1974, Adrenergic subsensitivity of the rat brain during chronic ethanol ingestion, Res. Comm. Chem. Pathol. Pharmacol. 9: 575–578.Google Scholar
  7. Mishra, R. K., Gardner, E. L., Katzman, R., and Makman, M. H., 1974, Enhancement of dopamine-stimulated adenylate cyclase activity in rat caudate after lesions in substantia nigra: Evidence for denervation supersensitivity, Proc. Nat. Acad. Sci. 71: 3883–3887.PubMedGoogle Scholar
  8. Palmer, G. C. and Scott, H. R., 1974, The cyclic AMP response to noradrenalin in young adult rat brain following post-natal injections of 6-hydroxy-dopamine, Experientia 30: 520–521.PubMedGoogle Scholar
  9. Palmer, G. C., Spurgeon, H. A., and Priola, D. V., 1975, Involvement of adenylate cyclase in mechanisms of denervation supersensitivity following surgical denervation of dog heart, J. Cyclic Nucleotide Res. 1: 89–95.PubMedGoogle Scholar
  10. Puri, S. K., Cochin, J., and Volicer, L., 1975, Effect of morphine sulfate on adenylate cyclase and phosphodiesterase activities in rat corpus striatum, Life Sci. 16: 759–768.PubMedGoogle Scholar
  11. Singhal, R. L., Kacew, S., and Lafreniere, R., 1973, Brain adenyl cyclase in methadone treatment of morphine dependency, J. Pharm. Pharmacol. 25: 1022–1024.PubMedGoogle Scholar
  12. Strada, S. J., and Weiss, B., 1974, Increased response to catecholamines of the cyclic AMP system of rat pineal gland induced by decreased sympathetic activity, Arch. Biochem. Biophys. 160: 197–204.PubMedGoogle Scholar
  13. Tang, L. C., Co-rms, G. C., and Dunn, M., 1974, Changing the actions of neuroactive drugs by charging brain protein synthesis, Proc. Nat. Acad. Sci. 71:3350–3354.Google Scholar
  14. VON Voigtlander, P. F., Boukma, S. J., and Johnson G. A., 1973, Dopaminergic denervation supersensitivity and dopamine stimulated adenyl cyclase activity, Neuropharmacology 12: 1081–1086.Google Scholar
  15. Williams, B. J., and Pirch, J. H., 1974, Correlation between brain adenyl cyclase activity and spontaneous motor activity in rats after chronic reserpine treatment, Brain Res. 68: 227–234.Google Scholar
  16. 3.
    Cyclic GMP in Brain Slices and Neuronal CellsGoogle Scholar
  17. Farber, D. B., and Lolley, R. N., 1974, Cyclic guanosine monophosphate: Elevation in degenerating photoreceptor cells of the C3H mouse retina, Science 186: 449–451.PubMedGoogle Scholar
  18. Ferrendelli, J. A., Kinscherf, D. A., and Chang, M-M., 1975, Comparison of the effects of biogenic amines of cyclic GMP and cyclic AMP levels in mouse cerebellum in vitro, Brain Res. 84: 63–73.PubMedGoogle Scholar
  19. Laborit, H., Kunz, E., Lamothe, C., and Thuret, F., 1974, Sur quelques actions de la guanosine, combinée à l’acétylcholaine ou à l’insuline sur l’activité métabolique due cerveau et la glycémie. Agressologie 15: 239–245.PubMedGoogle Scholar
  20. Weight, F. F., Petzold, G., and Greengard, P., 1974, Guanosine 3’,5’-monophosphate in sympathetic ganglia: Increase associated with synaptic transmission, Science 186: 942–944.PubMedGoogle Scholar

Cyclic AMP in Ganglia

  1. Bucher, M.-B., and Schorderet, M., 1974, Apomorphine-induced accumulation of cyclic AMP in isolated retinas of the rabbit, Biochem. Pharmacol. 23: 3079–3082.PubMedGoogle Scholar
  2. Chatzkel, S., Zimmerman, I., and Berg, A., 1974, Modulation of cyclic-AMP synthesis in the cat superior cervical ganglion by short term presynaptic stimulation, Brain Res. 80: 523–526.Google Scholar
  3. Cramer, H., and Lindl, T., 1974, Release of cyclic AMP from rat superior cervical ganglia after stimulation of synthesis in vitro, Nature 249: 380–382.PubMedGoogle Scholar
  4. Lindl, T., Behrendt, H. and Heinl-Sawaja, M. C. B., Effects of compound 40/80 on mast cells, histamine, and cyclic AMP in isolated superior cervical ganglia, Naunyn Schmiedebergs Arch. Pharmacol. 286:283–296.Google Scholar
  5. Lolley, R. N., Schmidt, S. Y.,and Farber, D. B., 1974, Alterations in cyclic AMP metabolism associated with photoreceptor cell degeneration in the C3H mouse, J. Neurochem. 22:701–707.Google Scholar
  6. Nathanson, J. A., and Greengard, P., 1974, Serotonin-sensitive adenylate cyclase in neural tissue and its similarity to the serotonin receptor: A possible site of action of lysergic acid diethylamine, Proc. Nat. Acad. Sci. 71: 797–801.PubMedGoogle Scholar
  7. Roch, P., and Kalix, P., 1975, Effects of biogenic amines on the concentration of adenosine 3’,5’-monophosphate in bovine superior cervical ganglion, Neuropharmacology 14: 21–30.PubMedGoogle Scholar
  8. Vedeckis, W. V., and Gilbert, L. I., 1973, Production of cyclic AMP and adenosine by the brain and prothoracic glands of Manduca sexta, J. Insect. Physiol. 19: 2445–2457.PubMedGoogle Scholar

Cyclic AMP in Cells of Neuronal or Glial Origin

  1. Benda, P. Premont, J., and Jard, S., 1972, Adénylate cyclase et phosphodiestérases dans les hybrides somatiques des cellules gliales, C. R. Acad. Sci. 275:1303–1306.Google Scholar
  2. Brostrom, M. A., Kon, C., Olson, D. R. and Breckenridge, B. Mcl., 1974, Adenosine 3’,5’-monophosphate in glial tumor cells treated with glucocorticoids, Mol. Pharmacol. 10:711–720.Google Scholar
  3. Clark, R. B., Ying-Fu, S., Gross, R., and Perkins, J. P., 1974, Regulation of adenosine 3’,5’-monophosphate in human astrocytoma cells by adenosine and the adenine nucleotides, J. Biol. Chem. 249:5296–5303.Google Scholar
  4. Penit, J., Jard, S., and Benda, P., 1974, Probenecide sensitive 3’,5’-cyclic AMP secretion by isoproterenol stimulated glial cells in culture, FEBS Letters 41: 156–160.PubMedGoogle Scholar
  5. Prasad, K. N., and Gilmer, K. N., 1974, Demonstration of dopamine-sensitive adenylate cyclase in malignant neuroblastoma cells and change in sensitivity of adenylate cyclase to catecholamines in “differentiated” cells, Proc. Nat. Acad. Sci. 71: 2525–2529.PubMedGoogle Scholar
  6. Prasad, K. N., Gilmer, K. N., and Sahu, S. K., 1974, Demonstration of acetyl-choline-sensitive adenyl cyclase in malignant neuroblastoma cells in culture, Nature 249: 765–767.PubMedGoogle Scholar
  7. Prasad, K. N., Gilmer, K. N., Sahu, S. K., and Becker, G., 1975, Effect of neurotransmitters, guanosine triphosphate and divalent cations on the regulation of adenylate cyclase activity in malignant and adenosine cyclic 3’,5’-monophosphate-induced “differentiated” neuro-blastoma cells, Cancer Res. 35: 77–81.PubMedGoogle Scholar
  8. Sharma, S. K., Nirenberg, M., and Klee, W. A., 1975, Morphine receptors as regulators of adenylate cydase activity, Proc. Nat. Acad. Sci. 72: 590–594.Google Scholar
  9. Traber, J., Fischer, K., Latzin, S., and Hamprecht, B., 1974, Morphine antagonizes the action of prostaglandin in neuroblastoma cells but not of prostaglandin and noradrenaline in glioma and glioma X fibroblast hybrid cells, FEBS Letters 49: 260–263.PubMedGoogle Scholar
  10. Traber, J., Fischer, K., Latzin, S., and Hamprecht, B., 1975, Morphine antagonizes action of prostaglandin in neuroblastoma and neuroblastoma X glioma hybrid cells, Nature 253: 120–122.PubMedGoogle Scholar
  11. Vellis, J-D., and Brooker, G., 1974, Reversal of catecholamine refractoriness by inhibitors of RNA and protein synthesis, Science 186: 1221–1223.Google Scholar

Effects on Enzymatic Processes

  1. Anagnoste, B., Shirron, C., Friedman, E., and Goldstein, M., 1974, Effect of dibutyryl cyclic adenosine monophosphate on ‘4C-dopamine biosynthesis in rat brain striatal slices, J. Pharmacol. Exp. Ther. 191: 370–376.Google Scholar
  2. Cubeddu, L., Barnes, E., and Weiner, N., 1974, Release of norepinephrine and dopamine-ßhydroxylase by nerve stimulation. II. Effects of papaverine, J. Pharmacol. Exp. Ther. 191. 444–457.PubMedGoogle Scholar
  3. Ebstein, B., Roberge, C., Tabachnick, J., AND Goldstein, M., 1974, The effect of dopamine and of apomorphine on dB-cAMP-induced stimulation of synaptasomal tyrosine hydroxylase, J. Pharm. Pharmacol. 26: 975–978.PubMedGoogle Scholar
  4. Edwards, C., Nahorski, S. R., and Rogers, K. J., 1974, In vivo changes in cerebral cyclic adenosine 3’,5’-monophosphate-induced by biogenic amines: association with phosphorylase activation, J. Neurochem. 22: 565–572.Google Scholar
  5. Guidotri, A., Kurosawa, A., Chuang, D. M., and COSTA, E., 1975, Protein kinase activation as an early event in the trans-synaptic induction of tyrosine 3-monooxygenase in adrenal medulla, Proc. Nat. Acad. Sci. 72: 1152–1156.Google Scholar
  6. Hamprecht, B. and Traber, J., 1974, Dopamine-ß-hydroxylase activity in cholinergic neuro-blastoma X glioma hybrid cells: Increase in activity by6,02-dibutyryl adenosine 3’,5H-cyclic monophosphate, FEBS Letters 42: 211–226.Google Scholar
  7. Harris, J. E., Baldessarini, R. J., Morgenroth III, V. H., and ROTH, R. H., 1975, Activation by cyclic 3’,5’-adenosine monophosphate of tyrosine hydroxylase in the rat brain, Proc. Nat. Acad. Sci. 72: 789–793.Google Scholar
  8. Hedge, G. A., 1971, Acth secretion due to hypothalamo-pituitary effects of adenosine 3’,5’-monophosphate and related substances, Endocrinology 89: 500–506.PubMedGoogle Scholar
  9. Jaanus, S. D., and Rubins, R. P., 1974, Analysis of the role of cyclic adenosine 3’,5’monophosphate in catecholamine release, J. Physiol. 237: 465–476.PubMedGoogle Scholar
  10. Jones, E. R., Moscona, M., and Moscona, A. A.,1973, Does cyclic-3’,5’-AMP induce glutamine synthetase in embryonic neural retina? Biochem. Biophys. Res. Commun. 51:268–274.Google Scholar
  11. Keen, P., and Mclean, W. G., 1974, Effect of dibutyryl-cyclic AMP and dexamethasone on noradrenaline synthesis in isolated superior cervical ganglia, J. Neurochem. 22: 5–10.PubMedGoogle Scholar
  12. Kumar, S., Becker, G., and Prasad, K. N., 1975, Cyclic adenosine 3’,5’-monophosphate phosphodiesterase activity in malignant and cyclic adenosine 3’,5’-monophosphateinduced “differentiated” neuroblastoma cells, Cancer Res. 35: 82–87.PubMedGoogle Scholar
  13. Laborit, L., and Thuret, F., 1974, Action of inosine and of cyclic inosine monophosphate alone or in association with 5-hydroxytryptamine on three stages of energy metabolism in rat cerebral cortex, Agressologie 15: 377–380.PubMedGoogle Scholar
  14. Mrsulja, B. B., 1973, The influence of antistine on glycogenolytic effect of some biogenic amines in rat brain slices, Experientia 29: 76 - r77.PubMedGoogle Scholar
  15. Mrsulja, B. B., 1974, Cyclic nucleotides and brain glycogen, Experientia 30: 66–67.Google Scholar
  16. Mueller, R. A., OTrEN, U., and Thoenen, H., 1974, The role of adenosine cyclic 3’,5’monophosphate in reserpine-initiated adrenal medullary tyrosine hydroxylase induction, Mot. Pharmacol. 10: 855–860.Google Scholar
  17. OttenU. Mueller R. A., and Thoenen H. 1974, Evidence against a causal relationship between increase in c-AMP and induction of tyrosine hydroxylase in the rat adrenal medulla, Naunyn Schmiedebergs Arch. Pharmacol. 285:233–242.Google Scholar
  18. Schwartz, j. P., and Passonneau, J. V., 1974, Cyclic AMP-mediated induction of the cyclic AMP phosphodiesterase of C-6 glioma cells, Proc. Nat. Acad. Sci. 71: 3844–3848.PubMedGoogle Scholar
  19. Serck-Hanssen G., 1974, Effects of theophylline and propranolol on acetylcholine-induced release of adrenal medullary catecholamines, Biochem. Pharmacol. 23:2225–2234.Google Scholar
  20. Simantov, R., and Sachs, K., 1973, Regulation of acetylcholine receptors in relation to acetylcholinesterase in neuroblastoma cells, Proc. Nat. Acad. Sci. 70: 2902–2905.PubMedGoogle Scholar
  21. Taneda, M., Izumi, F., and Oka, M., 1974, Effect of dibutyryl adenosine 3’,5’-monophosphate on catecholamine synthesis in rat brain cortical slices and isolated vasa deferentia, Jap. J. Pharmacol. 24: 934–936.PubMedGoogle Scholar
  22. Torda C., 1972,. Cyclic AMP-dependent diphosphoinositide kinase, Biochim. Biophys.. Acta 286:389–395.Google Scholar
  23. Weiss, B., and Stiller, R. L., 1974, Dibutyryl cyclic adenosine 3’,5’-monophosphate and brain lipid metabolism, Lipids 9: 514–519.PubMedGoogle Scholar

Cell Morphology, Differentiation, and Growth

  1. Bjerre, J., 1974, A neuralizing influence of dibutyryl cyclic AMP on competent chick ectoderm, Experientia 30: 534–535.PubMedGoogle Scholar
  2. BondyS. C. Prasad K. N., and Prudy J. L., 1974, Neuroblastoma: Drug-induced differentiation increase proportion of cytoplasmic RNA that contains polyadenylic acid, Science 186:359–361.Google Scholar
  3. Chalazonitis, A., and Greene, L. A., 1974, Enhancement in excitability properties of mouse neuroblastoma cells cultured in the presence of dibutyryl cyclic AMP, Brain Res. 72: 340–345.PubMedGoogle Scholar
  4. Daniels, M. P., and Hamprecht B.,1974, The ultrastructure of neuroblastoma glioma somatic cell hybrids: Expression of neuronal characteristics stimulated by dibutyryl adenosine 3’,5’-cyclic monophosphate, J. Cell Biology 63:691–699.Google Scholar
  5. Edstrom, A., Kanje, M., and Walum, E., 1974, Effects of dibutyryl cyclic AMP and prostaglandin El on cultured human glioma cells, Exp. Brain Res. 85: 217–223.Google Scholar
  6. Lentz, T. L., 1972, A role of cyclic AMP in a neurotrophic process, Nature New Biol. 238: 154–155.PubMedGoogle Scholar
  7. Miller R. A., and Ruddle F. H. 1974, Enucleated neuroblastoma cells form neurites when treated with dibutyryl cyclic AMP, J. Cell Biology 63:295–299.Google Scholar
  8. Prasad K. N., KumarS. Gilmer K., and Vernadakis A., 1973, Cyclic AMP-induced differentiated neuroblastoma cells: Changes in total nucleic acid and protein contents, Biochem. Biophys. Res. Commun. 50:973–977.Google Scholar
  9. Shapiro, D. L., 1973, Morphological and biochemical alterations in foetal rat brain cells cultured in the presence of monobutyryl cyclic AMP, Nature 241: 203–204.PubMedGoogle Scholar
  10. Wahn, H. L., Lightbody, L. E., Tchen, T. T., and Taylor, J. D., 1975, Induction of neural differentiation in cultures of amphibian undetermined presumptive epidermis by cyclic AMP derivatives, Science 188: 366–369.PubMedGoogle Scholar

Membrane Phenomena, Central Neurons

  1. Bloom, F. E., 1974, To spritz or not to spritz: The doubtful value of aimless iontophoresis, Life Sci. 14: 1819–1834.PubMedGoogle Scholar
  2. Bloom, F. E., Siggins, G. R., and Hoffer, B. J., 1974, Interpreting the failures to confirm the depression of cerebellar Purkinje cells by cyclic AMP, Science 185: 627–628.PubMedGoogle Scholar
  3. Phillis, J. W., 1974, The role of calcium in the central effects of biogenic amines, Life Sci. 14: 1189–1201.PubMedGoogle Scholar
  4. Phillis, J. W., Kostopoulos, G. K., and Limacher, J. J., 1974, Depression of corticospinal cells by various purines and pyrimidines, Canadian J. Physiol. Pharmacol. 52: 1226–1229.Google Scholar
  5. Phillis, J. W., Kostopoulus, G. K., and Limacher, J. J., 1975, A potent depressant action of adenine derivatives on cerebral cortical neurones, Europ. J. Pharmacol 30: 125–129.Google Scholar
  6. Segal, M., 1974, Responses of septal nuclei neurons to microionphoretically administered putative neurotransmitters, Life Sci. 14: 1345–13511.PubMedGoogle Scholar
  7. Segal, M., and Bloom, F. E., 1974, The action of norepinephrine in the rat hippocampus. I. Ionotophoretic studies, Brain Res. 72: 79–97.PubMedGoogle Scholar
  8. Segal, M., and Bloom, F. E., 1974, The action of norepinephrine in the rat hippocampus. II. Activation of the input pathway, Brain Res. 72: 99–114.PubMedGoogle Scholar
  9. ShoemakerW. J. Balentine L. T., Siggins G. R., Hoffer B. J. HenricksenS. J. and Bloom F. E., 1975, Characteristics of the release of adenosine 3’,5’-monophosphate from micropipets by microiontrophoresis, J. Cyclic Nucleotide Res. 1:97–106.Google Scholar
  10. Siggins, G. R., Hoffer, B. J., asnd Ungerstedt, U., 1974, Electrophysiological evidence for involvement of cyclic adenosine monophosphate in dopamine responses of caudate neurons, Life Sci. 15: 779–792.PubMedGoogle Scholar
  11. Stone, T. W., Taylor, D. A., and Bloom, F. E., 1974, Cyclic AMP and cyclic GMP may mediate opposite neuronal responses in the rat cerebral cortex, Science 187: 845–847.Google Scholar
  12. Yarbrough, G. G., Lake, N., and Phillis, J. W., 1974, Calcium antagonism and its effect on the inhibitory actions of biogenic amines on cerebral cortical neurons, Brain Res. 67: 77–88.PubMedGoogle Scholar

Membrane Phenomena, Peripheral Neurons

  1. Chader, G. J., Bensinger, R., Johnson, M., and Fletcher, R. T., 1973, Phosphodiesterase: An important role in cyclic nucleotide regulation in the retina, Exp. Eye Res. 17: 483–486.PubMedGoogle Scholar
  2. Chader, G. J., Herz, L. W., and Fletcher, R. T., 1974, Light activation of phosphodiesterase activity in retinal rod outer segments, Biochim. Biophys. Acta 347: 491–493.PubMedGoogle Scholar
  3. Miki, N., Keirns, J. J., Marcus, F. R., Freeman, J., and Bitensky, M. W., 1973, Regulation ofGoogle Scholar
  4. cyclic nucleotide concentrations in photoreceptors: An ATP-dependent stimulation of cyclic nucleotide phosphodiesterase by light, Proc. Nat. Acad. Sci. 70:3820–2824.Google Scholar
  5. Suria, A., and Costa, E., 1975, Action of diazepam, dibutyryl cGMP and GABA on presynaptic nerve terminals in bull frog sympathetic ganglia, Brain Res. 87: 102–106.PubMedGoogle Scholar
  6. Torda, C., 1974, Restorative effect of cyclic AMP on the bioelectric processes of calcium deprived ganglia, Experientia 30: 1154–1155.PubMedGoogle Scholar
  7. 4.
    Membrane Phenomena, Motor NeuronsGoogle Scholar
  8. Miyamoto, M. D., and Breckenridge, B. Mcl., 1974, A cyclic adenosine monophosphate link in the catecholamine enhancement of transmitter release at the neuromuscular junction, J. Gen. Physiol. 63: 609–624.Google Scholar
  9. Takamori, M., Ishii, M., and Mori, M., 1973, The role of cyclic 3’,5’-adenosine monophosphate in neuromuscular transmission, Arch. Neurol. 29: 420–422.PubMedGoogle Scholar
  10. Van De Berg, J. S., 1974, Inhibitory effects of dibutyryl and cyclic AMP on the compound action potential in the frog (Rana pipiens) sciatic nerve, Experientia 30: 1025–1026.Google Scholar
  11. Vapaatalo, H., and Antrila, P., 1972, Effects of some inhibitors of phosphodiesterase on neuromuscular transmission, Naunyn-Schmiedeberg’s Arch. Pharmacol. 275:227–232. Vapaatalo, H., 1974, Role of cyclic neucleotides in the nervous system, Medical Biology 52: 200–207.Google Scholar
  12. Wilson, D. F., 1974, The effects of dibutyryl cyclic adenosine 3’,5’-monophosphate, theophylline and aminophylline on neuromuscular transmission in the rat, J. Pharmacol. Exp. Ther. 188: 447–452.PubMedGoogle Scholar
  13. Yamasaki, Y., Fujiwara, M., and Toda, N., 1974, Effects of intracellularly applied cyclic 3’,5’-adenosine monophosphate and dibutyryl cyclic 3’,5’-adenosine monophosphate on the electrical activity of sinoatrial nodal cells of the rabbit, J. Pharmacol. Exp. Ther. 190: 15–20.Google Scholar
  14. 4.
    Centrally Active Drugs and Levels of Cyclic Nucleotides in Brain.Google Scholar
  15. Garelis, E., and Neff, N. H., 1974, Cyclic adenosine monophosphate: Selective increase in caudate nucleus after administration of L-dopa, Science 183: 532–533.PubMedGoogle Scholar
  16. Gerhards, H. J., Carenzi, A., and Costa, E., 1974, Effect of Nominfensine on motor activity, dopamine turnover rate and cyclic adenosine 3’,5’-monophosphate concentrations of rat striatum, Naunyn-Schmiedeberg’s Arch. Pharmacol. 286: 49–64.PubMedGoogle Scholar
  17. Heikkinen, E. R., Myllyla, V. V., Vapaatalo, H., and Hokkanen, E., 1974, Urinary excretion and cerebrospinal fluid concentration of cyclic adenosine 3’,5’-monophosphate in various neurological diseases, Europ. Neurol. 11: 270–280.Google Scholar
  18. Mao, C. C., Guidotro, A., and Costa, E., 1974, Interactions between y-aminobutyric acid and guanosine cyclic 3’,5’-monophosphate in rat cerebellum, Mol. Pharmacol. 10: 736–746.Google Scholar
  19. Mao, C. C., Guidotti, A., and Costa, E., 1975, Inhibition by diazepam of the tremor and the increase of cerebellar c-GMP content elicited by harmaline, Brain Res. 83: 516–519.PubMedGoogle Scholar
  20. Myllyla, V. V., Heikkinen, E. R. Simila, S., Hokkanen, E., and Vapaatalo, H. 1974Google Scholar
  21. Cerebrospinal fluid concentration and urinary excretion of cyclic adenosine-3’,5’monophosphate in various diseases of children. A preliminary study, Z. Kinderheilk. 118:259–264.Google Scholar
  22. Myllyla, V. V., Vapaatalo, H., Hokkanen, E., and Heikkinen, E. R., 1974, Cerebrospinal fluid concentration of cyclic adenosine 3’,5’-monophosphate and pneumoencephalography, Europ. Neurol. 12: 28–32.PubMedGoogle Scholar
  23. Palmer, G. C., and Evan, A. P., 1974, Effect of psychotropic drugs on the urinary excretion of cyclic AMP in the rat, Proc. West. Pharmacol. Soc. 17: 204–209.Google Scholar
  24. Sebens, J. B., and Korf, J., 1975, Cyclic AMP in cerebrospinal fluid: Accumulation following probenecid and biogenic amines, Exp. Neurology, 46: 333–344.Google Scholar
  25. Siegel, R., Confort, N., Feldman, S., and Chower, I., 1974, Effects of neurogenic and systemic stresses on hypothalamic and adenohypophysial cAMP content, Neuroendocrinology 14: 24–33.PubMedGoogle Scholar
  26. Wang, Y.-C., Pandey, G. N., Mendels, J., and Frazer, A., 1974, Platelet adenylate cyclase responses in depression: Implications for a receptor defect, Psychopharmacologica 36: 291–300.Google Scholar

Behavioral and Pharmacological Effects

  1. Brus, R. Herman, Z. S., and Kostman, 1974, Behavioral effects of norepinephrine and dibutyryl cyclic 3’,5’-AMP in centrally sympathectomized rats, Pharmacol. Biochem. Behavior 2:719–724.Google Scholar
  2. Cohn, M. L. Taylor, F., Cohn, M., and Yamaoka, H. 1973, Dibutyryl cyclic AMP—an effective antidote against lethal amounts of amobarbital in the rat, Res. Commun. Chem. Pathol. Pharmacol. 6:435–446.Google Scholar
  3. Cohn, M. L., Cohn, M., and Taylor, F. H., 1974, Norepinephrine—an antagonist of dibutyryl cyclic AMP in the regulation of narcosis in the rat, Res. Comm. Chem. Path. Phârmacol. 7: 687–699.Google Scholar
  4. Doggett, N. S., and Spencer, P. S. J., 1971, Pharmacological properties of centrally adminis- tered ouabain and their modification by other drugs, Brit. J. Pharmacol. 42: 242–253.Google Scholar
  5. Doggett, N. S., and Spencer, P. S. J., 1973, Pharmacological properties of centrally-administered agents which interfere with neurotransmitter function: A comparison with the central depressant effects of ouabain, Brit. J. Pharmacol. 47: 26–38.Google Scholar
  6. Knopp, J., and Mimo, A., 1973, Effect of dibutyryl cyclic AMP injected into third ventricle on the thyroid ‘311-iodide accumulation, Endokrinologie 62: 237–238.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • John Daly

There are no affiliations available

Personalised recommendations