Advertisement

Purinergic Transmission

  • G. Burnstock
Part of the Handbook of Psychopharmacology book series (HBKPS, volume 5)

Abstract

It is now well established that there are intramural inhibitory neurons which are neither adrenergic nor cholinergic in the gastrointestinal tract of a wide range of vertebrate species (see Burnstock, 1969, 1972; Campbell, 1970; Furness and Costa, 1973). Evidence that these inhibitory responses are not due to adrenergic nerves is conclusive. Relaxation of intestine produced by stimulation of perivascular sympathetic nerves is prevented by low concentrations of α- and β-adrenoceptor antagonists or by adrenergic neuron blocking drugs, without affecting the inhibitory responses to transmural stimulation. Inhibitory junction potentials and relaxations in response to transmural stimulation are unimpaired in the guinea pig colon after degeneration of sympathetic adrenergic nerves (see Fig. 3). Relaxation of the guinea pig taenia coli in response to transmural stimulation or nicotine persists in organ cultures and in anterior eye chamber transplants after all adrenergic nerves have disappeared. Transmission from intrinsic inhibitory neurons has been recorded in avian gizzard and mammalian anal sphincter, which are contracted by catecholamines. Most recently, inhibitory nerve-mediated responses were demonstrated in developing fetal rabbit intestine before adrenergic nerves appeared (Gershon and Thompson, 1973).

Keywords

Adenine Nucleotide Adrenergic Nerve Intestinal Smooth Muscle Taenia Coli Inhibitory Nerve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdulla, Y. H., and Mcfarlane, E., 1972, Control of prostaglandin biosynthesis in rat brain homogenates by adenine nucleotides, Biochem. Pharmacol. 21: 2841–2847.PubMedGoogle Scholar
  2. Abood, L. G., Koketsu, K., and Miyomoto, S., 1962, Outflux of various phosphates during membrane depolarisation of excitable tissues, Am. J. Physiol. 202: 469–474.PubMedGoogle Scholar
  3. Abrahamsson, H., 1971, Vago-vagal gastro-gastric relaxation, Rend. Romani Gastroenterol. 3: 114–115.Google Scholar
  4. Abrahamsson, H., 1973, Studies on the inhibitory nervous control of gastric motility, Acta Physiol. Scand. Suppl. 390: 1–38.PubMedGoogle Scholar
  5. Abrahamsson, H., and Jansson, G., 1969, Elicitation of reflex vagal relaxation of the stomach from pharynx and esophagus in the cat, Acta Physiol. Scand. 77: 172–178.PubMedGoogle Scholar
  6. Abrahamsson, H., and Jansson, G., 1973, Vago-vagal gastro-gastric relaxation in the cat, Acta Physiol. Scand. 88: 289–295.PubMedGoogle Scholar
  7. Abrahamsson, H., and Thorén, P., 1972, Reflex relaxation of the stomach elicited from receptors located in the heart: An analysis of the receptors and afferents involved, Acta Physiol. Scand. 84: 197–207.PubMedGoogle Scholar
  8. Abrahamsson, H., and Thorén, P., 1973, Vomiting and reflex vagal relaxation of the stomach elicited from heart receptors in the cat, Acta Physiol. Scand. 88: 433–439.PubMedGoogle Scholar
  9. Abrahamsson, H., Jansson, G., and Martinson, J., 1973, Vagal relaxation of the stomach induced by apomorphine in the cat, Acta Physiol. Scand. 88: 296–302.PubMedGoogle Scholar
  10. Afonso, S., 1970, Inhibition of coronary vasodilating action of dipyridamole and adenosine by aminophylline in the dog, Circ. Res. 26: 743–754.PubMedGoogle Scholar
  11. Afonso, S., O’brien, G. S., and Crumpton, C. W., 1968, Enhancement of coronary vasodilating action of ATP and adenosine by lidoflazine, Circ. Res. 22: 43–48.PubMedGoogle Scholar
  12. Afonso, S., Ansfield, T. J., Berndt, T. B., and Rowe, G. G., 1972, Coronary vasodilator responses to hypoxia before and after aminophylline, J. Physiol. 221: 589–599.PubMedGoogle Scholar
  13. Ahlquist, R. P., 1948, A study of the adrenotropic receptors, Am. J. Physiol. 153: 586–600.PubMedGoogle Scholar
  14. Ahlquist, R. P., 1966, The adrenergic receptor, J. Pharm. Sci. 55: 359–367.PubMedGoogle Scholar
  15. Altenähr, E., 1971, Electron microscopic evidence for innervation of chief cells in human parathyroid gland, Experientia 27: 1077.PubMedGoogle Scholar
  16. Amano, T., Richelson, E., and Nirenberg, M., 1972, Neurotransmitter synthesis by neuroblastoma clones, Proc. Natl. Acad. Sci. 69: 258–263.PubMedGoogle Scholar
  17. Ambache, N., 1957, Properties of irin, a physiological constituent of the rabbit’s iris, J. Physiol. 135: 114–132.PubMedGoogle Scholar
  18. Ambache, N., and Zar, M., 1970, Non-cholinergic transmission by post-ganglionic motor neurons in the mammalian bladder, J. Physiol. 210: 761–783.PubMedGoogle Scholar
  19. Anggard, E., and Samuelsson, B., 1964, Smooth muscle stimulating lipids in sheep iris. The identification of prostaglandin F2„, Biochem. Pharmacol. 13: 281–283.PubMedGoogle Scholar
  20. Angus, J., Cobbin, L. B., Einstein, R., and Maguire, M. H., 1971, Cardiovascular actions of substituted adenosine analogues, Brit. J. Pharmacol. 41: 592–599.Google Scholar
  21. Arulappu, R. G. S., 1967, The actions of nucleic acid derivatives on smooth muscle. Fellowship thesis, Pharmaceutical Society of Victoria, Melbourne.Google Scholar
  22. Axelsson, J., and Holmberg, R., 1969, The effects of extracellularly applied ATP and related compounds on the electrical and mechanical activity of the smooth muscle of taenia coli of the guinea pig, Acta Physiol. Scand. 75: 149–156.PubMedGoogle Scholar
  23. Babskiì, E. B., and Malkiman, I. I., 1950, Effect of adenosine-triphosphoric acid on the chronaxy of the motor zone of the cerebral cortex, C. R. Acad. Sci. U.S.S.R. 74: 1135–1137.Google Scholar
  24. Ballard, D. R., Abboad, F. M., and Mayer, H. E., 1970, Release of a humoral vasodilator substance during neurogenic vasodilatation, Am. J. Physiol. 219: 1451–1457.PubMedGoogle Scholar
  25. Barclay, A. E., 1936, The Digestive Tract: A Radiological Study of Its Anatomy, Physiology and Pathology, Cambridge University Press, London.Google Scholar
  26. Barrantes, F. J., 1970, The neuromuscular junctions of a pulmonate mollusc. I. Ultrastructural study, Z. Zellforsch. Mikros. Anat. 104: 205–212.Google Scholar
  27. Barsoum, G. S., and Gaddum, J. H., 1935, The pharmacological estimation of adenosine and histamine in blood, J. Physiol. 85: 1–14.PubMedGoogle Scholar
  28. Bartlet, A. L., 1972, Apparent differences between thé’ affects of hyoscine in vivo and in vitro on the responses of chicken oesophagus to nerve stimulation, Brit. J. Pharmacol. 45: 635–637.Google Scholar
  29. Bartlet A. L., and Hasson, T., 1971, Contraction of chicken rectum to nerve stimulation after blockade of sympathetic and parasympathetic transmission, Quart. J. Exp. Physiol. Cog-. Med. Sci. 56: 178–183.Google Scholar
  30. Baumgarten, H. G., Holstein, A. F., and Owman, CH., 1970, Auerbach’s plexus of mammals and man: Electron microscopic identification of three different types of neuronal processes in myenteric ganglia of the large intestine from rhesus monkeys, guinea-pigs and man, Z. Zellforsch. Mikros. Anat. 106: 376–397.Google Scholar
  31. Baumgarten, H. G., Björklund, A., Holstein, A. F., and Nobin, A., 1972, Organization and ultrastructural identification of the catecholamine nerve terminals in the neural lobe and pars intermedia of the rat pituitary, Z. Zellforsch. Mikros. Anat. 126: 483–517.Google Scholar
  32. Bayliss, W. M., and Starling, E. H., 1899, The movement and innervation of the small intestine, J. Physiol. 24: 99–143.PubMedGoogle Scholar
  33. Beani, L., Bianchi, C., and Crema, A., 1971, Vagal non-adrenergic inhibition of guinea-pig stomach, J. Physiol. 217: 259–279.PubMedGoogle Scholar
  34. Beck, C. S., And Osa, T., 1971, Membrane activity in guinea-pig gastric sling muscle: A nerve-dependent phenomenon, Am. J. Physiol. 220: 1397–1403.PubMedGoogle Scholar
  35. Bell, C., 1968, Dual vasoconstrictor and vasodilator innervation of the uterine arterial supply in the guinea-pig, Circ. Res. 23: 279–289.PubMedGoogle Scholar
  36. Bell, C., 1969, Transmission from vasoconstrictor and vasodilator nerves to single smooth muscle cells of the guinea-pig uterine artery, J. Physiol. 205: 695–708.PubMedGoogle Scholar
  37. Bennett, A., and Stockley, H. L., 1973, A study of the intrinsic innervation of human isolated gastro-intestinal muscle using electrical stimulation, J. Physiol. 233: 34P - 35 P.PubMedGoogle Scholar
  38. Bennett, D. W., and Drury, A. N., 1931, Further observations relating to the physiological activity of adenosine compounds, J. Physiol. 72: 288–320.Google Scholar
  39. Bennett, M. R., 1966a, Rebound excitation of the smooth muscle cells of the guinea-pig taenia coli after stimulation of intramural inhibitory nerves, J. Physiol. 185: 124–131.PubMedGoogle Scholar
  40. Bennett, M. R., and Burnstock, G., 1968, Electrophysiology of the innervation of intestinal smooth muscle, in: Handbook of Physiology, Section 6: Alimentary Canal, IV: Motility, pp. 1709–1732, American Physiological Society, Washington, D.C.Google Scholar
  41. Bennett, M. R., Burnstock, G., and Holman, M. E., 1963, The effect of potassium and chloride ions on the inhibitory potential recorded in the guinea-pig taenia coli, J. Physiol. 169: 33P - 34 P.Google Scholar
  42. Bennett, M. R., Burnstock, G., and Holman, M. E., 1966a, Transmission from perivascular inhibitory nerves to the smooth muscle of the guinea-pig taenia coli, J. Physiol. 182: 527–540.PubMedGoogle Scholar
  43. Bennett, M., Burnstock, G., and Holman, M. E., 1966b, Transmission from intramural inhibitory nerves to the smooth muscle of the guinea-pig taenia coli, J. Physiol. 182: 541–558.PubMedGoogle Scholar
  44. Bennett, T., 1969a, The effects of hyoscine and anticholinesterases on cholinergic transmis-sion to the smooth muscle cells of the avian gizzard, Brit. J. Pharmacol. 37: 585–594.Google Scholar
  45. Bennett, T., 1969b, Nerve-mediated excitation and inhibition of the smooth muscle cells of the avian gizzard, J. Physiol. 204: 669–686.PubMedGoogle Scholar
  46. Bennett, T., 1970, Interaction of nerve mediated excitation and inhibition of single smooth muscle cells of the avian gizzard, Comp. Biochem. Physiol. 32: 669–680.Google Scholar
  47. Berger, P. J., 1973, Autonomic innervation of the visceral and vascular smooth muscle of the lizard lung, Comp. Gen. Pharmacol. 4: 1–10.Google Scholar
  48. Bergstrom, S., Carlson, L. A., and Weeks, J. R., 1968, The prostaglandins: A family of biologically active lipids, Pharmacol. Rev. 20: 1–48.PubMedGoogle Scholar
  49. Berman, P. H., Balis, M. E., and Dancis, J., 1969, Congenital hyperuricemia, an inborn error of purine metabolism associated with psychomotor retardation, athetosis, and self-mutilation, Arch. Neurol. 20: 44–53.PubMedGoogle Scholar
  50. Bern, H. A., 1966, On the production of hormones by neurones and the role of neurosecretion in neuroendocrine mechanisms, in: Nervous and Hormonal Mechanisms of Integration, Symp. Soc. Exp. Biol. 20: 325–344.Google Scholar
  51. Berne, R. M., 1964, Regulation of coronary flow, Physiol. Rev. 44: 1–29.PubMedGoogle Scholar
  52. Berne, R. M., Rubio, R., Dobson, J. C., and Cornish, R. R., 1971, Adenosine and adenine nucleotides of possible mediator of cardiac and skeletal muscle blood flow regulation, Circ. Res. 28, 29: 115–131 (Suppl. I).Google Scholar
  53. Bianchi, A., DE Natale, G., and Giarquinto, S., 1963, The effects of adenosine and its phosphorylated derivatives upon the respiratory apparatus, Arch. Int. Pharmacodyn. Ther. 145: 498–517.PubMedGoogle Scholar
  54. Biber, B., and Fara, J., 1973, Intestinal motility increased by tetrodotoxin, lidocaine, and procaine, Experientia 29: 551–552.PubMedGoogle Scholar
  55. Biber, B., Lundgren, O., and Svanik, J., 1971, Studies on the intestinal vasodilatation observed after mechanical stimulation of the mucosa of the gut, Acta Physiol. Scand. 82: 177–190.PubMedGoogle Scholar
  56. Bittar, N., and Pauly, T. J., 1971, Myocardial reactive hyperemia responses in the dog after aminophylline and lidoflazine, Am. J. Physiol. 220: 812–815.PubMedGoogle Scholar
  57. Blakeley, A. G. H., Brown, L., and Geffen, L. B., 1969, Uptake and reuse of sympathetic transmitter in the cat’s spleen, Proc. Roy. Soc. Lond. Ser. B Biol. Sci. 174: 51–68.Google Scholar
  58. Bloom, F. E., and Aghajanian, G. K., 1968, An electron microscopic analysis of large granular synaptic vesicles of the brain in relation to monoamine content, J. Pharmacol. Exp. Ther. 159: 261–273.PubMedGoogle Scholar
  59. Bloom, F. E., Hoffer, B. J., Battenberg, E. R., and Siggins, G. R., 1972, Adenosine 3’5’ monophosphate is localized in cerebellar neurons: Immunofluorescence evidence, Science 177: 436–438.PubMedGoogle Scholar
  60. Bloom, G. D., Diamant, B., Hägermark, O., and Ritzen, M., 1970, The effects of adenosine-5’triphosphate (ATP) on structure and amine content of rat peritoneal mast cells, Exp. Cell. Res. 62: 61–75.PubMedGoogle Scholar
  61. Blume, A. J., Dalton, C., and Sheppard, H., 1973, Adenosine-mediated elevation of cyclic 3’:5’-adenosine monophosphate concentrations in cultured mouse neuroblastoma cells, Proc. Natl. Acad. Sci. 11: 3099–3102.Google Scholar
  62. Bodian, D., 1972, Synaptic diversity and characterization by electron microscopy, in: Structure and Function of Synapses ( G. D. Pappas and D. F. Purpura, eds.), pp. 45–65, Raven Press, New York.Google Scholar
  63. Bohan, T. P., Boyne, A. F., Guth, P. S., Narayanan, Y., and Williams, T. H., 1973, Electron-dense particle in cholinergic synaptic vesicles, Nature 244: 32–34.PubMedGoogle Scholar
  64. Bone, A., 1972, The dogfish neuromuscular junction: Dual innervation of vertebrate striated muscle fibres? J. Cell Sci. 10: 657–665.PubMedGoogle Scholar
  65. Bonting, S. L., Carravaggio, L. L., and Hawkins, N. M., 1962, Studies on sodium-potassiumactivated adenosinetriphosphatase. IV. Correlation with cation transport sensitive to cardiac glycosides, Arch. Biochem. Biophys. 98: 413–419.PubMedGoogle Scholar
  66. Borgers, M., 1971, Cytochemistry and histochemistry of growing collaterals in chronic coronary artery occlusion, in: The Collateral Circulation of the Heart, pp. 117–150, W. Schaper, North-Holland, Amsterdam.Google Scholar
  67. Boukma, S. J., Lahti, R. A., and Mathews, J., 1973, Cyclic AMP and phosphodiesterase in synaptic vesicles from mouse brain, J. Neurochem. 20: 1387–1392.PubMedGoogle Scholar
  68. Bowman, W. C., and Hall, M. T., 1970, Inhibition of rabbit intestine mediated by a-and ß-adreneoreceptors, Brit. J. Pharmacol. 38: 399–415.Google Scholar
  69. Boyd, H., 1973, ATP as a nerve transmitter substance, J. Theor. Biol. 42: 49–53.PubMedGoogle Scholar
  70. Boyd, I. A., and Martin, A. R., 1956, The end-plate potential in mammalian muscle, J. Physiol. 132: 74–91.PubMedGoogle Scholar
  71. Bretschneider, H. J., Frank, A., Bernard, U., Kochsiek, K., and Scheler, F., 1959, Die Wirkung eines Pyrimidopyrimidin-Derivates auf die Sauerstoff-versorgung des Herzmuskels, Arzneimittel-Forsch. 9: 49–59.Google Scholar
  72. Brettschneider, H., 1962, Elektronenmikroskopische Untersuchungen über die Innervation der glatten Muskulatur des Darnes, Z. Mikros.-Anat. Forsch. 68: 333–360.Google Scholar
  73. Buchthal, F., Engbaek, L., Sten-Knudsen, O., and Thomasen, E., 1947, Application of adenosinetriphosphate and related compounds to the spinal cord of the cat, J. Physiol. 106: 3P - 4 P.Google Scholar
  74. Bulbring, E., and Tomita, T., 1967, Properties of the inhibitory potential of smooth muscle as observed in the response to field stimulation of the guinea-pig taenia coli, J. Physiol. 189: 299–316.PubMedGoogle Scholar
  75. Bunag, R. D., Douglas, C. R., Imai, S., and Berne, R. M., 1964, Influence of a pyrimidopyrimidine derivative on deamination of adenosine by blood, Circ. Res. 15: 8388.Google Scholar
  76. Burn, J. H., and Rand, M. J., 1959, Sympathetic postganglionic mechanism, Nature 184: 163–165.Google Scholar
  77. Burn, J. H., and Rand, M. J., 1965, Acetylcholine in adrenergic transmission, Ann. Rev. Pharmacol. 5: 163–182.Google Scholar
  78. Burnstock, G., 1958, The effects of acetylcholine on membrane potential, spike frequency, conduction velocity and excitability in the taenia coli of the guinea-pig, J. Physiol. 143: 165–182.PubMedGoogle Scholar
  79. Burnstock, G., 1969, Evolution of the autonomic innervation of visceral and cardiovascular systems in vertebrates, Pharmacol. Rev. 21: 247–324.PubMedGoogle Scholar
  80. Burnstock, G., 1970, Structure of smooth muscle and its innervation, in: Smooth Muscle ( E. Bülbring, A. F. Brading, A. W. Jones, and T. Tomita, eds.), pp. 1–69, Edward Arnold, London.Google Scholar
  81. Burnstock, G., 1971, Neural nomenclature, Nature 229: 282–283.PubMedGoogle Scholar
  82. Burnstock, G., 1972, Purinergic nerves, Pharmacol. Rev. 24: 509–581.PubMedGoogle Scholar
  83. Burnstock, G., 1975, Electronmicroscopy: Vesicles, synaptic gaps, pharmacological agents, in: Methods in Pharmacology, Vol. III: Smooth Muscle ( E. E. Daniel and D. M. Paton, eds.), Appleton-Century-Crofts, Edmonton, pp. 113–137.Google Scholar
  84. Burnstock, G., and Costa, M., 1973, Inhibitory innervation of the gut, Gastroenterology 64: 141–144.PubMedGoogle Scholar
  85. Burnstock, G., and Holman, M. E., 1961, The transmission of excitation from autonomic nerve to smooth muscle, J. Physiol. 155: 115–133.PubMedGoogle Scholar
  86. Burnstock, G., and Iwayama, T., 1971, Fine structural identification of autonomic nerves and their relation to smooth muscle, in: Histochemistry of Nervous Transmission, Prog. Brain Res. 34: 389–404.Google Scholar
  87. Burnstock, G., and Straub, R. W., 1958, A method for studying the effects of ions and drugs on the resting and action potentials in smooth muscle with external electrodes, J. Physiol. 140: 156–167.PubMedGoogle Scholar
  88. Burnstock, G., Campbell, G., Bennett, M., Holman, M. E., and Merrillees, N. C. R., 1963, Inhibition of the smooth muscle of the taenia coli, Nature 200: 581–582.PubMedGoogle Scholar
  89. Burnstock, G., Campbell, G., and Rand, M. J., 1966, The inhibitory innervation of the taenia of the guinea-pig caecum, J. Physiol. 182: 504–526.PubMedGoogle Scholar
  90. Burnstock, G., Campbell, G., Satchell, D. G., and Smythe, A., 1970, Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut, Brit. J. Pharmacol. 40: 668–688.Google Scholar
  91. Burnstock, G., Gannon, B. J., Malmfors, T., and Rogers, D. C., 1971, Changes in the physiology and fine structure of the taenia of the guinea-pig caecum following transplantation into the anterior eye chamber, J. Physiol. 219: 139–154.PubMedGoogle Scholar
  92. Burnstock, G., Satchell, D. G., and Smythe, A., 1972a, A comparison of the excitatory and inhibitory effects of non-adrenergic, non-cholinergic nerve stimulation and exogenously applied ATP on a variety of smooth muscle preparations from different vertebrate species, Brit. J. Pharmacol. 46: 234–242.Google Scholar
  93. Burnstock, G., Dumsday, B., and Smythe, A., 1972b, Atropine resistant excitation of the urinary bladder: The possibility of transmission via nerves releasing a purine nucleotide, Brit. J. Pharmacol. 44: 451–461.Google Scholar
  94. Campbell, G., 1966, Nerve-mediated excitation of the taenia of the guinea-pig caecum, J. Physiol. 185: 148–159.PubMedGoogle Scholar
  95. Campbell, G., 1970, Autonomic nervous supply to effector tissues, in: Smooth Muscle ( E. Bülbring, A. Brading, A. Jones, and T. Tomita, eds.), pp. 451–495, Edward Arnold, London.Google Scholar
  96. Campbell, G., 1971, Autonomic innervation of the lung musculature of a toad (Buio marinas), Comp. Gen. Pharmacol. 2: 281–286.PubMedGoogle Scholar
  97. Campbell, G., and Burnstock, G., 1968, The comparative physiology of gastrointestinal motility, in: Handbook of Physiology, Section 6: Alimentary Canal, IX: Motility, pp. 2213–2266, American Physiological Society, Washington, D.C.Google Scholar
  98. Cannon, W. B., and Lieb, C. W., 1911, The receptive relaxation of the stomach, Am. J. Physiol. 29: 267–273.Google Scholar
  99. Christensen, J., 1971, A new neural inhibitor in the gut (editorial), Gastroenterology 60: 1130–1131.PubMedGoogle Scholar
  100. Coburn, R. F., 1972, Squeegie of fluid in the compressed canine trachea, Resp. Physiol. 16: 33–40.Google Scholar
  101. Coburn, R. F., and Tomita, T., 1973, Evidence for nonadrenergic inhibitory nerves in guinea-pig trachealis muscle, Am. J. Physiol. 224: 1072–1080.PubMedGoogle Scholar
  102. Code, C. F., and Schlegel, J. F., 1968, Motor action of the esophagus and its sphincters, in: Handbook of Physiology, Chap. 90, Section 6: Alimentary Canal, Vol. IV, pp. 1821–1839, American Physiological Society, Washington, D.C.Google Scholar
  103. Coleman, R. A., 1973, Evidence for a non-adrenergic inhibitory nervous pathway in guinea-pig trachea, Brit. J. Pharmacol. 48: 360P - 361 P.Google Scholar
  104. Coleman, R. A., and Levy, G. R., 1974, A non-adrenergic inhibitory nervous pathway in guinea-pig trachea, Bit. J. Pharmacol. 52: 167–174.Google Scholar
  105. Conway, E. J., and Cooke, R., 1939, The deaminases of adenosine and adenylic acid in blood and tissues, Biochem. J. 33: 479–492.PubMedGoogle Scholar
  106. Cook, D. B., Gill, G. V., Jackson, I. M. D., and Smart, G. A., 1974, Inhibition by dexamethasone of adrenocorticotrophin and cortisol release induced by intravenous infusion of ATP and dibutyryl cyclic AMP in piglets, J. Endocrinol. 60: 65–73.PubMedGoogle Scholar
  107. Cook, R. D., and King, A. S., 1970, Observations on the ultrastructure of the smooth muscle and its innervation in the avian lung, J. Anat. 106: 273–283.PubMedGoogle Scholar
  108. Costa, M., and Furness, J. B., 1973, The innervation of the internal anal sphincter in the guinea-pig, Rend. Gastro-enterol. 5: 47–58.Google Scholar
  109. Crema, A., 1970, On the polarity of the peristaltic reflex in the colon, in: Smooth Muscle ( E. Bülbring, A. Brading, A. Jones, and T. Tornita, eds.), pp. 542–548, Edward Arnold, London.Google Scholar
  110. Dale, H. H., 1935, Pharmacology and nerve-endings, Proc. Roy. Soc. Med. 28: 319–332.PubMedGoogle Scholar
  111. Darke, A. C., and Smaie, L. H., 1973, The effect of chronic duct ligation on the vascular and secretory responses of the cat’s submaxillary gland, J. Physiol. 228: 361–376.PubMedGoogle Scholar
  112. Gubareff, T., and Sleator, W., 1965, Effects of caffeine on mammalian atrial muscle and its interaction with adenosine and calcium, J. Pharmacol. Exp. Ther. 148: 202–214.Google Scholar
  113. Dermietzel, R., 1971, Elektronenmikroskopische Untersuchung über die Innervation der Pars pylorica des Mäusemagens, Z. Mikros.-Anat. Forsch. 84: 225–256.Google Scholar
  114. Devine, C. E, and Simpson, F. O., 1968, Localization of tritiated norepinephrine in vascular sympathetic axons of the rat intestine and mesentery by electron microscope radioautography, J. Cell Biol. 38: 184–192.PubMedGoogle Scholar
  115. Diamant, N. E., 1973, Electrical activity of the cat smooth muscle oesophagus in vitro: A study of hyperpolarizing responses occurring with vagal nerve stimulation, intraluminal balloon distension and spontaneous distension and spontaneous contraction of the longitudinal muscle, Rend. Gastro-enterol. 5: 26–27.Google Scholar
  116. Dimarino, A. J., and Cohen, S., 1974, Characteristics of lower esophageal sphincter function in symptomatic diffuse esophageal spasm, Gastroenterology 66: 1–6.PubMedGoogle Scholar
  117. Dorr, L. D., and Brody, M. J., 1967, Haemodynamic mechanics of erection in the canine penis, Am. J. Physiol. 213: 1526–1531.PubMedGoogle Scholar
  118. Douglas, W. W., 1968, Stimulus—secretion coupling: The concept and clues from chromaffin and other cells, Brit. J. Pharmacol. 34: 451–474.Google Scholar
  119. Droller, M. J., 1973, Ultrastructure of the platelet release reaction in response to various aggregating agents and their inhibitors, Lab. Invest. 29: 595–606.PubMedGoogle Scholar
  120. Duchon, G., Henderson, R., and Daniel, E. E., 1973, Circular muscle layers in the small intestine, Rend. Gastro-enterol. 5: 10.Google Scholar
  121. Dumsday, B., 1971, Atropine-resistance of the urinary bladder, J. Pharm. Pharmacol. 23: 222–225.PubMedGoogle Scholar
  122. Duncan, D., and Morales, R., 1973a, Location of large core synaptic vesicles in the dorsal gray matter of the cat and dog spinal cord, Am. J. anat. 136: 123–127.PubMedGoogle Scholar
  123. Duncan, D., and Morales, R., 1973b, Location of nerve cells producing the synaptic vesicles situated in the substantia gelatinosa of the spinal cord (1), Am. J. Anat. 138: 139–144.PubMedGoogle Scholar
  124. Dutta, S. P., Chheda, G. B. Baczynskyj, L., and Mittelman, A., 1973, Characterization of a fluorescent substance derived from AP-(A2-isopentenyl)adenosine, 166th Meeting Amer. Chem. Soc. Abs. papers, MEDI-9.Google Scholar
  125. Eccles, J. C., and Magladery, J. W., 1937, The excitation and response of smooth muscle, J. Physiol. 90: 31–67.PubMedGoogle Scholar
  126. Edvardsen, P., 1968, Nervous control of urinary bladder in cats. IV. Effect of autonomic blocking agents on responses to peripheral nerve stimulation, Acta Physiol. Scand. 72: 234–247.PubMedGoogle Scholar
  127. Ehinger, B., and Falck, B., 1971, Autoradiography of some suspected neurotransmitter substances: GABA, Glycine, glutanxic acid, histamine, dopamine, and L-DOPA, Brain Res. 33: 157–172.PubMedGoogle Scholar
  128. Ehrenpreis, T., 1971, Hirschsprung’s disease, Am. J. Dig. Dis. 16: 1032–1052.PubMedGoogle Scholar
  129. Einstein, R., Angus, J. A., Cobbin, L. B., and Maguire, M. H., 1972, Separation of vasodilator and negative chronotropic actions in analogues of adenosine, Eur. J. Pharmacol. 19: 246–250.PubMedGoogle Scholar
  130. Elfvin, L.-G., 1967, The development of secretory granules in the rat adrenal medulla, J. Ultrastruct. Res. 17: 45–62.PubMedGoogle Scholar
  131. Emmelin, N., and Feldberg, W., 1948, Systemic effects of adenosine triphosphate, Brit. J. Pharmacol. Chemother. 3: 273–284.Google Scholar
  132. Feldberg, W., and Sherwood, S. L., 1954, Injections of drugs into the lateral ventricle of the cat, J. Physiol. 123: 148–167.PubMedGoogle Scholar
  133. Filogamo, G., and Marchisio, P. C., 1971, Acetylcholine system and neural development, in: Neurosciences Research, Vol. 4 ( S. Ehrenpreis and O. Solnitsky, eds.) pp. 29–64, Academic Press, New York.Google Scholar
  134. Forn, J., and Krishna, G., 1971, Effect of norepinephrine, histamine and other drugs on cyclic 3’,5’-AMP formation in brain slices of various animal species, Pharmacology 5: 193–204.PubMedGoogle Scholar
  135. Forrester, T., 1972, An estimate of adenosine triphosphate release into the venous effluent from exercising human forearm muscle, J. Physiol. 224: 611–628.PubMedGoogle Scholar
  136. Forrester, T., and HASSAN, M. 0., 1973, Appearance of adenosine triphosphate in the perfusate from active frog skeletal muscle, J. Physiol. 232: 35P - 37 P.Google Scholar
  137. Freiman, D. G., Goldman, H., and Murray, S., 1961, Histochemical studies on hydrolytic enzyme distribution in canine and human muscle and in some human mesenchymal tumors, Lab. Invest. 10: 1217–1234.PubMedGoogle Scholar
  138. Fumagalli, R., Bernareggi, V., Berti, F. and Trabucchi, M., 1971, Cyclic AMP formation in human brain: An in vitro stimulation by neurotransmitters, Life Sci. 10 (1): 1111–1115.Google Scholar
  139. Furness, J. B., 1969a, An electrophysiological study of the innervation of the smooth muscle of the colon, J. Physiol. 205: 549–562.PubMedGoogle Scholar
  140. Furness, J. B., 1969b, The presence of inhibitory fibers in the colon after sympathetic denervation, Eur. J. Pharmacol. 6: 349–352.PubMedGoogle Scholar
  141. Furness, J. B., 1970, The effect of external potassium ion concentration on autonomic neuro-muscular transmission, Pflügers Arch. 317: 310–326.PubMedGoogle Scholar
  142. Furness, J. B., 1971, Secondary excitation of intestinal smooth muscle, Brit. J. Pharmacol. 41: 213–226.Google Scholar
  143. Furness, J. B., and Burnstock, G., 1975, The role of circulating catecholamines in the gastrointestinal tract, in: Handbook of Physiology, Section 7: Endocrinology ( H. Blaschko and A. D. Smith, eds.), American Physiological Society, Washington, D.C.Google Scholar
  144. Furness, J. B., and Costa, M., 1973, The nervous release and the action of substances which affect intestinal muscle through neither adrenoceptors nor cholinoceptors, in: Recent Developments in Vertebrate Smooth Muscle Physiology, Phil. Trans. Roy. Soc. London Ser. B Biol. Sci. 265: 123–133.Google Scholar
  145. Furness, J. B., and Costa, M., 1974, The adrenergic innervation of the gastrointestinal tract, Ergebn. Physiol. 69: 1–52.Google Scholar
  146. Gaal, K., Forgacs, I., and Sallay, P., 1972, Effect of intrarenally infused ATP on renal function, Acta Physiol. Acad. Sci. Hung. 41: 213–219.PubMedGoogle Scholar
  147. Gabella, G., 1970, Electron microscopic observations on the innervation of the intestinal inner muscle layer, Experientia 26: 44–46.PubMedGoogle Scholar
  148. Gabella, G., 1971, Synapses of adrenergic fibers, Experientia 27: 280–281.PubMedGoogle Scholar
  149. Gabella, G., 1972, Innervation of the intestinal muscular coat, J. Neurocytol. 1: 341–362.PubMedGoogle Scholar
  150. Gaddum, J. H., and Holtz, P., 1933, The localization of the action of drugs on the pulmonary vessels of dogs and cats, J. Physiol. 77: 139–158.PubMedGoogle Scholar
  151. Galindo, A., Krnjevic, K., and Schwartz, S., 1967, Micro-iontophoretic studies on neurones in the cuneate nucleus, J. Physiol. 192: 359–377.PubMedGoogle Scholar
  152. Garrett, J. R., and Howard, E. R., 1972, Effects of rectal distension on the internal anal sphincter of cats, J. Physiol. 222: 85P - 86 P.PubMedGoogle Scholar
  153. Geffen, L. B., and Liverr, B. G., 1971, Synaptic vesicles in sympathetic neurons, Physiol. Rev. 51: 98–157.PubMedGoogle Scholar
  154. Gershon, M. D., and Thompson, E. B., 1973, The maturation of neuromuscular function in a multiply innervated structure: Development of longitudinal smooth muscle of foetal mammalian gut and its cholinergic excitatory, adrenergic inhibitory, and non-adrenergic inhibitory innervation, J. Physiol. 234: 257–277.PubMedGoogle Scholar
  155. Geschwind, I. I., 1970, Mechanism of action of hypothalamic adenohypophysiotropic factors, in: Hypophysiotropic Hormones of the Hypothalamus Assay and Chemistry ( J. Meites, ed.), pp. 298–319, Williams and Wilkins, Baltimore.Google Scholar
  156. Gillespie, J. S., 1962, The electrical and mechanical responses of intestinal smooth muscle cells to stimulation of their extrinsic parasympathetic nerves, J. Physiol. 162: 76–92.PubMedGoogle Scholar
  157. Gillespie, J. S., 1968, Electrical activity in the colon, in: Handbook of Physiology, Section 6: Alimentary Canal, Vol. IV ( C. F. Code, ed.), pp. 2093–2120, American Physiological Society, Washington, D.C.Google Scholar
  158. Ginsborg, B. L., and Hirst, G. D. S., 1972, The effect of adenosine on the release of the transmitter from the phrenic nerve of the cat, J. Physiol. 224: 629–645.PubMedGoogle Scholar
  159. Glynn, I. M., 1957, The ionic permiability of the red cell membrane, Progr. Biophys. 8: 241–307.Google Scholar
  160. Gough, G. R., Maguire, M. H., and Satchell, D. G., 1973, Three new adenosine triphosphate analogs: Synthesis and effects on isolated gut, J. Med. Chem. 16: 1188–1190.PubMedGoogle Scholar
  161. Green, H. N., and Stoner, H. B., 1950, Biological Actions of the Adenine Nucleotides, Lewis, London.Google Scholar
  162. Haddy, F. J., and Scott, J. B., 1968, Metabolically linked vasoactive chemicals in local regulation of blood flow, Physiol. Rev. 48: 688–707.PubMedGoogle Scholar
  163. Hanikova, M., Znamenack, K., and Krabec, Z., 1973, ATP and vasoldilan used in cases of asphyxia of newborn rats, Z. Kinderheilk. 114: 305–312.PubMedGoogle Scholar
  164. Hansen, O., 1972, Blood nucleoside and nucleotide studies in mental disease, Brit. J. Psychiat. 121: 341–350.PubMedGoogle Scholar
  165. Hashimoto, K., and Kokubun, H., 1972, Interaction between adenosine compounds and norepinephrine in dog renal circulation, Tohoku J. Exp. Med. 107: 373–380.PubMedGoogle Scholar
  166. Hassan, T., 1969, A hyoscine-resistant contraction of isolated chicken oesophagus in response to stimulation of parasympathetic nerves, Brit. J. Pharmacol. 36: 268–275.Google Scholar
  167. Hauge, A., 1966, Vasoconstriction in isolated blood perfused rabbits lungs and its inhibition by cresols, Acta Physiol. Scand. 66: 226–240.PubMedGoogle Scholar
  168. Heidenhain, R., 1872, Ueber die Wirkung einiger Gifte auf die Nerven der glandula submaxillaris, Pflügers Arch. Ges. Physiol. Menschen Tiere 5: 309–318.Google Scholar
  169. Heller, H., and Mcilwain, H., 1973, Release of [“C] adenine derivatives from isolated sub-systems of the guinea pig brain: Actions of electrical stimulation and of papaverine, Brain Res. 53: 105–116.PubMedGoogle Scholar
  170. Hervonen, A., 1973, Large Vesicles of adrenergic nerves of rabbit uterus, Acta Physiol. Scand. 88: 430–432.PubMedGoogle Scholar
  171. Mass, R. G., and Ellison, J. P., 1973, Ultrastructural study of intracardiac autonomic ganglia of guinea-pig, Tex. Rep. Biol. Med. 31: 254–255.Google Scholar
  172. Hidaka, T., and Kuriyama, H., 1969, Responses of the smooth muscle cell membrane of the guinea-pig jejunum to the field stimulation, J. Gen. Physiol. 53: 471–486.PubMedGoogle Scholar
  173. Hilton, S. M., and Lewis, G. P., 1957, Functional vasodilatation in the submandibular salivary gland, Brit. Med. Bull. 13: 189–196.PubMedGoogle Scholar
  174. Hilton, S. M., Jeffries, M. G., and Vrbova, G., 1970, Functional specialisations of the vascular bed of soleus, J. Physiol. 206: 543–562.PubMedGoogle Scholar
  175. Hirst, G. D. S., and Mckirdy, H. C., 1974, A nervous mechanism for descending inhibition in guinea-pig small intestine, J. Physiol. 238: 129–143.PubMedGoogle Scholar
  176. Hoffer, B. J., Siggins, G. R., and Bloom, F. E., 1970, Possible cyclic AMP-mediated adrenergic synapses to rat cerebellar Purkinje cells: Combined structural, physiological, and pharmacological analyses, in: Role of Cyclic AMP in Cell Function, ( P. Greengard and E. Costa, eds.), pp. 1–386, Raven Press, New York.Google Scholar
  177. Hökfelt, T., 1967, Electron microscopic studies on brain slices from regions rich in catecholamine nerve terminals, Acta Physiol. Scand. 69: 119–120.PubMedGoogle Scholar
  178. Holman, M. E., 1958, Membrane potentials recorded with high-resistance microelectrodes and the effects of changes in ionic environment on the electrical and mechanical activity of the smooth muscle of the taenia coli of the guinea-pig, J. Physiol. 141: 464–488.PubMedGoogle Scholar
  179. Holman, M. E., 1970, Junction potentials in smooth muscle, in: Smooth Muscle ( E. Bülbring, A. Brading, A. Jones, and T. Tomita, eds.), pp. 244–288, Edward Arnold, London.Google Scholar
  180. Holton, P., 1959, The liberation of adenosine triphosphate on antidromic stimulation of sensory nerves, J. Physiol. 145: 494–504.PubMedGoogle Scholar
  181. Honjin, R., Takahashi, A., Shimasaka, S., and Maruyama, H., 1965, Two types of synaptic nerve processes in the ganglia of Auerbach’s plexus of mice, as revealed by electron microscopy, J. Electron Micros. 14: 43–49.Google Scholar
  182. Hopkins, S. V., 1973a, The action of ATP in the guinea-pig heart, Biochem. Pharmacol. 22: 335–339.PubMedGoogle Scholar
  183. Hopkins, S. V., 1973b, The potentiation of the action of adenosine on the guinea-pig heart, Biochem. Pharmacol. 22: 341–348.PubMedGoogle Scholar
  184. Hosli, L., and Hösli, E., 1972, Autoradiographic localization of the uptake of glycine in cultures of rat medulla oblongata, Brain Res. 45: 612–616.PubMedGoogle Scholar
  185. Howard, E. R., and Nixon, H. H., 1968, Internal anal sphincter: Observations on development and mechanism of inhibitory responses in premature infants and children with Hirschsprung’s disease, Archs. Dis. Child. 43: 569–578.Google Scholar
  186. Huang, M., and Daly, J. W., 1974, Adenosine-elicited accumulation of cyclic-AMP in brain slices potentiation by agents which inhibit uptake of adenosine, Life Sci. 14: 489–503.PubMedGoogle Scholar
  187. Huang, M., Shimizu, H., and Daly, J. W., 1972, Accumulation of cyclic adenosine monophosphate in incubated slices of brain tissue. 2. Effects of depolarizing agents, membrane stabilizers, phosphodiesterase inhibitors, and adenosine analogs, J. Med. Chem. 15: 462–466.PubMedGoogle Scholar
  188. Huddart, H., and Bradbury, S. J., 1972, Fine structure of a neurosecretory axon in a crustacean skeletal muscle, Experientia 28: 950–951.Google Scholar
  189. Hughes, J., and Vane, J. R., 1967, An analysis of the responses of the isolated portal vein of the rabbit to electrical stimulation and to drugs, Brit. J. Pharmacol. Chemother. 30: 46–66.Google Scholar
  190. Hughes, J., and Vane, J. R., 1970, Relaxations of the isolated portal vein of the rabbit induced by nicotine and electrical stimulation, Brit. J. Pharmacol. 39: 476–489.Google Scholar
  191. Huijing, F., and Slater, E. C., 1961, The use of oligomycin as an inhibitor of oxidative phosphorylation, J. Biochem. (Tokyo) 49: 493–501.Google Scholar
  192. Hultén, L., 1969, Reflex control of colonic motility and blood flow, Acta Physiol. Scand. Suppl. 335: 77–93.Google Scholar
  193. Hung, K. S., Hertweck, M. S., Hardy, J. D., and Loosli, C. G., 1972, Innervation of pulmonary alveoli of the mouse lung: An electron microscopic study, Am. J. Anat. 135: 477–496.PubMedGoogle Scholar
  194. Ichikawa, A., Hayashi, H., Minami, M., and Tomita, K., 1972, An acute inflammation induced by inorganic pyrophosphate and adenosine triphosphate, and its inhibition by cyclic 3’,5’-adenosine monophosphate, Biochem. Pharmacol. 21: 317–331.PubMedGoogle Scholar
  195. IshI, S., and Nakamura, I., 1972, Electron microscopic study on the large granulated vesicles in enlarged axon of the area postrema, J. Electron Micros. 21: 85–88.Google Scholar
  196. Ito, Y., and Kuriyama, H., 1971, Nervous control of the motility of the alimentary canal of the silver carp, J. Exp. Biol. 55: 469–487.PubMedGoogle Scholar
  197. Ito, Y., and Kuriyama, H., 1973, Membrane properties and inhibitory innervation of the circular muscle cells of guinea-pig caecum. J. Physiol. 231: 455–470.PubMedGoogle Scholar
  198. Iversen, L. L., 1967, The Uptake and Storage of Noradrenaline in Sympathetic Nerves, Cambridge University Press, London.Google Scholar
  199. James, T. N., 1965, The chronotropic action of ATP and related compounds studied by direct perfusion of the sinus node. J. Pharmacol. Exp. Ther. 149: 233–247.PubMedGoogle Scholar
  200. Jansson, G., 1969, Extrinsic nervous control of gastric motility: An experimental study in the cat, Acta Physiol. Scand. Suppl. 326: 1–42.PubMedGoogle Scholar
  201. Jenkinson, D. H., and Morton, I. K. M., 1965, Effects of noradrenaline and isoprenaline on the permeability of depolarized intestinal smooth muscle to inorganic ions, Nature 205: 505–506.PubMedGoogle Scholar
  202. Johansen, T., and Chakravarty, N., 1972, Dependence of histamine release from rat mast cells on adenosine triphosphate, Naunyn-Schmiedebergs Arch. Pharmacol. 275: 457–463.PubMedGoogle Scholar
  203. Julé, Y., and Gonella, J., 1972, Modifications de l’activité électrique du côlon terminal de lapin par stimulation des fibres nerveuses pelviennes et sympathiques, J. Physiol. (Paris) 64: 599–621.Google Scholar
  204. Kaack, B., 1972, Influence of acetylcholine and adrenaline on ATPase activity, Comp. Gen. Pharmacol. 3: 296–298.PubMedGoogle Scholar
  205. Kakiuchi, S., Ball, T. W., and Mcilwain, H., 1969, The effect of electrical stimulation upon the accumulation of adenosine 3’,5’-phosphate in isolated cerebral tissue, J. Neurochem. 16: 485–491.PubMedGoogle Scholar
  206. Kerr, F. W. L., 1970, The fine structure of the subnucleus caudalis of the trigeminal nerve, Brain Res. 23: 129–145.PubMedGoogle Scholar
  207. Kiernan, J. A., 1972a, Effects of known and suspected neurotransmitter substances and of some nucleotides on isolated mast cells, Experientia 28: 653–655.PubMedGoogle Scholar
  208. Kiernan, J. A., 1972b, The involvement of mast cells in vasodilatation due to axon reflexes in infused skin, Quart. J. Exp. Physiol. 57: 311–317.PubMedGoogle Scholar
  209. Kolassa, N., Pfleger, K., and Rummel, W., 1970, Specificity of adenosine uptake into the heart and inhibition by dipyridamole Eur. J. Pharmacol. 9: 265–268.PubMedGoogle Scholar
  210. Kolassa, N., Pfleger, K., and Tram, M., 1971, Species differences in action and elimination of adenosine after dipyridamole and hexobendine, Eur. J. Pharmacol. 13: 320–325.PubMedGoogle Scholar
  211. Korneliussen, H., 1973, Dense-core vesicles in motor nerve terminals: Monoaminergic innervation of slow non-twitch muscle fibers in Atlantic hagfish (Myxine glutinosa, L.)? Z. Zellforsch. Mikros. Anat. 140: 425–432.Google Scholar
  212. Kosterlitz, H. W., 1968, Intrinsic and extrinsic nervous control of motility of the stomach and the intestines, in: Handbook of Physiology, Section 6: Alimentary Canal, Vol. IV ( C. F. Code, ed.), pp. 2147–2171, American Physiological Society, Washington, D.C.Google Scholar
  213. Kryvi, H., 1971, The structure of the longitudinal muscles of Sabella penicillum (Annelida, Polychaeta), with a note on the contraction properties, Norw. J. Zool. 19: 149–167.Google Scholar
  214. Kuperman, A. S., Volpert, W. A., and Okamoto, M., 1964, Release of adenine nucleotide from nerve axons, Nature 204: 1000–1001.PubMedGoogle Scholar
  215. Kuriyama, H., 1963, Electrophysiological observations on the motor innervation of the smooth muscle cells in the guinea-pig vas deferens, J. Physiol. 169: 213–228.PubMedGoogle Scholar
  216. Kuriyama, H., OSA, T., and Toida, N., 1967, Nervous factors influencing the membrane activity of intestinal smooth muscle, J. Physiol. 191: 257–270.PubMedGoogle Scholar
  217. Kuriyama, H., OSA, T., and Tasaki, H., 1970, Electrophysiological studies of the antrum muscle fibres of the guinea-pig stomach, J. Gen. Physiol. 55: 48–62.PubMedGoogle Scholar
  218. Kuroda, Y.,and Mcilwain, H., 1973, Incorporation and release of adenosine derivatives in guinea pig neocortical tissues and derived synaptosomes, in: 4th Int. Soc. Neurochem. Tokyo Meeting,p. 331.Google Scholar
  219. Lane, B. P., 1967, Localization of products of ATP hydrolysis in mammalian smooth muscle cells, J. Cell Biol. 34: 713–720.PubMedGoogle Scholar
  220. Langley, J. N., and Anderson, H. K., 1895, The innervation of the pelvic and adjoining viscera. IV. The internal generative organs, J. Physiol. 19: 122–130.Google Scholar
  221. Lauweryns, J. M., Cokelaerc, M., and Theunynck, P., 1973, Serotonin producing neuroepithelial bodies in rabbit respiratory mucosa, Science 180: 410–413.PubMedGoogle Scholar
  222. Leslie, S. W., Borowitz, J. L., and Miya, T. S., 1973, Adenosine analogs: Structure-activity relationshiops in vascular and intestinal smooth-muscle, J. Pharm. Sci. 62: 1449–1452.PubMedGoogle Scholar
  223. Liu, M. S., and Feinberg, H., 1971, Incorporation of adenosine-8–14C and inosine-8–14C into rabbit heart adenine nucleotides, Am. J. Physiol. 220: 1242–1248.PubMedGoogle Scholar
  224. Liu, M. S., and Feinberg, H., 1973, Effect of persantin on nucleoside metabolism of the perfused rabbit heart, Biochem. Pharmacol. 22: 1118–1121.PubMedGoogle Scholar
  225. Lobanov, G. C., 1961, Gas exchange in premature newborns during secondary asphyxia, Vop. Okhr. Materin. DeLs. 6: 11–17.Google Scholar
  226. Lock, A., and Weber, L. J., 1971, The vagal inhibitory reflex in the rat, Proc. West Pharmacol. Soc. 14: 88–90.Google Scholar
  227. Luduena, F. P., and Grigas, E. O., 1972, Effect of some biological substances on the dog retractor penis in vitro, Arch. Int. Pharmacodyn. 196: 269–274.PubMedGoogle Scholar
  228. Lumsden, K., and Holden, W. S., 1969, The act of vomiting in man, Gut 10: 173–179.PubMedGoogle Scholar
  229. Lund, C. F., and Christensen, J., 1969, Electrical stimulation of oesophageal smooth muscle and effects of antagonists, Am. J. Physiol. 217: 1369–1374.PubMedGoogle Scholar
  230. Lunde, P. K. M., Waaler, B. A., and Walla E, L., 1968, The inhibitory effect of various phenols upon ATP-induced vasoconstriction in isolated perfused rabbit lungs, Acta Physiol. Scand. 72: 331–337.Google Scholar
  231. Madinaveitia, J., and Raventos, J., 1949, Antimalarial compounds as antagonists of adenosine, Brit. J. Pharmacol. Chemother. 4: 81–92.Google Scholar
  232. Mall, F. P., 1896, On the reversal of the intestine, Johns Hopkins Hosp. Rep. 1: 37–75.Google Scholar
  233. Malmfors, T., and Olson, L., 1970, Growth characteristics of adrenergic nerves in the adult rat, Acta Physiol. Scand. Suppl. 348: 9–112.Google Scholar
  234. Malmfors, T., Furness, J. B., Campbell, G. R., and Burnstock, G., 1971, Reinnervation of smooth muscle of the vas deferens transplanted into the anterior chamber of the eye, J. Neurobiol. 2: 193–207.PubMedGoogle Scholar
  235. Marley, E., and Nistico, G., 1972, Effects of catecholamines and adenosine derivatives given into the brain of fowls, Brit. J. Pharmacol. 46: 619–636.Google Scholar
  236. Marx, J. L., 1972, Cyclic AMP in brain: Role in synaptic transmission, Science 178: 1188–1190.PubMedGoogle Scholar
  237. Matsumura, S., Taira, N., and Hashimoto, K., 1968, The pharmacological behaviour of the urinary bladder and its vasculature of the dog, Tohoku J. Exp. Med. 96: 247–258.PubMedGoogle Scholar
  238. Moves, H., 1953, Die Wirkung von Adrenalin and Adrenalinverwandten auf Gefässe and Muskulatur der Froschlunge, Pflügers Arch. Ges. Physiol. 258: 200–210.Google Scholar
  239. Miller, T., and Rees, D., 1973, Excitatory transmission in insect neuromuscular systems, Am. Zoologist 13: 299–313.Google Scholar
  240. Moir, T. W., and Downs, T. D., 1972, Myocardial reactive hyperemia: comparative effects of adenosine, ATP, ADP, and AMP, Am. J. Physiol. 222: 1386–1390.PubMedGoogle Scholar
  241. Moves, I. C. A., 1973, Cyclic AMP in depressive illness, J. Int. Med. Res. 1:321–324. MCINTYRE, A. M., 1973, Purinergic autonomic neurones (editorial), J. Clin. Pharmacol. 13: 241–243.Google Scholar
  242. Nakanishi, H., and Takeda, H., 1972, The possibility that adenosine triphosphate is an excitatory transmitter in guinea-pig seminal vesicle, Jap. J. Pharmacol. 22: 269–270.PubMedGoogle Scholar
  243. Nakanishi, H., and Takeda, H., 1973, The possible role of adenosine triphosphate in chemical transmission between the hypogastric nerve ending and seminal vesicle in guinea-pig, Jap. J. Pharmacol. 23: 479–490.PubMedGoogle Scholar
  244. Nakatsu, K., and Drummond, G. I., 1972, Adenylate metabolism and adenosine formation in the heart, Am. J. Physiol. 223: 1119–1127.PubMedGoogle Scholar
  245. Nakazato, Y., and Ohga, A., 1971, Relationships between 5-hydroxytryptamine and vagal relaxation in the dog stomach, Jap. J. Pharmacol. 21: 829–832.PubMedGoogle Scholar
  246. Nichols, R. E., and Walaszek, E. S., 1963, Antagonism of the vasodepressor effect of ATP by caffeine, Fed. Proc. 22: 308.Google Scholar
  247. Nickerson, M., 1970, in: The Pharmacological Basis of Therapeutics (L. S. Goodman and A. Gilman, eds.), Macmillan, New York.Google Scholar
  248. O’brien, R. A., DA Prada, M., and Pletscher, A., 1972, The ontogenesis of catecholamines and adenosine-5’-triphosphate in the adrenal medulla, Life Sci. 11 (1): 749–759.Google Scholar
  249. Ohashi, H., 1971, An electrophysiological study of transmission from intramural excitatory nerves to the smooth muscle cells of the chicken oesophagus, Jap. J. Pharmacol. 21: 585–596.Google Scholar
  250. Ohga, A., Nakazato, Y., and Saito, K., 1970, Considerations of the efferent nervous mechanism of the vago-vagal reflex relaxation of the stomach in the dog, Jap. J. Pharmacol. 20: 116–130.PubMedGoogle Scholar
  251. Ohkawa, H., and Prosser, C. L., 1972, Electrical activity in myenteric and submucous plexuses of cat intestine, Am. J. Physiol. 222: 1412–1419.PubMedGoogle Scholar
  252. Olsson, R. A., Snow, J. A., Gentry, M. K., and Frick., G. P., 1972, Adenosine uptake by canine heart, Circ. Res. 31: 767–778.PubMedGoogle Scholar
  253. Ono, H., Inagaki, K., and Hashimoto, K., 1966, A pharmacological approach to the nature of the autoregulation of the renal blood flow, Jap. J. Physiol. 16: 625–634.Google Scholar
  254. Osborne, M. P., 1971, Neurosecretory endings associated with striated muscles in three insects (Schistocerca, Carausius, and Phormia) and a frog (Rana), Z. Zellforsch. Mikros. Anat. 116: 391–404.Google Scholar
  255. Paddle, B. M., and Burnstock, G., 1974a, Release of ATP from perfused heart during coronary vasodilation, Blood Vessels 2: 110–119.Google Scholar
  256. Parratt, J. R., and Wadsworth, R. M., 1972, The effects of dipyridamole on the myocardial vasodilator actions of noradrenaline, isoprenaline and adenosine, Brit. J. Pharmacol. 46: 585–593.Google Scholar
  257. Patterson, D. A., and Wibberley, D. C., 1965, Isatogens. Part II. 2–2’pyridylisatogen, J. Chem. Soc. 1965: 1706–1711.Google Scholar
  258. Pearcy, J. F., and Liere, E. J. VAN, 1926, Studies on the visceral nervous system. XVII. Reflexes from the colon. 1. Reflexes to the stomach, Am. J. Physiol. 78: 64–73.Google Scholar
  259. Pentreath, V. W., and Cobb, J. L. S., 1972, Neurobiology of echinodermata, Biol. Rev. 47: 363–392.PubMedGoogle Scholar
  260. Pfaffman, M. A., and Mcfarland, S. A., 1973, The effects of theophylline and cyclic AMP on intestinal smooth muscle contractions, Eur. J. Pharmacol. 23: 147–152.PubMedGoogle Scholar
  261. Phillis, J. W., Kostopoulos, G. K., and Limacher, J. L., 1975, A potent depressant action of adenine derivatives on cerebral cortical neurones, Europ. J. Pharmacol. 30: 125–129.Google Scholar
  262. Pick, J., 1970, The Autonomic Nervous System: Morphological, Comparative, Clinical and Surgical Aspects, Lippincott, Philadelphia.Google Scholar
  263. Potter, L. T., 1970, Synthesis, storage and release of (“C) acetylcholine in isolated rat diaphragm muscles, J. Physiol. 206: 145–166.PubMedGoogle Scholar
  264. Pull, I., and Mcilwain, H., 1972a, Metabolism of (14C) adenine and derivatives by cerebral tissues, superfused and electrically stimulated, Biochem. J. 126: 965–973.PubMedGoogle Scholar
  265. Pull, I., and Mcilwain, H., 1972b, Adenine derivatives as neurohumoral agents in the brain: The quantities liberated on excitation of superperfused cerebral tisues, Biochem. J. 130: 975–981.PubMedGoogle Scholar
  266. Pull, I., and Mcilwain, H., 1973, Output of (C-14) adenine nucleotides and their derivatives from cerebral tissues: Tetrodotoxin resistant and calcium ion requiring components, Biochem. J. 136: 893–901.PubMedGoogle Scholar
  267. Rall, T., and Sattin, A., 1970, The effect of adenosine and adenine nucleotides on the cyclic adenosine 3’,5’-phosphate content of guinea pig cerebral cortex slices, Mol. Pharmacol. 6: 13–23.PubMedGoogle Scholar
  268. Ralston, H. J., III, 1968, The fine structure of neurons in the dorsal horn of the cat spinal cord, J. Comp. Neurol. 132: 275–301.PubMedGoogle Scholar
  269. Rand, M. J., Stafford, A., and Thorp, R. H., 1955, The potentiation of the action of adenosine on the guinea-pig heart by ouabain, J. Pharmacol. Exp. Ther. 114: 119–125.PubMedGoogle Scholar
  270. Raventos, J., 1950, Oral communication, Pharmacological Society, January 1947, in: Biological Actions of the Adenine Nucleotides (H. N. Green and H. B. Stoner), p. 260, Lewis, London.Google Scholar
  271. Rayner, V., 1970, Observations on the functional internal anal sphincter of the vervet monkey, J. Physiol. 213: 27P - 28 P.Google Scholar
  272. Rehm, W. S., White, A. S., Sanders, S. S., and Feagin, F. F., 1970, Adenine compounds on changes in optical density and motility of frog gastric mucosa, Ant. J. Physiol. 218: 1010–1014.Google Scholar
  273. Reis, J. L., 1937, Über die Activität der 5-Nukleotidase in den tierischen und menschlichen Geweben, Enzymologia 2: 183–190.Google Scholar
  274. Reis, J. L., 1951, The specificity of phosphomonoesterases in human tissues, Biochem. J. 48: 548–551.PubMedGoogle Scholar
  275. Rikimaru, A., Fukushi, Y., and Suzuki, T., 1971a, Evidence for the presence of nonadrenergic inhibitory nerves in the human taenia coli, Tohoku J. Exp. Med. 104: 199–200.PubMedGoogle Scholar
  276. Robinson, M.; Mclean, J. R., and Burnstock, G., 1971, Ultrastructural identification of non-adrenergic inhibitory nerve fibres, J. Pharmacol. Exp. Ther. 179: 149–160.PubMedGoogle Scholar
  277. Rogers, A. W., 1973, Techniques of Autoradiography, Elsevier, Amsterdam.Google Scholar
  278. Rogers, D., and Burnstock, G., 1966, Multiaxonal autonomic junctions in intestinal smooth muscle of the toad, J. Comp. Neurol. 126: 625–652.PubMedGoogle Scholar
  279. Roman, C., and Car, A., 1967, Contractions oesophagiennes produites par la stimulation du vague ou du bulbe rachidien, J. Physiol. (Paris) 59: 377–398.Google Scholar
  280. Rosenbloom, F. M., Kelley, W. N., Miller, J., Henderson, J. E., and Seegmiller, J. E., 1967, Inherited disorder of purine metabolism: Correlation between central nervous system dysfunction and biochemical defects, J. Am. Med. Assoc. 202: 175–177.Google Scholar
  281. Rosenblueth, A., 1950, The Transmission of Nerve Impulses at Neuroeffector Junctions and Peripheral Synapses, Technology Press, New York.Google Scholar
  282. Rosenbluth, J., 1972, Myoneural junctions of two ultrastructurally distinct types in earthworm body wall muscle, J. Cell Biol. 54: 566–579.PubMedGoogle Scholar
  283. Ross, G., 1973, Vascular effects of periarterial mesenteric nerve stimulation after adrenergic neurone blockade, Experientia 29: 289–290.PubMedGoogle Scholar
  284. Rostgaard, J., and Barrnett, R. J., 1964, Fine structure localisation of nucleoside phosphatases in relation to smooth muscle cells and unmyelinated nerves in the small intestine of the rat, J. Ultrastruct. Res. 11: 193–207.PubMedGoogle Scholar
  285. Roth, L. J., and Stumpf, W. E. (eds.), 1969, Autoradiography of Diffusable Substances, Academic Press, New York.Google Scholar
  286. Rubio, R., Berne, R. M., and Katori, M., 1969, Release of adenosine in reactive hyperemia of the dog heart, Am. J. Physiol. 216: 56–62.PubMedGoogle Scholar
  287. Rubio, R., Berne, R. M., and Dobson, J. G., 1973, Sites of adenosine production in cardiac and skeletal-muscle, Am. J. Physiol. 225: 938–953.PubMedGoogle Scholar
  288. Satchell, D. G., and Burnstock, G., 1971, Quantitative studies of the release of purine compounds following stimulation of non-adrenergic inhibitory nerves in the stomach, Biochem. Pharmacol. 20: 1694–1697.Google Scholar
  289. Satchell, D., and Burnstock, G., 1975, Comparison of the effects of adenine nucleotides and adenosine on the guinea-pig taenia coli on the presence and absence of dipyridamole, Eur. J. Pharmacol. in press.Google Scholar
  290. Satchell, D. G., and Maguire, M. H., 1975, Inhibitory effects of adenine nucleotide analogues on the isolated guinea-pig taenia coli, J. Pharmacol. Exp. Ther. in press.Google Scholar
  291. Satchell, D. G., Lynch, A., Bourke, P. M., and Burnstock, G., 1972, Potentiation of the effects of exogenously applied ATP and purinergic nerve stimulation on the guinea-pig taenia coli by dipyridamole and hexobendine, Eur. J. Pharmacol. 19: 343–350.PubMedGoogle Scholar
  292. Satchell, D., Burnstock, G., and Dann, P., 1973, Antagonism of the effects of purinergic nerve stimulation and exogenously applied ATP on the guinea-pig taenia coli by 2-substituted imidazolines and related compounds, Eur. J. Pharmacol. 23: 264–269.PubMedGoogle Scholar
  293. Sattin, A., and Rall, T. W., 1970, The effect of adenosine and adenine nucleotides on the cyclic adenosine 3’,5’phosphate content of guinea pig cerebral cortex slices, Mol. Pharmacol. 6: 13–23.PubMedGoogle Scholar
  294. Schachter, M., Barton, S., and Karpinski, E., 1973, Analysis of vasodilatation in the submaxillary gland using potentiators of acetylcholine and kinins, Experientia 29: 973–974.PubMedGoogle Scholar
  295. Schnaar, R. L., and Sparks, H. V., 1972, Response of large and small coronary arteries to nitroglycerin, NaNO2, and adenosine, Am. J. Physiol. 223: 223–228.PubMedGoogle Scholar
  296. Schultz, J., and Daly, J. W., 1973a, Cyclic adenosine 3’,5’-monophosphate in guinea pig cerebral cortical slices. I. Formation of cyclic adenosine 3’,5’-monophosphate from endogenous adenosine triphosphate and from radioactive adenosine triphosphate formed during a prior incubation with radioactive adenine, J. Biol. Chem. 248: 843–852.PubMedGoogle Scholar
  297. Schultz, J., and Daly, J. W., 1973b, Cyclic adenosine 3’,5’-monophosphate in guinea pig cerebral cortical slices. III. Formation, degradation, and reformation of cyclic adenosine 3’,5’-monophosphate during sequential stimulations by biogenic amines and adenosine, J. Biol. Chem. 248: 860–866.PubMedGoogle Scholar
  298. Secrist, J. A., III, Barrio, J. R., Leonard, N. J., and Weber, G., 1972, Fluorescent modification of adenosine-containing coenzymes: Biological activities and spectroscopic properties, Biochemistry 11: 3499–3506.PubMedGoogle Scholar
  299. Seegmiller, J. E., Rosenbloom, F. M., and Kelly, W. N., 1967, Enzyme defect associated with a sex-linked human neurological disorder and excessive purine synthesis, Science 155: 1682–1684.PubMedGoogle Scholar
  300. Semba, T., 1954, Studies on the entero-gastric reflexes, Hiroshima J. Med. Sci. 2: 323–327.Google Scholar
  301. Senft, G., 1968, Biochemical aspects of the hyperglycemic action of diazoxide, Ann. N.Y. Acad. Sci. 150: 242–255.PubMedGoogle Scholar
  302. Shepherd, J. T., 1963, in: Physiology of the Circulation in Human Limbs in Health and Disease, Saunders, Philadelphia.Google Scholar
  303. Sherman, R. G., and Fourtner, C. R., 1972, Ultrastructural features of synaptic regions in walking leg muscles of the horseshoe crab, Limules Polyphemus (L.), J. Ultrastruct. Res. 40: 44–54.PubMedGoogle Scholar
  304. Sherman, R. G., and Luff, A. R., 1971, Structural features of the tarsal claw muscles of the spider, Eurypelma marxi Simon, Canad. J. Zool. 49: 1549–1556.Google Scholar
  305. Shimizu, H., 1973, Purinergic nerve mechanism in the brain: Uptake, storage, release, and adenyl cyclase as a receptor, in: 4th Int. Soc. Neurochem. Tokyo Meeting, pp. 88–89.Google Scholar
  306. Shimizu, H., and Daly, J., 1970, Formation of cyclic adenosine 3’,5’-monophosphate from adenosine in brain slices, Biochim. Biophys. Acta 222: 465–473.PubMedGoogle Scholar
  307. Shimizu, H., and Okayama, H., 1973, An ATP pool associated with adenyl cyclase of brain tissue, J. Neurochem. 20: 1279–1284.PubMedGoogle Scholar
  308. Shimizu, H., Creveling, C. R., and Daly, J., 1970, Stimulated formation of adenosine 3’,5’-cyclic phosphate in cerebral cortex: Synergism between electrical activity and biogenic amines, Proc. Natl. Acad. Sci. 65: 1033–1040.PubMedGoogle Scholar
  309. Shneour, E. A., and Hansen, I. M., 1971, Inhibition by nucleotides of mouse brain UDP galactose 4-epimerase in vitro, J. Neurochem. 18: 1345–1349.Google Scholar
  310. Silinsky, E. M., and Hubbard, J. I., 1973, Release of ATP from rat motor nerve terminals, Nature 243: 404–405.PubMedGoogle Scholar
  311. Skolnick, P., Huang, M., Daly, J., and Hoffer, B., 1973, Accumulation of adenosine 3’,5’-monophosphate in incubated slices from discrete regions of squirrel monkey cerebral cortex: Effect of norepinephrine, serotonin and adenosine, J. Neurochem. 21: 237–240.PubMedGoogle Scholar
  312. Skou, J. C., 1960, Further investigations on a Mg“ and Na’-activated adenosintriphosphatase, possibly related to the active, linked transport of Na’ and K’ across the nerve membrane, Biochim. Biophys. Acta 42: 6–23.Google Scholar
  313. Small, R. C., 1972, Transmission from intramural inhibitory neurones to circular smooth muscle of the rabbit caecum and the effects of catecholamines, Brit. J. Pharmacol. 45: 149P - 150 P.Google Scholar
  314. Smith, A. D., and Winkler, H., 1972, Fundamental mechanisms in the release of catecholamines, in: Catecholamines, ( H. Blaschko and E. Muscholl, eds.), pp. 538–617, Springer-Verlag, New York.Google Scholar
  315. Smythe, A. E., 1971, Studies on the nature of transmitter substances released by nonadrenergic, non-cholinergic nerves to smooth muscle, M.Sc. thesis, University of Melbourne.Google Scholar
  316. Smythies, J. R., Antun, F., Yank, G., and Yorke, C., 1971, Molecular mechanisms of storage of transmitters in synaptic terminals, Nature 231: 185–188.PubMedGoogle Scholar
  317. Sneddon, J. D., Smythe, A., Satchell, D., and Burnstock, G., 1973, Investigation of the identity of the transmitter substance released by non-adrenergic, non-cholinergic excitatory nerves in the gut of lower vertebrates, Comp. Gen. Pharmacol 4: 53–60.Google Scholar
  318. Speden, R. N., 1967, Adrenergic transmission in small arteries, Nature 216: 289–290.PubMedGoogle Scholar
  319. Stafford, A., 1966, Potentiation of adenosine and the adenine nucleotides by dipyridamole, Brit. J. Pharmacol. Chemother. 28: 218–227.Google Scholar
  320. Stein, H. H., 1973, Ethyl adenosine-5’-carboxylate: A potent vasoactive agent in dog, J. Med. Chem. 16: 1306–1308.PubMedGoogle Scholar
  321. Stevens, P., Robinson, R. L., Van Dyke, K., and Stitzel, R., 1972, Studies of the synthesis and release of adenosine triphosphate-8–3H in the isolated perfused cat adrenal gland, J. Pharmacol. Exp. Ther. 181: 463–471.Google Scholar
  322. Stockley, H. L., and Bennett, A., 1973, The intrinsic innervation of human colonic muscle, Rend. Castro-enterol. 5: 17.Google Scholar
  323. Su, C., 1975, Purinergic nerves in blood vessels, Fol. Pharm. J. 71: 1–2.Google Scholar
  324. Sydow, V., and Ahlquist, R. P., 1954, Cardiovascular actions of some simple nucleic acid derivatives, J. Am. Pharm. Assoc. Sci. Ed. 43: 166–170.Google Scholar
  325. Tafuri, W. L., 1964, Ultrastructure of the vesicular component in the intramural nervous system of the guinea-pig’s intestines, Z. Naturforsch. 19: 622–625.Google Scholar
  326. Tafuri, W. L., and Maria, T. De A., 1970, Sôbre o comportamento do componente vesicular neurosecretor no megaesôfago da tripanossomiase cruzu humana, Rev. Inst. Med. Trop. Sao Paulo 12: 298–309.PubMedGoogle Scholar
  327. Takagi, K., and Takayanagi, I., 1972, Effect of N6,2’-O-dibutyryl 3’5’-cyclic adenosine monophosphate 3’,5’-cyclic adenosine monophosphate and adenosine triphosphate on acetylcholine output from cholinergic nerves in guinea pig ileum, Jap. J. Pharmacol. 22: 33–36.PubMedGoogle Scholar
  328. Taxi, J., and Droz, B., 1966, Etude de l’incorporation de noradrénaline-9H (NA-9H) et de 5-hydroxytryptophane 3H (5-HTP-9H) dans les fibres nerveuses du canal déférent et de l’intestin, C. R. Hebd. Seances Acad. Sci. Paris 263: 1237–1240.Google Scholar
  329. Taxi, J., and Droz, B., 1967, Localization d’amines biogènes dans le système neurovégétatif périphérique: Etude radioautographique en microscopie électronique après injection de noradrenaline 3H et de 5-hydroxytryptophane 3H, in: Neurosecretion ( F. Stutinsky, ed.), pp. 191–202, Springer-Verlag, Berlin.Google Scholar
  330. Ther, L., Muschawek, R., and Hergott, J., 1957, Antagonismus zwischen Adenosin und Methyl-Xanthinen am Reizleitungssystem des Herzens, Arch. Pharmakol. Exp. Pathol. 231: 586–590.Google Scholar
  331. Tominaga, S., Watanabe, K., Suzuki, T., and Nakamura, T., 1973, Total amount of adenosine and AMP released from canine skeletal muscle after ischemia and during contractions, Tohoku J. Exp. Med. 111: 199–200.PubMedGoogle Scholar
  332. Tomita, T., 1972, Conductance change during the inhibitory potential in the guinea-pig taenia coli, J. Physiol. 225: 693–704.PubMedGoogle Scholar
  333. Tomita, T., and Watanabe, H., 1973, A comparison of the effects of adenosine triphosphate with noradrenaline and with the inhibitory potential of the guinea-pig taenia coli, J. Physiol. 231: 167–177.PubMedGoogle Scholar
  334. Tranzer, J. P., Da Prada, M., and Pletscher, A., 1972, Storage of 5-hydroxytryptamine in megakaryocytes, J. Cell Biol. 52: 191–197.PubMedGoogle Scholar
  335. Treister, G., and Barany, E. H., 1970, Degeneration mydriasis and hyperemia of the iris after superior cervical ganglionectomy in the rabbit, Invest. Ophthalmol. 9: 873–887.PubMedGoogle Scholar
  336. Triggle, D. J., 1965, Chemical Aspects of the Autonomic Nervous System, Academic Press, London. Twente, J., and Giorgio, N., 1970, Arousing effects of adenosine and adenine nucleotides in hibernating Citellus lateralis, Comp. Gen. Pharmacol. 1: 485–491.Google Scholar
  337. Uchizono, K., and Ohsawa, K., 1973, Morpho-physiological consideration on synaptic transmission in the amphibian sympathetic ganglion, Acta Physiol. Pol. 24: 205–214.PubMedGoogle Scholar
  338. Unsicker, K., 1971, On the innervation of mammalian endocrine glands (anterior pituitary and parathyroids), Z. Zellforsch. Mikros. Anat. 121: 283–291.Google Scholar
  339. Unsicker, K., 1973a, Fine structure and innervation of avian adrenal gland. 3. Non-cholinergic nerve fibers, Z. Zellforsch. Mikros. Anat. 145: 557–575.Google Scholar
  340. Unsicker, K., 1973b, Innervation of the testicular interstitial tissue in reptiles, Z. Zellforsch. Mikros. Anat. 146: 123–138.Google Scholar
  341. Uusitalo, R., and Palkama, A., 1971, Evidence for the nervous control of secretion in the ciliary processes, Prog. Brain Res. 34: 513–521.Google Scholar
  342. Vigdahl, R. L., Mongin, J., JR., and Marquis, N. R., 1971, Platelet aggregation. IV. Platelet phosphodiesterase and its inhibition by vasodilators, Biochem. Biophys. Res. Commun. 42: 1088–1094.PubMedGoogle Scholar
  343. Von Koss, F. W., Beisenherz, G., and Maerkisch, R., 1962, Die Eliminierung von Adenosin aus dem Blut unter dem Einfluss von 2,6-Bis(diäthanolamino)-4,8-dipiperidino-pyrimido(5,4d)prymidin und Papaverin, Arzneimittel-Forsch. 12: 1130–1131.Google Scholar
  344. Von Kraupp, O., Wolner, E., Adler-Kastner, L., Chirikdjian, J. J., Ploszczanski, B., and Tuisl, E., 1966, Die Wirkung von Hexobendin auf Sauerstoffverbrauch, Energetik und Substratsfoffwechsel des Herzens, Arzneimittel-Forsch. 16: 692–696.Google Scholar
  345. Von Pfleger, K., and Schöndorf, H., 1969, Zur Aufklarung des Wirkungsmechanismus von Dipyridamol, Arzneimittel-Forsch. 19: 97–102.Google Scholar
  346. Wang, S. C., and Borison, H. L., 1952, A new concept of organization of the central emetic mechanism: Recent studies on the sites of action of apomorphine, copper sulfate and cardiac glycosides, Gastroenterology 22: 1–12.PubMedGoogle Scholar
  347. Wayne, E. J., Goodwin, J. F., and Stoner, H. B., 1949, Effect of adenosine triphosphate on electrocardiogram of man and animals, Brit. Heart J. 11: 55–67.PubMedGoogle Scholar
  348. Webb, J. L., 1966, Effects of 2-deoxy-Irglucose on carbohydrate metabolism, in: Enzyme and Metabolic Inhibitors, Vol. 2, pp. 386–403, Academic Press, New York.Google Scholar
  349. Webster, W., 1974, A ganglionic megacolon in piebald-lethal mice, Arch. Pathol. 97: 111–117.PubMedGoogle Scholar
  350. Weisbrodt, N. W., and Christensen, J., 1972, Gradients of contractions in the opossum esophagus, Gastroenterology 62: 1159–1166.PubMedGoogle Scholar
  351. Weissel, M., Raberger, G., and Kraupp, O., 1973, The effects of intraarterial adenosine infusion on substrate levels and blood flow in skeletal muscle of the dog, NaunynSchmiedebergs Arch. Pharmacol. 277: 239–252.Google Scholar
  352. Westfall, J. A., 1973, Ultrastructural evidence for neuromuscular systems in coelenterates, Am. Zoologist 13: 237–246.Google Scholar
  353. Westman, J., and Bowsher, D., 1971, The fine structure of “non-specific” grey matter (laminai V and VII) in the cat spinal cord, Exp. Brain Res. 12: 379–388.Google Scholar
  354. Weston, A. H., 1971, Inhibition of the longitudinal muscle of rabbit duodenum, Brit. J. Pharmacol. 43: 428P - 429 P.Google Scholar
  355. Weston, A. H., 1973a, The effect of desensitization to adenosine triphosphate on the peristaltic reflex in guinea-pig ileum, Brit. J. Pharmacol. 7: 606–608.Google Scholar
  356. Weston, A. H., 1973b, Nerve-mediated inhibition of mechanical activity in rabbit duodenum and effects of desensitization to adenosine and several of its derivatives, Brit. J. Pharmacol. 48: 302–308.Google Scholar
  357. Whittaker, V. P., Dowdall, M. J., and Boyne, A. F., 1972, The storage and release of acetylcholine by cholinergic nerve terminals: Recent results with non-mammalian preparations, Biochem. Soc. Symp. 36: 49–68.PubMedGoogle Scholar
  358. Widdicombe, J. G., 1963, Regulation of tracheobronchial smooth muscle, Physiol. Rev. 43: 1–37.PubMedGoogle Scholar
  359. Wiedmeier, V. T., Rubio, R., and Berne, R. M., 1972, Incorporation and turnover of adenosine-U-“C in perfused guinea pig myocardium, Am. J. Physiol. 223: 51–54.PubMedGoogle Scholar
  360. Wolfe, D. E., Potter, L. T., Richardson, K. C., and Axelrod, J., 1962, Localizing tritiated norepinephrine in sympathetic axons by electron microscopic autoradiography, Science 138: 440–444.PubMedGoogle Scholar
  361. Wood, J. D., 1970, Electrical activity from single neurons in Auerbach’s plexus, Am. J. Physiol. 219: 159–169.PubMedGoogle Scholar
  362. Wood, J. D., 1973, Electrical discharge of individual neurons within the enteric nervous system, Rend. Gastro-enterol. 5: 25–26.Google Scholar
  363. Wood, J. D., and Marsh, D. R., 1973, Effects of atropine, tetrodotoxin and lidocaine on rebound excitation of guinea-pig small intestine, J. Pharmacol. Exp. Ther. 184: 590–598.PubMedGoogle Scholar
  364. Wooton, G. F., Thoa, N. B., Kopin, I. J., and Axelrod, J., 1973, Enhanced release of dopamine ß-hydroxylase and norepinephrine from sympathetic nerves by dibutyryl cyclic adenosine 3’,5’-monophosphate and theophylline, Mol. Pharmacol. 9: 178–183.Google Scholar
  365. Yamada, E., 1957, The fine structure of the megakaryocyte in the mouse spleen, Acta Anat. 29: 267–290.PubMedGoogle Scholar
  366. Yip, K. F., and Tsou, K. C., 1973, Synthesis of fluorescent adenosine derivatives, Tetrahedron 33: 3087–3090.Google Scholar
  367. Yokoyama, S., 1966, Aktionpotentiale der Ganglienzelle des Auerbachschen Plexus in Kaninchendunndarm, Pflügers Arch. Ges. Physiol. 288: 95–102.Google Scholar
  368. Zimmerman, H., and Whittaker, V. P., 1974, Effect of electrical stimulation in the yield and composition of synaptic vesicles from the cholinergic synapses of the electric organ of Torpedo: a combined biochemical, electrophysiological and morphological study, J. Neurochem. 22: 435–450.Google Scholar
  369. Znamenacek, K., and Pribylova, H., 1966, Die ATP zur Vorbeugung des asphyktischen Neugeborenensyndroms, Z. Kinderheilk. 96: 365.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • G. Burnstock
    • 1
  1. 1.Department of Anatomy and EmbryologyUniversity College LondonLondonUK

Personalised recommendations