Skip to main content

Role of Cyclic Nucleotides in the Nervous System

  • Chapter
Book cover Synaptic Modulators

Part of the book series: Handbook of Psychopharmacology ((SIBN,volume 5))

Abstract

The complexity of the central nervous system makes investigation and elucidation of the factors involved in the establishment, regulation, and integration of neuronal function a formidable task. However, on the molecular level a variety of evidence indicates that the nucleotides cyclic AMP and cyclic GMP are involved in regulatory roles associated with neuronal function. Cyclic AMP regulates prime functions in many other tissues: gluconogenesis in liver, lipolysis in fat, secretion in endocrine glands. Definitive roles for cyclic GMP have as yet not been established (cf. Goldberg et al.,1973). These cyclic nucleotides are formed from intracellular ATP and GTP, respectively, by the action of cyclase enzymes. The cyclic nucleotides are degraded by phosphodiesterases to their respective 5′-phosphates. The diverse biological effects of cyclic nucleotides appear to be manifested through activation of protein kinases which specifically phosphorylate enzymes and other functional proteins and thus alter their properties. The specificity and nature of the effects of cyclic nucleotides presumably depend, therefore, not only on the intracellular site of generation of the cyclic nucleotide but also on the substrate specificity of the activated kinases and the accessibility of endogenous protein substrates. Termination of the physiological effects initiated by the cyclic nucleotides presumably occurs via the action of phosphoprotein phosphatases which hydrolyze the phosphorylated proteins. In certain instances, levels of cyclic AMP and cyclic GMP appear to be interrelated; increases in one nucleotide are accompanied by decreases in the other, suggesting a functional interrelationship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdulla, Y. H., and Hamadah, K., 1970, 3’,5’-Cyclic adenosine monophosphate in depression and mania, Lancet 1: 378–381.

    Google Scholar 

  • Abdulla, Y. H., and Mcfarlane, E., 1972, Control of prostaglandin biosynthesis in rat brain homogenates by adenine nucleotides, Biochem. Pharmacol. 21: 2841–2847.

    Article  PubMed  Google Scholar 

  • Amer, M. S., and Browder, H. P., 1971, Effect of quazodine on phosphodiesterase, Proc. Soc. Exp. Biol. Med. 136: 750–752.

    PubMed  Google Scholar 

  • Amer, M. S., Gomoll, A. W., and Mckinney, G. R., 1972, Phosphodiesterase inhibition as a mechanism for the diuretic activity of 1-[tert-butylimino)methyl]-2-(3-indolyl)indoline hydrochloride (MJ-8592–1), Res. Commun. Chem. Pathol. Pharmacol. 4: 467–476.

    PubMed  Google Scholar 

  • Anderson, E. G., Haas, H. L., and Hosli, L., 1973, Comparison of effects of noradrenaline and histamine with cyclic AMP on brain stem neurones, Brain Res. 49: 471–475.

    Article  PubMed  Google Scholar 

  • Anttila, P., and Vapaatalo, H., 1972, Decreased toxicity of d-tubocurarine after pretreatment with drugs elevating the intracellular level of c-AMP in mice, Naunyn-Schmiedebergs Arch. Pharmacol. 273: 175–178.

    Article  PubMed  Google Scholar 

  • Appel, S. H., and Locher, C., 1973, Changes in synapse membrane protein phosphorylation following electroconvulsive shock, Neurology 23:41Abs.

    Google Scholar 

  • Appenzeller, O., and Palmer, G., 1972, The cyclic AMP (adenosine 3’,5’-phosphate) content of sciatic nerve: Changes after nerve crush, Brain Res. 42: 521–524.

    Google Scholar 

  • Appleman, M. M., Thompson, W. J., and Russell, T. R., 1973, Cyclic nucleotide phosphodiesterases, Advan. Cyclic Nucleotide Res. 3: 66–98.

    Google Scholar 

  • Asakawa, T., and Yoshida, H., 1971, Studies on the functional role of adenosine 3’,5’monophosphate, histamine and prostaglandin E, in the central nervous system, Jap. J. Pharmacol. 21: 569–583.

    Article  PubMed  Google Scholar 

  • Bauer, R. J., Swiatek, K. R., Robins, R. K., and Simon, L. N., 1971, Adenosine 3’,5’-cyclic monophosphate derivatives. II. Biological activity of some 8-substituted analogs, Biochem. Biophys. Res. Commun. 45: 526–531.

    Article  PubMed  Google Scholar 

  • Beavo, J. A., Hardman, J. G., and Sutherland, E. W., 1970, Hydrolysis of cyclic guanosine and adenosine 3’,5’-monophosphate by rat and bovine tissues, J. Biol. Chem. 245: 5649–5655.

    PubMed  Google Scholar 

  • Beavo, J. A., Hardman, J. G., and Sutherland, E. W., 1971, Stimulation of adenosine 3’,5’-monophosphate hydrolysis by guanosine 3’,5’-monophosphate, J. Biol. Chem. 246: 3841–3846.

    PubMed  Google Scholar 

  • Beer, B., Chasin, M., Clody, D. E., Vogel, J. R., and Horovitz, Z. P., 1972, Cyclic adenosine monophosphate phosphodiesterase in brain: Effect on anxiety, Science 176: 428–430.

    Article  PubMed  Google Scholar 

  • Bensinger, R. E., Fletcher, R. T., and Chader, G. J., 1974, Guanylate cyclase: Inhibition by light in retinal photoreceptors, Science 183: 86–87.

    Article  PubMed  Google Scholar 

  • Berkowitz, B. A., Tarver, J. H., and Spector, S. 1970, Release of norepinephrine in the central nervous system by theophylline and caffeine, Eur. J. Pharmacol. 10: 64–71.

    Article  PubMed  Google Scholar 

  • Berndt, S., and Schwabe, U., 1973, Effect of psychotropic drugs on phosphodiesterase and cyclic AMP level in rat brain in vivo, Brain Res. 63: 303–312.

    Article  PubMed  Google Scholar 

  • Berti, F., Trabucchi, M., Bernareggi, V., and Fumagalli, R., 1972, The effects of prostaglandins on cyclic-AMP formation in cerebral cortex of different mammalian species,. Pharmacol. Res. Commun. 4: 253–259.

    Article  Google Scholar 

  • Birnbaumer, L., 1973, Hormone-sensitive adenylyl cyclases useful models for studying hormone receptor functions in cell-free systems, Biochim. Biophys. Acta 300: 129–158.

    Article  PubMed  Google Scholar 

  • Bitensky, M. W., and Gorman, R. E., 1972, Digitonin effects on photoreceptor adenylate cyclase, Science 175: 1363–1364.

    Article  PubMed  Google Scholar 

  • Bitensky, M. W., Gorman, R. E., and Miller, W. H., 1971, Adenyl cyclase as a link between photon capture and changes in membrane permeability of frog photoreceptors, Proc. Natl. Acad. Sci. 68: 561–562.

    Article  PubMed  Google Scholar 

  • Bitensky, M. W., Miller, W. H., Gorman, R. E., Neufeld, A. H., and Robinson, R., 1972, The role of cyclic AMP in visual excitation, Advan. Cyclic Nucleotide Res. 1: 317–335.

    Google Scholar 

  • Bitensky, M. W., Miki, N., Marcus, F. R., and Keirns, J. J., 1973, The role of cyclic nucleotides in visual excitation, Life Sci. 13: 1451–1472.

    Article  Google Scholar 

  • Bloom, F. E., Costa, E., and Salmoiraghi, G. C., 1965, Anesthesia and the responsiveness of individual neurons of the caudate nucleus of the cat to acetylcholine, norepinephrine and dopamine administered by microelectrophoresis, J. Pharmacol. Exp. Ther. 150: 244–252.

    PubMed  Google Scholar 

  • Bloom, F. E., Hoffer, B. J., and Siggins, G. R., 1972a, Norepinephrine mediated cerebellar synapses: A model system for neuropsychopharmacology, Biol. Psychiat. 4: 157–177.

    PubMed  Google Scholar 

  • Bloom, F. E., Hoffer, B. J., Battenberg, E. R., Siggins, G. R., Steiner, A. L., Parker, C. W., and Wedner, H. J., 1972b, Adenosine 3’,5’-monophosphate is localized in cerebellar neurons: Immunofluorescence evidence, Science 177: 436–438.

    Google Scholar 

  • Bloom, F. E., Hoffer, B. J., Siggins, G. R., Burker, J. L., and Nicoll, R. A., 1972c, Effects of serotonin on central neurons: Microiontophoretic administration, Fed. Proc. 31: 97–106.

    PubMed  Google Scholar 

  • Blume, A. J., Dalton, C., and Sheppard, H., 1973, Adenosine-mediated elevation of cyclic 3’:5’-adenosine monophosphate concentrations in cultured mouse neuroblastoma cells, Proc. Natl. Acad. Sci. 70: 3099–3102.

    Article  PubMed  Google Scholar 

  • Boehme, E., 1970, Guanyl Cydase Bildung von Guanosine-3’,5’-monophosphat in Niere and anderen Geweben der Ratte, Eur. J. Biochem. 14: 422–429.

    Article  Google Scholar 

  • Booth, D. A., 1972, Unlearned and learned effects of intrahypothalamic cyclic AMP injection on feeding, Nature New Biol. 237: 222–224.

    PubMed  Google Scholar 

  • Bradham, L. S., 1972, Comparison of the effects of Ca’ and Mg’ on the adenyl cyclase of beef brain, Biochim. Biophys. Acta 276: 434–443.

    Article  PubMed  Google Scholar 

  • Bradham, L. S., Holt, D. A., and Sims, M., 1970, The effect of Ca’ on the adenyl cyclase of calf brain, Biochim. Biophys. Acta 201: 250–260.

    Article  PubMed  Google Scholar 

  • Bray, J. J., Kon, C. M., and Breckenridge, B. M., 1971, Adenyl cyclase cyclic nucleotide phosphodiesterase and axoplasmic flow, Brain Res. 26: 385–394.

    PubMed  Google Scholar 

  • Breckenridge, B. M., 1964, The measurement of cyclic adenylate in tissues, Proc. Natl. Acad. Sci. 57: 1580–1586.

    Article  Google Scholar 

  • Breckenridge, B. M., and Johnston, R. E., 1969, Cyclic 3’,5’-nucleotide phosphodiesterase in brain, J. Histochem. Cytochem. 17: 505–511.

    Article  PubMed  Google Scholar 

  • Breckenridge, B. M., and Lisk, R. D., 1969, Cyclic adenylate and hypothalamic regulatory functions, Proc. Soc. Exp. Biol. Med. 131: 934–935.

    PubMed  Google Scholar 

  • Breckenridge, B. M., Burn, J. H., and Matschinsky, F. M., 1967, Theophylline, epinephrine, and neostigmine facilitation of neuromuscular transmission, Proc. Natl. Acad. Sci. 57: 1893–1897.

    Article  PubMed  Google Scholar 

  • Brooker, G., 1973, Oscillation of cyclic adenosine monophosphate concentration during the myocardial contraction cycle, Science 182: 933–934.

    Article  PubMed  Google Scholar 

  • Brooker, G., Thomas, L. J., JR., and APPLEMAN, M. M., 1968, The assay of adenosine 3’,5’-cyclic monophosphate and guanosine 3’,5’-cyclic monophosphate in biological materials by enzymatic radioisotopic displacement, Biochemistry 7: 4177–4181.

    Article  PubMed  Google Scholar 

  • Brown, B. L., Salway, J. G., Albano, J. D. M., Hullin, R. P., and Ekixs, R. P., 1972, Urinary excretion of cyclic AMP and manic-depressive psychosis, Brit. J. Psychiat. 120: 405–408.

    Article  PubMed  Google Scholar 

  • Brown, J. H., and Makman, M. H., 1972, Stimulation by dopamine of adenylate cyclase in retinal homogenates and of adenosine-3’:5’-cyclic monophosphate formation in intact retina, Proc. Natl. Acad. Sci. 69: 539–543.

    Article  PubMed  Google Scholar 

  • Brown, J. H., and Makman, M. H., 1973, Influence of neuroleptic drugs and apomorphine on the dopamine-sensitive adenylate cyclase of retina, J. Neurochem. 21: 477–479.

    Article  PubMed  Google Scholar 

  • Browning, E. T., Gropp, V. E., JR., and Kon, C., 1974a, Papaverine, a potent inhibitor of respiration in C-6 astrocytoma cells, Mol. Pharmacol. 10: 175–181.

    PubMed  Google Scholar 

  • Browning, E. T., Schwartz, J. P., and Breckenridge, B. M., 1974b, Norepinephrine-sensitive properties of C-6 astrocytoma cells, Mol. Pharmacol. 10: 162–174.

    PubMed  Google Scholar 

  • Burkard, W. P., 1972, Catecholamine induced increase of cyclic adenosine 3’,5’monophosphate in rat brain in vivo, J. Neurochem. 19: 2615–2619.

    Article  PubMed  Google Scholar 

  • Burkard, W. P., and Bartholini, G., 1973, Possible influence of endogenous cyclic AMP on serotonin and dopamine turnover in rat brain in vivo, Experientia 29:762Abs.

    Google Scholar 

  • Burkard, W. P., and Gey, K. F., 1968, Adenyl Cyclase im Rattenhirn, Heiv. Physiol. Acta 26: 197–198.

    Google Scholar 

  • Burkard, W. P., Lengsfeld, H., and Gey, K. F., 1971, Cyclic adenosine 3’,5’-monophosphate and adenylcyclase in liver, adipose tissue and brain of rats treated with a-pyridylcarbinol, Biochem. Pharmacol. 20: 23–28.

    Article  PubMed  Google Scholar 

  • Campbell, M. T., and Oliver, I. T., 1972, 3’:5’-Cyclic nucleotide phosphodiesterases in rat tissue, Eur. J. Biochem. 28: 30–37.

    Google Scholar 

  • Cedar, H., and Schwartz, J. H., 1972, Cyclic adenosine monophosphate in the nervous system of Aplysia californica. II. Effect of serotonin and dopamine, J. Gen. Physiol. 60: 570–587.

    Article  PubMed  Google Scholar 

  • Cedar, H., Kandel, E. R., and Schwartz, J. H., 1972, Cyclic adenosine monophosphate in the nervous system of Aplysia californica. I. Increased synthesis in response to synaptic stimulation, J. Gen. Physiol. 60: 558–569.

    Article  PubMed  Google Scholar 

  • Cehovtc, G., Posternak, T., and Charollais, E., 1972, A study of the biological activity and resistance to phosphodiesterase of some derivatives and analogues of cyclic AMP, Advan. Cyclic Nucleotide Res. 1:521-546.

    Google Scholar 

  • Chader, G. J., 1971, Hormonal effects on the neural retina: Induction of glutamine synthetase by cyclic-3’,5’-AMP, Biochem. Biophys. Res. Commun. 43: 1102–1105.

    Article  PubMed  Google Scholar 

  • Chasin, M., Rivkin, I., Mamrak, F., Samaniego, G., and Hess, S. M.,1971, a-and ß-Adrenergic receptors as mediators of accumulation of cyclic adenosine 3’,5’-monophosphate in specific areas of guinea pig brain, J. Biol. Chem. 246: 3037–3041.

    Google Scholar 

  • Chasin, M., Harris, D. W., Phillips, M. B., and Hess, S. M., 1972, 1-Ethyl4(isopropylidenehydrazolo-(3,4b)-pyridine-5-carboxylic acid, ethyl ester, hydrochloride (SQ 20009)—A potent new inhibitor of cyclic 3’,5’-nucleotide phosphodiesterases, Biochem. Pharmacol. 21: 2443–2450.

    Google Scholar 

  • Chasin, M., Mamrak, F., Samaniego, S. G., and Hess, S. M., 1973, Characteristics of the catecholamine and histamine receptor sites mediating accumulation of cyclic adenosine 3’,5’-monophosphate in guinea pig brain, J. Neurochem. 21: 1415–1427.

    Article  PubMed  Google Scholar 

  • Chasin, M., Mamrak, F., and Samaniego, S. G., 1974, Preparation and properties of a cell-free, hormonally responsive adenylate cyclase from guinea pig brain, J. Neurochem. 22: 1031–1038.

    Article  PubMed  Google Scholar 

  • Cheung, W. Y., 1966, Inhibition of cyclic nucleotide phosphodiesterase by adenosine 5’triphospltate and inorganic pyrophosphate,, Biochem. Biophys. Res. Commun. 23: 214–219.

    Article  PubMed  Google Scholar 

  • Cheung, W. Y., 1967a, Properties of cyclic 3’,5’-nucleotide phosphodiesterase from rat brain, Biochemistry 5: 1079–1087.

    Article  Google Scholar 

  • Cheung, W. Y., 1967b, Cyclic 3’,5’-nucleotide phosphodiesterase: Pronounced stimulation by snake venom, Biochem. Biophys. Res. Commun. 29: 478–482.

    Article  PubMed  Google Scholar 

  • Cheung, W. Y., 1969, Cyclic 3’,5’-nucleotide phosphodiesterase preparation of a partially inactive enzyme and its subsequent stimulation by snake venom, Biochim. Biophys. Acta 191: 303–315.

    Article  PubMed  Google Scholar 

  • Cheung, W. Y., 1970, Cyclic nucleotide phosphodiesterase, Advan. Biochem. Psychopharmacol. 3: 51–65.

    Google Scholar 

  • Cheung, W. Y., 197la, Cyclic 3’,5’-nucleotide phosphodiesterase effect of divalent cations, Italic“>Biochim. Biophys. Acta 242: 395–409.

    Google Scholar 

  • Cheung, W. Y., 1971 b, Cyclic 3’,5’-nucleotide phosphodiesterase: Evidence for and properties of a protein activator, J. Biol. Chem. 246: 2859–2869.

    Google Scholar 

  • Cheung, W. Y.,and SALGANICOFF, L., 1967, Cyclic 3’,5’-nucleotide phosphodiesterase: Localization and latent activity in rat brain, Nature 214:90–91.

    Google Scholar 

  • Chou, W. S., Ho, A. K. S., and Lox, H. H., 197la, Effect of acute and chronic morphine and norepinephrine on brain adenyl cyclase activity, Proc. West. Pharmacol. Soc. 14: 42–46.

    Google Scholar 

  • Chou, W. S., Ho, A. K. S., and Lox, H. H., 1971 b, Neurohormones on brain adenyl cyclase activity in vivo, Nature New Biol. 233: 280–281.

    Google Scholar 

  • Clark, A. G., Jovic, R., Ornellas, M. R., and Weller, M., 1972, Brain microsomal protein kinase in the chronically morphinized rat, Biochem. Pharmacol. 21: 1989–1990.

    Article  PubMed  Google Scholar 

  • Clark, R. B., and Perkins, J. P., 1971, Regulation of adenosine 3’:5’-cyclic monophosphate concentration in cultured human astrocytoma cells by catecholamines and histamine, Proc. Natl. Acad. Sci. 68: 2757–2760.

    Article  PubMed  Google Scholar 

  • Clark, R. B., SU, Y.-F., Gross, R., and Perkins, J. P., 1974, Regulation of adenosine 3’,5’-monophosphate content in human astrocytoma cells by adenosine and the adenine nucleotides, J. Biol. Chem. 249: 5296–5303.

    PubMed  Google Scholar 

  • Cohen, K. L., and Bitensky, M. W., 1969, Inhibitory effects of alloxan on mammalian adenyl cyclase, J. Pharmacol. Exp. Ther. 169: 80–86.

    PubMed  Google Scholar 

  • Cohn, M. L., Yamaoka, H., Taylor, F. H., and Kraynack, B., 1973, Action of intracerebroventricular dibutyryl cyclic AMP on amobarbital anaesthesia in rats, Neuropharmacology 12: 401–405.

    Article  PubMed  Google Scholar 

  • Collier, H. O. J., and Roy, A. C., 1974, Morphine-like drugs inhibit the stimulation by E prostaglandins of cyclic AMP formation by rat brain homogenates, Nature 248: 24–27.

    Google Scholar 

  • Connor, J. D., 1970, Caudate nucleus neurones; correlation of the effects of substantia nigra stimulation with iontophoretic dopamine, J. Physiol. 208: 691–703.

    PubMed  Google Scholar 

  • Contreras, E., Castillo, S., and Quijada, L., 1972, Effect of drugs that modify 3’,5’-AMP concentrations on morphine analgesia, J. Pharm. Pharmacol. 24: 65–66.

    Article  PubMed  Google Scholar 

  • Corrodi, H., Fuxi, K., and Jonsson, G., 1972, Effects of caffeine on central monoamine neurons, J. Pharm. Pharmacol. 24: 155–158.

    Article  PubMed  Google Scholar 

  • Crain, S. M., and Pollock, E. D., 1973, Restorative effects of cyclic AMP on complex bioelectric activities of cultured fetal rodent CNS tissues after acute Ca“ deprivation, J. Neurobiol. 4: 321–342.

    Article  PubMed  Google Scholar 

  • Cramer, H., and Lindl, T., 1972, Probenecid inhibits efflux of adenosine 3’,5’-monophosphate (cAMP) from cerebrospinal fluid (CSF) in the rat, Psychopharmacologia 26:49Abs.

    Google Scholar 

  • Cramer, H., Paul, M. I., Silbergeld, S., and Forn, J., 1971, Determination of regional distribution of adenosine 3’,5’-monophosphate in rat brain, J. Neurochem. 18: 1605–1608.

    Article  PubMed  Google Scholar 

  • Cramer, H., Ng, L. K. Y., and Chase, T. N., 1972a, Effect of probenecid on levels of cyclic AMP in human cerebrospinal fluid, J. Neurochem. 19: 1601–1602.

    Article  PubMed  Google Scholar 

  • Cramer, H., Goodwin, F. K., Post, R. M., and Bunney, W. E., JR., 19726, Effects of probenecid and exercise on cerebrospinal-fluid cyclic AMP in affective illness, Lancet 1: 1346–1347.

    Google Scholar 

  • Cramer, H., Johnson, D. G., Hanbauer, I., Silberstein, S. D., and Kopin, I. J., 1973a, Accumulation of adenosine 3’,5’-monophosphate induced by catecholamines in the rat superior cervical ganglion in vitro, Brain Res. 53: 97–104.

    Article  PubMed  Google Scholar 

  • Cramer, H., NG, L. K. Y., and Chase, T. N., 19736, Adenosine 3’,5’-monophosphate in bcerebrospinal fluid. Effect of drugs and neurologic disease, Arch. Neurol. 29: 197–199.

    Google Scholar 

  • Dalton, C., Crowley, H. J., Sheppard, H., and Schallek, W., 1974, Regional cyclic nucleotide phosphodiesterase activity in cat central nervous system: Effects of benzodiazepines, Proc. Soc. Exp. Biol. Med. 145: 407–410.

    PubMed  Google Scholar 

  • Deguchi, T., and Axelrod, J., 1973, Superinduction of serotonin N-acetyltransferase and supersensitivity of adenyl cyclase to catecholamines in denervated pineal gland, Mol. Pharmacol. 9: 612–618.

    PubMed  Google Scholar 

  • De Robertis, E., Arnaiz, G. R. D.-L., Butcher, R. W., and Sutherland, E. W., 1967, Subcellular distribution of adenyl cyclase and cyclic phosphodiesterase in rat brain cortex, J. Biol. Chem. 242: 3487–3493.

    Google Scholar 

  • Dittmann, J., and Herrmann, H.-D., 1970, An action of adenosine 3’,5’-monophosphate on glucose metabolism of rabbit brain slices, Experientia 26: 133–134.

    Article  PubMed  Google Scholar 

  • Ditzion, B. R., Paul, M. I., and Pauk, G. L., 1970, Measurement of adenosine 3’,5’monophosphate (cyclic AMP) in brain, Pharmacology 3: 25–31.

    Article  PubMed  Google Scholar 

  • Dousa, T., and Hechter, O., 1970, Lithium and brain adenyl cyclase, Lancet 1: 834–835.

    PubMed  Google Scholar 

  • Drummond, G. I., and Perrott-Yee, S., 1961, Enzymatic hydrolysis of adenosine 3’,5’-phosphoric acid, J. Biol. Chem. 236: 1126–1129.

    PubMed  Google Scholar 

  • Drummond, G. I., and Powell, C. A., 1970, Analogues of adenosine 3’,5’-cyclic phosphate as activators of phosphorylase b kinase and as substrates for cyclic 3’,5’-nucleotide phosphodiesterase, Mol. Pharmacol. 6: 24–30.

    PubMed  Google Scholar 

  • Ebadi, M. S., Weiss, B., and Costa, E., 197la, Microassay of adenosine 3’,5’-monophosphate (cyclic AMP) in brain and other tissues by the luciferin-luciferase system, J. Neurochem. 18: 183–192.

    Google Scholar 

  • Ebadi, M. S., Weiss, B., and Costa, E., 1971 b, Distribution of cyclic adenosine monophosphate in rat brain, Arch. Neurol. 24: 353–357.

    Google Scholar 

  • Erwin, V. G., 1969, Enhancement of brain glutamate dehydrogenase activity and glutamate oxidation by adenine nucleotides, Mol. Pharmacol. 5: 615–621.

    Google Scholar 

  • Farber, D. B., and Lolley, R. N., 1973, Proteins in the degenerative retina of C3H mice: Deficiency of a cyclic nucleotide phosphodiesterase and opsin, J. Neurochem. 21:817-828.

    Google Scholar 

  • Ferrendelli, J. A., Steiner, A. L., Mcdougal, D. B., JR., and Kipnis, D. M., 1970, The effect of oxotremorine and atropine on cGMP and cAMP levels in mouse cerebral cortex and cerebellum, Biochem. Biophys. Res. Commun. 41: 1061–1067.

    Article  PubMed  Google Scholar 

  • Ferrendelli, J. A., Kinscherf, D. A., and Kipnis, D. M., 1972, Effects of amphetamine, chlorpromazine and reserpine on cyclic GMP and cyclic AMP levels in mouse cerebellum, Biochem. Biophys. Res. Commun. 46: 2114–2120.

    Article  PubMed  Google Scholar 

  • Ferrendelli, J. A., Kinscherf, D. A., and Chang, M. M., 1973a, Regulation of levels of guanosine cyclic 3’,5’-monophosphate in the central nervous system: Effects of depolarizing agents, Mol. Pharmacol. 9: 445–454.

    PubMed  Google Scholar 

  • Ferrendelli, J. A., Johnson, E. M., JR., Chang, M.-M., and Needleman, P., 1973b, Inhibition of brain adenylate cyclase by ethacrynic acid and dithiobisnitrobenzoic acid, Biochem. Pharmacol. 22: 3133–3136.

    Article  PubMed  Google Scholar 

  • Ferrendelli, J. A., Chang, M. M., and Kinscherf, D. A., 1974, Elevation of cyclic GMP levels in central nervous system by excitatory and inhibitory amino acids, J. Neurochem. 22: 535–540.

    Article  PubMed  Google Scholar 

  • Fertel, R., Uzunov, P., and Weiss, B., 1973, Selective activation and inhibition of the multiple forms of cyclic 3’,5’-AMP phosphodiesterase of rat brain, Fed. Proc. 32:679Abs.

    Google Scholar 

  • Florendo, N. T., Barrnett, R. J., and Greengard, P., 1971, Cyclic 3’,5’-nucleotide phosphodiesterase: Cytochemical localization in cerebral cortex, Science 173: 745–747.

    Article  PubMed  Google Scholar 

  • Forn, J., and Krishna, G., 1971, Effect of norepinephrine, histamine and other drugs on cyclic 3’,5’-AMP formation in brain slices of various animal species, Pharmacology 5: 193–204.

    Article  PubMed  Google Scholar 

  • Forn, J., and Valdecasas, F. G., 1971, Effects of lithium on brain adenyl cyclase activity, Biochem. Pharmacol. 20: 2773–2779.

    Article  PubMed  Google Scholar 

  • Forn, J., Tagliamonte, A., Tagliamonte, P., and Gessa, G. L., 1972, Stimulation by dibutyryl cyclic AMP of serotonin synthesis and tryptophan transport in brain slices, Nature New Biol. 237: 245–247.

    PubMed  Google Scholar 

  • Frazier, W. A., Ohlendorf, C., Forrest, B., Aloe, L., Johnson, E. M., Ferrendelli, J. A., and Bradshaw, R. A., 1973, Mechanism of action of nerve growth factor and cyclic AMP on neurite outgrowth in embryonic chick sensory ganglia: Demonstration of independent pathways of stimulation, Proc. Natl. Acad. Sci. 70: 2448–2452.

    Article  PubMed  Google Scholar 

  • French, S. W., and Palmer, D. S., 1973, Adrenergic supersensitivity during ethanol withdrawal in the rat, Res. Commun. Chem. Pathol. Pharmacol. 6: 651–662.

    PubMed  Google Scholar 

  • Fumagalli, R., Bernareggi, V., Berti, F., and Trabucchi, M., 1971, Cyclic AMP formation in human brain: An in vitro stimulation by neurotransmitters, Life Sci. 10 (I): 1111–1115.

    Article  Google Scholar 

  • Furlanut, M., Carpenedo, F., and Ferrari, M., 1973, Effects of some isoquinoline compounds and certain derivatives on brain phosphodiesterase activity, Biochem. Pharmacol. 22: 2642–2644.

    Article  Google Scholar 

  • Furmanski, P., Silverman, D. J., and Lubin, M., 1971, Expression of differentiated functions in mouse neuroblastoma mediated by dibutyryl-cyclic adenosine monophosphate, Nature 233: 413–415.

    Article  PubMed  Google Scholar 

  • Gaballah, S., and Popoff, C., 1971a, Cyclic 3’,5’-nucleotide phosphodiesterase in nerve endings of developing rat brain, Brain Res. 25: 220–222.

    Article  PubMed  Google Scholar 

  • Gaballah, S., and Popoff, C., 1971b, Localization of adenosine 3’,5’-monophosphatedependent protein kinase in brain, J. Neurochem. 18: 1795–1797.

    Article  PubMed  Google Scholar 

  • Gaballah, S., Popoff, C., and Sooknandan, G., 1971, Changes in cyclic 3’,5’-adenosine monophosphate-dependent protein kinase levels in brain development, Brain Res. 31: 229–232.

    Article  PubMed  Google Scholar 

  • Garelis, E., and Neff, N. H., 1974, Cyclic adenosine monophosphate: Selective increase in caudate nucleus after administration of L-dopa, Science 183: 532–533.

    Article  PubMed  Google Scholar 

  • Gessa, G. L., Krishna, G., Forn, J., Tagliamonte, A., and Brodie, B. B., 1970, Behavioral and vegetative effects produced by dibutyryl cyclic AMP injected into different areas of the brain, Advan. Biochem. Psychopharmacol. 3: 371–381.

    Google Scholar 

  • Gillespie, E., 1971, Colchicine binding in tissue slices: Decrease by calcium and biphasic effect of adenosine 3’,5’-monophosphate, J. Cell Biol. 50: 544–549.

    Article  PubMed  Google Scholar 

  • Gilman, A. G., and Minna, J. D., 1973, Expression of genes for metabolism of cyclic adenosine 3’:5’-monophosphate in somatic cells. I. Responses to catecholamines in parental and hybrid cells, J. Biol. Chem. 248: 6610–6617.

    PubMed  Google Scholar 

  • Gilman, A. G., and Nirenberg, M., 1971a, Effect of catecholamines on the adenosine 3’-5’-cyclic monophosphate concentrations of clonal satellite cells of neurons, Proc. Natl. Acad. Sci. 68: 2165–2168.

    Article  PubMed  Google Scholar 

  • Gilman, A. G., and Nirenberg, M., 19716, Effect of catecholamines on the adenosine monophosphate metabolism in cultured neuroblastoma cells, Nature 234: 356–358.

    Google Scholar 

  • Gilman, A. G., and Schrier, B. K., 1972, Adenosine cyclic 3’,5’-monophosphate in fetal rat brain cell cultures, Mol. Pharmacol. 8: 410–416.

    PubMed  Google Scholar 

  • Ginsborg, B. L., and Hirst, G. D., 1972, The effect of adenosine on the release of the transmitter from the phrenic nerve of the rat, J. Physiol. 224: 629–645.

    PubMed  Google Scholar 

  • Glick, N. B., and Quastel, J. H., 1972, Effects of cerebral stimuli on adenine incorporation into nucleotides and RNA in brain slices from the rat, Canad. J. Biochem. 50: 672–683.

    Article  Google Scholar 

  • Godfraind, J. M., and Pumain, R., 1971, Cyclic adenosine monophosphate and norepi-nephrine: Effect on Purkinje cells in rat cerebellar cortex, Science 174: 1257–1258.

    Article  PubMed  Google Scholar 

  • Godfraind, J. M., and Pumain, R., 1972, Cyclic-AMP and noradrenaline iontophoretic release on rat cerebellar Purkinje neurons, Arch. Int. Pharmacodyn. Ther. Suppl. 196: 131–132.

    Google Scholar 

  • Godfraind, J. M., Krnejevic, K., Maretic, H., and Pumain, R., 1973, Inhibition of cortical neurons by imidazole and some derivatives, Canad. J. Physiol. Pharmacol. 51: 790–797.

    Article  Google Scholar 

  • Goldberg, A. L., and Singer, J. J., 1969, Evidence for a role of cyclic AMP in neuromuscular transmission, Proc. Natl. Acad. Sci. 64: 134–141.

    Article  PubMed  Google Scholar 

  • Goldberg, N. D., and O’toole, A. G., 1969, The properties of glycogen synthetase and regulation of glycogen biosynthesis in rat brain, J. Biol. Chem. 244: 3053–3061.

    PubMed  Google Scholar 

  • Goldberg, N. D., Larner, J., Sasko, H., and O’toole, A. G., 1967, Enzymatic analysis of cyclic 3’,5’-AMP in mammalian tissues and urine, Anal. Biochem. 28: 523–544.

    Google Scholar 

  • Goldberg, N. D., Dietz, S. B., and O’toole, A., 1969, Cyclic guanosine 3’,5’-monophosphate in mammalian tissue and urine, J. Biol. Chem. 244: 4458–4466.

    PubMed  Google Scholar 

  • Goldberg, N. D., Lust, W. D., O’dea, R. F., Wei, S., and O’toole, A. G., 1970, A role of cyclic nucleotides in brain metabolism, Advan. Biochem. Psychopharmacol. 3: 67–87.

    Google Scholar 

  • Goldberg, N. D., O’dea, R. F., and Haddox, M. K., 1973, Cyclic GMP, Advan. Cyclic Nucleotide Res. 3: 155–223.

    Google Scholar 

  • Goldfine, I. D., Perlman, R., and Roth, J., 1971, Inhibition of cyclic 3’,5’-AMP phosphodiesterase in islet cells and other tissues by tolbutamide, Nature 234: 295–296.

    Article  PubMed  Google Scholar 

  • Goldstein, M., Anagnoste, B., and Shirron, C., 1973, The effect of trivastal, haloperidol and dibutyryl cyclic AMP on [“C]dopamine synthesis in rat striatum, J. Pharm. Pharmacol. 25: 348–351.

    Article  PubMed  Google Scholar 

  • Goodman, D. B. P., Rasmussen, H., Dibella, F., and Guthrow, C. E., JR., 1970, Cyclic adenosine 3’,5’-monophosphate-stimulated phosphorylation of isolated neurotubule subunits, Proc. Natl. Acad. Sci. 67: 652–659.

    Article  PubMed  Google Scholar 

  • Goodman, R., Oesch, F., and Thoenen, H., 1974, Changes in enzyme patterns produced by high potassium concentrations and dibutyryl cyclic AMP in organ cultures of sympathetic ganglia, J. Neurochem. 23: 369–378.

    Article  PubMed  Google Scholar 

  • Gorodis, and Morgan, 1973, Guanyl cyclase in rat brain subcellular fractions, FEBS Lea. 34: 71–73.

    Article  Google Scholar 

  • Greengard, P., and Kuo, J. F., 1970, On the mechanism of action of cyclic AMP, Advan. Biochem. Psychopharmacol. 3: 287–306.

    Google Scholar 

  • Greengard, P., and Kebabian, J. W., 1974, Role of cyclic AMP in synaptic transmission in the mammalian peripheral nervous system, Fed. Proc. 33: 1059–1067.

    PubMed  Google Scholar 

  • Gunaga, K. P., and Menon, K. M. J., 1973, Effect of catecholamines and ovarian hormones on cyclic AMP accumulation in rat hypothalamus, Biochem. Biophys. Res. Commun. 54: 440–448.

    Article  PubMed  Google Scholar 

  • Haas, D. C., Hier, D. B., Arnason, B. G. W., and Young, M., 1972, On a possible relationship of cyclic AMP to the mechanisms of action of nerve growth factor, Proc. Soc. Exp. Biol. Med. 140: 45–47.

    PubMed  Google Scholar 

  • Hamadah, K., Holmes, H., Barker, G. B., Hartman, G. C., and Parke, D. V. W., 1972, Effect of electric convulsion therapy on urinary excretion of 3’,5’-cyclic adenosine monophosphate, Brit. Med. J. 19. 439–441.

    Article  Google Scholar 

  • Hamprecht, B., and Schultz, J., 1973a, Stimulation of prostaglandin E, of adenosine 3’,5’-cyclic monophosphate formation in neuroblastoma cells in the presence of phosphodiesterase inhibitors, FEBS Letters 34: 85–89.

    Article  PubMed  Google Scholar 

  • Hamprecht, B., and Schultz, J., 1973b, Influence of norepinephrine, prostaglandin E, and inhibitors of phosphodiesterase activity on levels of adenosine 3’:5’-cyclic monophosphate in somatic cell hybrids, Hoppe-Seylers Z. Physiol. Chem. 354: 1633–1641.

    Article  PubMed  Google Scholar 

  • Hamprecht, B., Jaffe, B. M., and Philpott, G. W., 1973, Prostaglandin production by neuroblastoma, glioma and fibroblast cell lines, stimulation by N6,02’-dibutyryl adenosine 3’:5’-cyclic monophosphate, FEBS Letters 36: 193–198.

    Article  PubMed  Google Scholar 

  • Hardman, J. G., and Sutherland, E. W., 1969, Guanyl cyclase, an enzyme catalyzing the formation of guanosine 3’,5’-monophosphate from guanosine triphosphate, J. Biol. Chem. 244: 6363–6370.

    PubMed  Google Scholar 

  • Harris, D. H., Chasin, M., Phillips, M. B., Goldenberg, H., Samaniego, S., and Hess, S. M., 1973, Effect of cyclic nucleotides on activity of cyclic 3’,5’-adenosine monophosphate phosphodiesterase, Biochem. Pharmacol. 22: 221–228.

    Article  PubMed  Google Scholar 

  • Heller, I. H., and Mcilwain, H., 1973, Release of [“C]adenine derivatives from isolated subsystems of the guinea pig brain: Actions of electrical stimulation and of papaverine, Brain Res. 53: 105–116.

    Article  PubMed  Google Scholar 

  • Henion, W. F., Sutherland, E. W., and Posternak, T., 1967, Effects of derivatives of adenosine 3’,5’-phosphate on liver slices and intact animals, Biochim. Biophys. Acta 148: 106–113.

    Article  PubMed  Google Scholar 

  • Herman, Z. S., 1973, Behavioral effects of dibutyryl cyclic 3’,5’-AMP, noradrenaline and cyclic 3’,5’-AMP in rats, Neuropharmacology 12: 705–709.

    Article  PubMed  Google Scholar 

  • Hertz, L., 1966, Neuroglial localization of potassium and sodium effects on respiration in brain, J. Neurochem. 13: 1373–1387.

    Article  PubMed  Google Scholar 

  • Hetenyi, G., JR., and Singhal, P. L., 1973, Effect of insulin on cerebral adenyl cyclase and phosphodiesterase, Hormone Metab. Res. 5: 139.

    Article  Google Scholar 

  • Hier, D. B., Arnason, B. G. W., and Young, M., 1972, Studies on the mechanism of action of nerve growth factor, Proc. Natl. Acad. Sci. 6`9: 2268–2272.

    Google Scholar 

  • Hier, D. B., Arnason, B. G. W., and Young, M., 1973, Nerve growth factor: Relationship to the cydic AMP system of sensory ganglia, Science 182: 79–81.

    Article  PubMed  Google Scholar 

  • Ho, I. K., Loh, H. H., and Way, E. L., 1972, Effect of cyclic AMP on morphine analgesia tolerance and physical dependence, Nature 238: 397–398.

    Article  PubMed  Google Scholar 

  • Ho, I. K., Loh, H. H., and Way, E. L., 1973a, Effects of cyclic 3’,5’-adenosine monophosphate on morphine tolerance and physical dependence, J. Pharmacol. Exp. Ther. 185: 347–357.

    PubMed  Google Scholar 

  • Ho, I. K., Lou, H. H., and Way, E. L., 1973b, Cyclic adenosine monophosphate antagonism of morphine analgesia, J. Pharmacol. Exp. Ther. 185: 336–346.

    PubMed  Google Scholar 

  • Hoffer, B. J., Siggins, G. R., and Bloom, F. E., 1969, Prostaglandins E, and E2 antagonize norepinephrine effects on cerebellar Purkinje cells: Microelectrophoretic study, Science 166: 1418–1420.

    Article  PubMed  Google Scholar 

  • Hoffer, B. J., Siggins, G. R., and Bloom, F. E., 1970, Possible cyclic AMP-mediated adrenergic synapses to rat cerebellar Purkinje cells: Combined structural, physiological, and pharmacological analyses, Advan. Biochem. Psychopharmacol. 3: 349–370.

    Google Scholar 

  • Hoffer, B. J., Siggins, G. R., Woodward, D. J., and Bloom, F. E., 1971a, Spontaneous discharge of Purkinje neurons after destruction of catecholamine-containing afferents by 6-hydroxydopamine, Brain Res. 30: 425–430.

    Article  PubMed  Google Scholar 

  • Hoffer, B. J., Siggins, G. R., Oliver, A. P., and Bloom, F. E., 1971b, Cyclic AMP mediation of norepinephrine inhibition in rat cerebellar cortex: A unique class of synaptic responses, Ann. N.Y. Acad. Sci. 185: 531–549.

    Article  PubMed  Google Scholar 

  • Hoffer, B. J., Siggins, G. R., and Bloom, F. E., 1971c, Studies on norepinephrine-containing afferents of Purkinje cells of rat cerebellum. II. Sensitivity of Purkinje cells to norepinephrine and related substances administered by microiontophoresis, Brain Res. 25: 523–534.

    Google Scholar 

  • Hoffer, B. J., Siggins, G. R., Oliver, A. P., and Bloom, F. E., 1972, Cyclic AMP-mediated adrenergic synapses to cerebellar Purkinje cells, Advan. Cyclic Nucleotide Res. 1: 41 1423.

    Google Scholar 

  • Hofmann, F., and Sold, G., 1972, A protein kinase activity from rat cerebellum stimulated by guanosine-3’:5’-monophosphate, Biochem. Biophys. Res. Commun. 49: 1100–1107.

    Article  PubMed  Google Scholar 

  • Hommes, F. A., and Beere, A., 1971, The development of adenyl cyclase in rat liver, kidney, brain and skeletal muscle, Biochim. Biophys. Acta 237: 296–300.

    Google Scholar 

  • Honda, F., and Imamura, H., 1968, Inhibition of cyclic 3’,5’-nucleotide phosphodiesterase by phenothiazine and reserpine derivatives, Biochim. Biophys. Acta 161: 267–269.

    Article  PubMed  Google Scholar 

  • Horovitz, Z. P., Beer,B., Clody, D. E., Vogel, J. R., and Chasin, M., 1972, Cyclic AMP and anxiety, Psychosomatics 13: 85–92.

    Google Scholar 

  • Huang, M., and Daly, J. W., 1972, Accumulation of cyclic adenosine monophosphate in incubated slices of brain tissue. 1. Structure-activity relationships of agonists and antagonists of biogenic amines and of tricyclic tranquilizers and antidepressants, J. Med. Chem. 15: 458–462.

    Article  PubMed  Google Scholar 

  • Huang, M., and Daly, J. W., 1974a, Adenosine-elicited accumulation of cyclic AMP in brain slices: Potentiation by agents which inhibit uptake of adenosine, Life Sci. 14: 489–503.

    Article  PubMed  Google Scholar 

  • Huang, M., and Daly, J. W., 1974b, Interrelationships among levels of ATP, adenosine and cyclic AMP in incubated slices of guinea pig cerebral cortex: Effect of depolarizing agents, psychotropic drugs and metabolic inhibitors, J. Neurochem., 23: 393–404.

    Article  PubMed  Google Scholar 

  • Huang, M., Shimizu, H., and Daly, J., 1971, Regulation of adenosine cyclic 3’,5’-phosphate formation in cerebral cortical slices: Interaction among norepinephrine, histamine, serotonin, Mol. Pharmacol. 7: 155–162.

    PubMed  Google Scholar 

  • Huang, M., Shimizu, H., and Daly, J. W., 1972, Accumulation of cyclic adenosine monophosphate in incubated slices of brain tissue. 2. Effects of depolarizing agents, membrane stabilizers, phosphodiesterase inhibitors, and adenosine analogs, J. Med. Chem. 15: 462–466.

    Article  PubMed  Google Scholar 

  • Huang, M., Gruenstein, E., and Daly, J. W., 1973a, Depolarization-evoked accumulation of cyclic AMP in brain slices: Inhibition by exogenous adenosine deaminase, Biochim. Biophys. Acta 329: 147–151.

    Article  PubMed  Google Scholar 

  • Huang, M., Ho, A. K. S., and Daly, J. W., 1973b, Accumulation of adenosine cyclic 3’,5’-monophosphate in rat cerebral cortical slices: Stimulatory effect of alpha and beta adrenergic agents after treatment with 6-hydroxydopamine, 2,3,5-trihydroxyphenethylamine and dihydroxytryptamines, Mol. Pharmacol. 9: 711–717.

    PubMed  Google Scholar 

  • Inoue, Y.,Yamamura, H., and Nishizuka, Y.,1973, Protamine kinase independent of adenosine 3’,5’-monophosphate from rat brain cytosol, Biochem. Biophys. Res. Commun. 50:228–236.

    Google Scholar 

  • Ishikawa, E., Ishikawa, S., Davis, J. W., and Sutherland, E. W., 1969, Determination of guanosine 3’,5’-monophosphate in tissues and of guanyl cyclase in rat intestine, J. Biol. Chem. 244: 6371–6376.

    PubMed  Google Scholar 

  • Israel, M. A., Kimura, H., and Kuriyama, K., 1972, Changes in activity and hormonal sensitivity of brain adenyl cyclase following chronic ethanol administration, Experientia 28: 1322–1323.

    Article  PubMed  Google Scholar 

  • Iwangoff, P., and Enz, A., 1971, The effect of dihydroergotamine on the phosphodiesterase activity of cat grey matter, Experientia 27: 1258–1259.

    Article  PubMed  Google Scholar 

  • Iwangoff, P., and Enz, A., 1972, The influence of various dihydroergotamine analogues on cyclic adenosine-3’,5’-monophosphate phosphodiesterase in the grey matter of cat brain in vitro, Agents Actions 2: 223–230.

    Article  PubMed  Google Scholar 

  • Janiec, W., Trzeciak, H., and Herman, Z., 1970, The influence of adrenaline and optical isomers of INPEA on the adenyl cyclase activity in brain hemispheres of rats in vitro, Arch. Int. Pharmacodyn. 185: 254–258.

    PubMed  Google Scholar 

  • Jard, S., Premont, J., and Benda, P., 1972, Adenylate cyclase, phosphodiesterases and protein kinase of rat glial cells in culture, FEBS Letters 26: 344–348.

    Article  PubMed  Google Scholar 

  • Jastorff, B., and Bar, H.-B., 1973, Effects of 5’amido analogues of adenosine 3’,5’monophosphate and adenosine 3:5’-monophosphothioate on protein kinase, binding protein and phosphodiesterases, Eur. J. Biochem. 37: 497–504.

    Article  PubMed  Google Scholar 

  • Jenner, F. A., Sampson, G. A., Thompson, E. A., Somerville, A. R., Beard, N. A., and Smith, A. A., 1972, Manic-depressive psychosis and urinary excretion of cyclic AMP, Brit. J. Psychiat. 121: 236–237.

    Google Scholar 

  • Johnson, E. M., Maeno, H., and Greengard, P., 1971, Phosphorylation of endogenous protein of rat brain by a cyclic adenosine 3’,5’-monophosphate-dependent protein kinase, J. Biol. Chem. 246: 7731–7739.

    PubMed  Google Scholar 

  • Adenosine w’,5monophosphate-dependent phosphorylation of a specific protein in synaptic membrane fractions from rat cerebrum, J. Biol. Chem. 247:5650–5652.

    Google Scholar 

  • Johnson, G. A., Boukma, S. J., Lahti, R. A., and Mathews, J., 1973, Cyclic AMP and phosphodiesterase in synaptic vesicles from mouse brain, J. Neurochem. 20: 1387–1392.

    Article  PubMed  Google Scholar 

  • Johnson, R. A., and Sutherland, E. W., 1973, Detergent-dispersed adenylate cyclase from rat brain: Effects of fluoride, cations and chelators, J. Biol. Chem. 248: 5114–5121.

    PubMed  Google Scholar 

  • Johnston, G. A. R., and Balcar, V. J., 1973, High affinity uptake of cyclic AMP in rat brain slices, Brain Res. 59: 451–453.

    Article  PubMed  Google Scholar 

  • Jones, G. H., Murthy, D. V. K., Tegg, D., Golling, R., and Moffatt, J. G., 1973, Analogs of adenosine 3’,5’-cyclic phosphate. II. Synthesis and enzymatic activity of derivatives of 1,N6-ethanoadenosine 3’,5’-cyclic phosphate, Biochem. Biophys. Res. Commun. 53: 1338–1343.

    Article  PubMed  Google Scholar 

  • Jordan, L. M., Lake, N., and Phillis, J. W., 1972a, Mechanism of noradrenaline depression of cortical neurones: A species comparison, Eur. J. Pharmacol. 20: 381–384.

    Article  PubMed  Google Scholar 

  • Jordan, L. M., Lake, N., and Phillis, J. W., 19726, Noradrenaline excitation of cortical neurones: A reply, J. Pharm. Pharmacol. 24: 739–741.

    Google Scholar 

  • Kakiuchi, S., and Rall, T. W., 1968a, Studies on adenosine 3’,5’-phosphate in rabbit cerebral cortex, Mol. Pharmacol. 4: 379–388.

    PubMed  Google Scholar 

  • Kakiuchi, S., and Rall, T. W., 19686, The influence of chemical agents on the accumulation of adenosine 3’,5’-phosphate in slices of rabbit cerebellum, Mol. Pharmacol. 4: 367–378.

    Google Scholar 

  • Kakiuchi, S., and Yamazaki, R., 1970a, Calcium dependent phosphodiesterase activity and its activating factor (PAF) from brain: Studies on cyclic 3’,5’-nucleotide phosphodiesterase, Biochem. Biophys. Res. Commun. 41: 1104–1110.

    Article  PubMed  Google Scholar 

  • Kakuichi, S., and Yamazaki, R., 19706, Properties of a heat-stable phosphodiesterase activating factor isolated from brain extract. II. Studies on cyclic 3’,5’ nucleotide phosphodiesterases, Proc. Jap. Acad. 46: 587–592.

    Google Scholar 

  • Kakiuchi, S., and Yamazaki, R., 1970c, Stimulation of the activity of cyclic 3’,5’-nucleotide phosphodiesterase by calcium ion, Proc. Jap. Acad. 46: 387–392.

    Google Scholar 

  • Kakiuchi, S., Rall, T. W., and Mcilwain, H., 1969, The effect of electrical stimulation upon the accumulation of adenosine 3’,5’-phosphate in isolatedcerebral tissue, J. Neurochem. 16: 485–491.

    Article  PubMed  Google Scholar 

  • Kakiuchi, S., Yamazaki, R., and Teshima, Y., 1971, Cyclic 3’,5’-nucleotide phosphodiesterase. IV. Two enzymes with different properties from brain, Biochem. Biophys. Res. Commun. 42: 968–974.

    Google Scholar 

  • Kakiuchi, S., Yamazaki, R., and Teshima, Y., 1972, Regulation of brain phosphodiesterase activity: Ca“ plus Mg”-dependent phosphodiesterase and its activating factor from rat brain, Advan. Cyclic Nucleotide Res. 1: 455–477.

    Google Scholar 

  • Kakiuchi, S., Yamazaki, R., Teshima, Y., and Uenishi, K., 1973, Regulation of nucleotide cyclic 3’:5’-monophosphate phosphodiesterase activity from rat brain by a modulator and Ca’, Proc. Natl. Acad. Sci. 70: 3526–3535.

    Article  PubMed  Google Scholar 

  • Kalisker, A., Rutledge, C. O., and Perkins, J. P., 1973, Effect of nerve degeneration by 6-hydroxydopamine on catecholamine-stimulated adenosine 3’,5’-monophosphate formation in rat cerebral cortex, Mol. Pharmacol. 9: 619–629.

    PubMed  Google Scholar 

  • Kalix, P., Mcafee, D., Schorderet, M., and Greengard, P., 1974, Pharmacological analysis of synaptically mediated increase in cyclic adenosine monophosphate in rabbit superior cervical ganglion, J. Pharmacol. Exp. Ther. 188: 676–687.

    PubMed  Google Scholar 

  • Katz, S., and Tenenhouse, A., 1973a, The relationship of adenyl cyclase to the activity of other ATP utilizing enzymes and phosphodiesterase in preparations of rat brain, mechanism of stimulation of cyclic AMP accumulation by NaF, Brit. J. Pharmacol. 48: 505–515.

    Article  Google Scholar 

  • Katz, S., and Tenenhouse, A., 1973b, The relationship of adenyl cyclase to the activity of other ATP utilizing enzymes and phosphodiesterase in preparations of rat brain: Mechanism of stimulation of cyclic AMP accumulation by adrenaline, ouabain and Mg“, Brit. J. Pharmacol. 48: 516–526.

    Google Scholar 

  • Kauffman, F. C., Harkonen, M. H. A., and Johnson, E. C., 1972, Adenyl cyclase and phosphodiesterase activity in cerebral cortex of normal and undernourished neonatal rats, Life Sci. 11 (II): 613–621.

    Article  Google Scholar 

  • Kebabian, J. W., and Greengard, P., 1971, Dopamine-sensitive adenyl cyclase: Possible role in synaptic transmission, Science 174: 1346–1349.

    Article  PubMed  Google Scholar 

  • Kebabian, J. W., Petzold, G. L., and Greengard, P., 1972, Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain and its similarity to the “dopamine receptor,” Proc. Natl. Acad. Sci. 69: 2145–2149.

    Article  PubMed  Google Scholar 

  • Keen, P., and Mclean, W. G., 1972a, Effect of dibutyryl cyclic-AMP on levels of dopamine-ßhydroxylase in isolated superior cervical ganglia, Naunyn-Schmiedebergs Arch. Pharmacol. 275: 465–469.

    Article  PubMed  Google Scholar 

  • Keen, P., and Mclean, W. G., 1972b, The effect of N6,02’-dibutyryl adenosine 3’:5’-cyclic monophosphate on noradrenaline synthesis in isolated superior cervical ganglia, Brit. J. Pharmacol. 46: 529–530.

    Google Scholar 

  • Kirkland, W. L., and Burton, P. R., 1972, Cyclic adenosine monophosphate-mediated stabilization of mouse neuroblastoma cell neurite microtubules exposed to low temperature, Nature New Biol. 240: 205–207.

    PubMed  Google Scholar 

  • Klainer, L. M., Chi, Y.-M., Freidberg, S. L., Rall, T. W., and Sutherland, E. W., 1962, IV. The effects of neurohormones on the formation of adenosine 3’,5’-phosphate by preparations from brain and other tissues, J. Biol. Chem. 237: 1239–1243.

    PubMed  Google Scholar 

  • Klein, D. C., Yuwiler, A., Weller, J. L., and Plotkin, S., 1973, Postsynaptic adrenergic-cyclic AMP control of the sèrotonin content of cultured rat pineal glands, J. Neurochem. 21: 1261–1271.

    Article  PubMed  Google Scholar 

  • Kodama, T., Matsukado, Y., Suzuki, T., Tanaka, S., and Shimizu, H., 1971, Stimulated formation of adenosine 3’,5’-monophosphate by desipramine in brain slices, Biochim. Biophys. Acta 252: 165–170.

    Article  PubMed  Google Scholar 

  • Kodama, T., Matsukado, Y., and Shimizu, H., 1973, The cyclic AMP system of human brain, Brain Res. 50: 135–146.

    Article  PubMed  Google Scholar 

  • Kohrman, A. F., 1973, Patterns of development of adenyl cyclase activity and norepinephrine responsiveness in the rat, Pediat. Res. 7: 575–581.

    Article  PubMed  Google Scholar 

  • Kramer, S. G., 1971, Dopamine: A retinal neurotransmitter. I. Retinal uptake, storage and light stimulated release of H3-dopamine in vivo, Invest. Ophthalmol. 10: 438–452.

    Google Scholar 

  • Krishna, G., Forn, J., Voight, K., Paul, M., and Gessa, G. L., 1970, Dynamic aspects of neurohormonal control of cyclic 3’,5’-AMP synthesis in brain, Advan. Biochem. Psychopharmacol. 3: 155–172.

    Google Scholar 

  • Kuehl, F. A., JR., Humes, J. L., Cirillo, V. J., and Ham, E. A., 1972, Cyclic AMP and prostaglandins in hormone action, Advan. Cyclic Nucleotide Res. 1: 493–502.

    Google Scholar 

  • Kuo, J. F., and Greengard, P., 1969a, Cyclic nucleotide-dependent protein kinases. IV. Widespread occurrence of adenosine 3’,5’-monophosphate dependent protein kinase in various tissues and phyla of the animal kingdom, Proc. Natl. Acad. Sci. 64: 1349–1355.

    Article  PubMed  Google Scholar 

  • Kuo, J. F., and Greengard, P., 19696, Adenosine 3’,5-monophosphate-dependent protein kinase from brain, Science 165: 63–65.

    Google Scholar 

  • Kuo, J. F., and Greengard, P., 1970a, Stimulation of adenosine 3’,5’monophosphate-dependent and guanosine 3’,5’-monophosphate-dependent protein kinases by some analogs of adenosine 3’,5’-monophosphate, Biochem. Biophys. Res. Commun. 40: 1032–1038.

    Article  PubMed  Google Scholar 

  • Kuo, J. F., and Greengard, P., 1970b, Cyclic nucleotide-dependent protein kinases. VII. Comparison of various histones as substrates for adenosine 3’,5’monophosphate-dependent and guanosine 3’,5’-monophosphate-dependent protein kinases, Biochim. Biophys. Acta 212. 434–440.

    Article  PubMed  Google Scholar 

  • Kuo, J. F., and Greengard, P., 1973, Stimulation of cyclic GMP dependent protein kinase by a protein fraction which inhibits cyclic AMP-dependent protein kinases, Fed. Proc. 30: 10–89.

    Google Scholar 

  • Kuo, J. F., Krueger, B. K., Sanes, J. R., and Greengard, P., 1970, Cyclic nucleotide-dependent protein kinases. V. Preparation and properties of adenosine 3’,5’monophosphate-dependent protein kinase from various bovine tissues, Biochim. Biophys. Acta 212: 79–91.

    Article  PubMed  Google Scholar 

  • Kuo, J.-F., Lee, T.-P., Reyes, P. L., Walton, K. G., Donnelly, T. E., JR., and Greengard, P., 1972, Cyclic nucleotide-dependent protein kinases. X. An assay method for the measurement of guanosine 3’,5’-monophosphate in various biological materials and a study of agents regulating its levels in heart and brain, J. Biol. Chem. 247: 16–22.

    PubMed  Google Scholar 

  • Kuo, W.-N., and Kuo, J. F., 1973, Accumulation of cyclic GMP and cyclic AMP levels in rat lung and other tissues by various agents as determined by double-prelabeling with radioactive guanine and adenine, Fed. Proc. 32:773Abs.

    Google Scholar 

  • Kurihara, K., 1972, Inhibition of cyclic 3’,5’-nucleotide phosphodiesterase in bovine taste papillae by bitter taste stimuli, FEBS Letters 27: 279–281.

    Article  PubMed  Google Scholar 

  • Kurihara, K., and Koyama, N., 1972, High activity of adenyl cyclase in olfactory and gustatory organs, Biochem. Biophys. Res. Commun. 48: 30–34.

    Article  PubMed  Google Scholar 

  • Kuriyama, K., and Israel, M. A., 1973, Effect of ethanol administration on cyclic 3’,5’adenosine monophosphate metabolism in brain, Biochem. Pharmacol. 22: 2919–2922.

    Article  PubMed  Google Scholar 

  • Kuroda, Y., and Mcilwain, H., 1973, Subcellular localization of [“C]adenine derivatives newly-formed in cerebral tissues and the effects of electrical excitation, J. Neurochem. 21:889–900.

    Google Scholar 

  • Lake, N., and Jordan, L. M., 1974, Failure to confirm cyclic-AMP as second messenger for norepinephrine in rat cerebellum, Science 183: 663–664.

    Article  PubMed  Google Scholar 

  • Lake, N., Jordan, L. M., and Phillis, J. W., 1972, Mechanism of noradrenaline action in cat cerebral cortex, Nature New Biol. 240: 249–250.

    Article  PubMed  Google Scholar 

  • Lake, N., Jordan, L. M., and Phillis, J. W., 1973, Evidence against cyclic adenosine 3’,5’-monophosphate (AMP) mediation of noradrenaline depression of cerebral cortical neurons, Brain Res. 60: 411–421.

    Google Scholar 

  • Lee, C.-J., and Dubos, R., 1972, Lasting biological effects of early environmental influences. VII. Metabolism of adenosine 3’,5’-monophosphate in mice exposed to early environmental stress, J. Exp. Med. 135: 220–234.

    Article  PubMed  Google Scholar 

  • Lee, T.-P., Kuo, J. F., and Greengard, P., 1972, Role of muscarinic cholinergic receptors in regulation of guanosine 3’,5’-cyclic monophosphate content in mammalian brain, heart muscle, and intestinal smooth muscle, Proc. Natl. Acad. Sci. 69: 3287–3291.

    Article  PubMed  Google Scholar 

  • Leonard, B. E., 1972, Effect of phentolamine on the increase in brain glycolysis following the intraventricular administration of dibutyryl-3/,5’-cyclic adenosine monophosphate and sodium fluoride to mice, Biochem. Pharmacol. 21: 115–117.

    Article  Google Scholar 

  • Libet, B., and Kobayashi, H., 1969, Generation of adrenergic and cholinergic potentials in sympathetic ganglion cells, Science 164: 1530–1532.

    Article  PubMed  Google Scholar 

  • Lim, R., and Mitsunobu, K., 1972, Effect of dibutyryl cyclic AMP on nucleic acid and protein synthesis in neuronal and glial tumor cells, Life Sci. 11 (II): 1063–1070.

    Article  Google Scholar 

  • Lim, R., Mitsunobu, K., and Li, W. K. P., 1973, Maturation-stimulation effect of brain extract and dibutyryl cyclic AMP on dissociated embryonic brain cells in culture, Exp. Cell. Res. 79: 243–246.

    Article  PubMed  Google Scholar 

  • Lindl, T., and Cramer, H., 1974, Formation, accumulation and release of adenosine 3’,5’-monophosphate induced by histamine in the superior cervical ganglion of the rat in vitro, Biochim. Biophys. Acta, 343: 182–191.

    Article  Google Scholar 

  • Lust, W. D., and Passonneau, J. V., 1973, Cyclic adenosine monophosphate, metabolites, and phosphorylase in neural tissue: A comparison of methods of fixation, Science 181: 280–282.

    Article  PubMed  Google Scholar 

  • Lust, W. D., Passonneau, J. V., and Goldberg, N. D., 1972, Reciprocal changes in 3’,5’-cAMP (cAMP) and 3’,5’-cGMP (cGMP) following electroconvulsive shock, Fed. Proc. 31:555Abs.

    Google Scholar 

  • Machova, J., and Kristofova, A., 1973, The effect of dibutyryl cyclic AMP, dopamine and aminophylline on ganglionic surface potential and transmission, Life Sci. 13: 525–535.

    Article  Google Scholar 

  • Macintyre, E. H., Wintersgill, C. J., Perkins, J. P., and Vatter, A. E., 1972, The responses in culture of human tumour astrocytes and neuroblasts to N6,0’-dibutyryl adenosine 3’,5’-monophosphoric acid, J. Cell Sci. 11: 639–667.

    PubMed  Google Scholar 

  • Mackay, A. V. P., and Iversen, L. L., 1972, Increased tyrosine hydroxylase activity of sympathetic ganglia cultured in the presence of dibutyryl cyclic AMP, Brain Res. 48: 424–426.

    Article  PubMed  Google Scholar 

  • Maeno, H., and Greengard, P., 1972, Phosphoprotein phosphates from rat cerebral cortex, J. Biol. Chem. 247: 3269–3277.

    PubMed  Google Scholar 

  • Maeno, H., Johnson, E. M., and Greengard, P., 1971, Subcellular distribution of adenosine 3’,5’-monophosphate-dependent protein kinase in rat brain, J. Biol. Chem. 246: 134–142.

    PubMed  Google Scholar 

  • Mandel, L. R., 1971, Inhibition of cyclic 3’,5’-adenosine monophosphate phosphodiesterase by substituted imidazopyrazines, Biochem. Pharmacol. 20: 3413–3421.

    Article  PubMed  Google Scholar 

  • Marley, E., and Nistico, G., 1972, Effects of catecholamines and adenosine derivatives given into the brain of fowls, Brit. J. Pharmacol. 46: 619–636.

    Article  Google Scholar 

  • Mcafee, D. A., and Greengard, P., 1972, Adenosine 3’,5’-monophosphate: Electrophysiological evidence for a role in synaptic transmission, Science 178: 310–312.

    Article  PubMed  Google Scholar 

  • Mcafee, D. A., Schorderet, M., and Greengard, P., 1971, Adenosine 3’,5’-monophosphate in nervous tissue: Increase associated with synaptic transmission, Science 171: 1156–1158.

    Article  PubMed  Google Scholar 

  • Mccune, R. W., Gill, T. H., Von Hungen, K., and Roberts, S., 1971, Catecholamine-sensitive adenyl cyclase in cell-free preparations from rat cerebral cortex, Life Sci. 10 (II): 443–450.

    Article  Google Scholar 

  • Mcilwain, H., 1972, Regulatory significance of the release and action of adenine derivatives in cerebral systems, Biochem. Soc. Symp. 36: 69–85.

    Google Scholar 

  • Mckenzie, S. G., and Bar, H. P., 1973, On the mechanism of adenyl cyclase inhibition by adenosine, Canad. J. Physiol. Pharmacol. 51: 190–196.

    Article  Google Scholar 

  • Mcneill, J. H., Lee, C.-Y., and Muschek, L. D., 1972, The effect of phentolamine and other drugs on rat brain phosphodiesterase, Canad. J. Physiol. Pharmacol. 50: 840–849.

    Article  Google Scholar 

  • Meyer, R. B., Shuman, D. A., Robins, R. K., Bauer, R. J., Dimmitt, M. K., and Simon, L. N., 1972, Synthesis and biological activity of several 6-substituted 9-ß-D-ribofuranosyl purine 3’,5’-cydic phosphates, Biochemistry 11: 2704–2709.

    Article  PubMed  Google Scholar 

  • Meyer, R. B., Shuman, D. A., Robins, R. K., Miller, J. P., and Simon, L. N., 1973, Synthesis and enzymic studies of 5’-aminoimidazole and N-1 and M-substituted adenine ribonucleotide cydic 3’,5’-phosphates prepared from adenosine cyclic 3’,5’-phosphate, J. Med. Chem. 16: 1319–1323.

    Article  PubMed  Google Scholar 

  • Miki, N., and Yoshida, H., 1972, Purification and properties of cyclic AMP phosphodiesterase from rat brain, Biochim. Biophys. Acta 268: 166–174.

    Article  PubMed  Google Scholar 

  • Miller, J. P., Shuman, D. A., Scholten, M. B., Dimmitt, M. K., Stewart, C. M., Khwaja, T. A., Robins, R. K., and Simon, L. N., 1973a, Synthesis and biological activity of some 2’ derivatives of adenosine 3’,5’-cyclic phosphate, Biochemistry 12: 1010–1015.

    Article  PubMed  Google Scholar 

  • Miller, J. P., Boswell, K. H., Muneyama, K., Simon, L. N., Robins, R. K., and Shuman, D. A., 1973b, Synthesis and biochemical studies of various 8-substituted derivatives of guanosine 3’,5’-cyclic phosphate, inosine 3’,5’-cyclic phosphate, and xanthosine 3’,5’-cyclic phosphate, Biochemistry 12: 5310–5319.

    Article  PubMed  Google Scholar 

  • Miller, H., 1973, Cyclic nucleotides and photoreception, Exp. Eye Res. 16: 357–363.

    Article  PubMed  Google Scholar 

  • Miller, W. H., Gorman, R. E., and Bitensky, M. W., 1971, Cyclic adenosine monophosphate: Function in photoreceptors, Science 174: 295–297.

    Article  PubMed  Google Scholar 

  • Minna, J. D., and Gilman, A. G., 1973, Expression of genes for metabolism of cyclic adenosine 3’:5’-monophosphate in somatic cells. II. Effects of prostaglandin E, and theophylline on parental and hybrid cells, J. Biol. Chem. 248: 6618–6625.

    PubMed  Google Scholar 

  • Miyamoto, E., Kuo, J. F., and Greengard, P., 1969a, Adenosine 3’,5’-monophosphate-dependent protein kinase from brain, Science 165: 63–65.

    Article  PubMed  Google Scholar 

  • Miyamoto, E., Kuo, J. F., and Greengard, P., 1969b, Cyclic nucleotide-dependent protein kinases: I. Purification and properties of adenosine 3’,5’-monophosphate-dependent protein kinase from bovine brain, J. Biol. Chem. 244: 6395–6402.

    PubMed  Google Scholar 

  • Miyamoto, E., Petzold, G. L., Harris, J. S., and Greengard, P., 1971, Dissociation and concomitant activation of adenosine 3’,5’-monophosphate-dependent protein kinase by histone, Biochem. Biophys. Res. Commun. 44: 305–312.

    Article  PubMed  Google Scholar 

  • Mizon, J., Shandrani, E., and Mizon, C., 1971, Détermination de l’activite inhibitrice de quelques nouvelles théophyllines substituées sur la phosphodiestérase spécifique des nucléotides cycliques, Thérapie 26: 911–917.

    PubMed  Google Scholar 

  • Monard, D., Solomon, F., Rentsch, M., and Gysin, R., 1973, Glia-induced morphological differentiation in neuroblastoma cells, Proc. Natl. Acad. Sci. 70: 1894–1897.

    Article  PubMed  Google Scholar 

  • Monn, E., and Christiansen, R. O., 1971, Adenosine 3’,5’-monophosphate phosphate phosphodiesterases: Multiple molecular forms, Science 173: 540–541.

    Article  PubMed  Google Scholar 

  • Mrsulja, B. B., 1972a, The influence of some biogenic amines and cyclic N-2-O-dibutyryladenosine-3’-5’-monophosphate on glycogen content in rat brain slices, Experientia 28: 1067.

    Article  PubMed  Google Scholar 

  • Mrsulja, B. R., 1972b, The influence of propranolol and dibenzyline on glycogenolytic effects of some biogenic amines in rat brain slices, Experientia 28: 1072–1073.

    Article  PubMed  Google Scholar 

  • Muneyama, K., Bauer, R. J., Shuman, D. A., Robins, R. K., and Simon, L. N., 1971, Chemical synthesis and biological activity of 8-substituted adenosine 3’,5’-cyclic monophosphate derivatives, Biochemistry 10: 2390–2395.

    Article  PubMed  Google Scholar 

  • Murad, F., 1973, Clinical studies and applications of cyclic nucleotides, Advan. Cyclic Nucleotide Res. 3: 355–383.

    Google Scholar 

  • Murray, A. W., and Froscio, M., 1971, Cyclic adenosine 3’,5’-monophosphate and microtubule function: Specific interaction of the phosphorylated protein subunits with a soluble brain component, Biochem. Biophys. Res. Commun. 44: 1089–1095.

    Article  PubMed  Google Scholar 

  • Nahorski, S. R., and Rogers, K. J., 1973, The adenosine 3’,5’-monophosphate content of brain tissue obtained by an ultra-rapid freezing technique, Brain Res. 51: 332–336.

    Article  PubMed  Google Scholar 

  • Nahorski, S. R., Rogers, K. J., and Pinns, J., 1973, Cerebral phosphodiesterase and dopamine receptor, J. Pharm. Pharmacol. 25: 912–913.

    Article  PubMed  Google Scholar 

  • Naito, K., and Kuriyama, K., 1973, Effect of morphine administration on adenyl cyclase and 3’,5’-cyclic nucleotide phosphodiesterase 1ctivities in the brain, Jap. J. Pharmacol. 23: 274–276.

    Article  PubMed  Google Scholar 

  • Nathanson, J. A., and Greengard, P., 1973, Octopamine-sensitive adenylate cyclase: Evidence for a biological role of octopamine in nervous tissue, Science 180: 308–310.

    Article  PubMed  Google Scholar 

  • Newburgh, R. W., and Rosenberg, R. N., 1972, Effect of norepinephrine on glucose metabolism in glioblastoma and neuroblastoma cells in cell culture, Proc. Natl. Acad. Sci. 69: 1677–1680.

    Article  PubMed  Google Scholar 

  • Opler, L. A., and Makman, M. H., 1972, Mediation by cyclic AMP of hormone-stimulated glycogenolysis in cultured rat astrocytoma cells, Biochem. Biophys. Res. Commun. 46: 1140–1145.

    Article  PubMed  Google Scholar 

  • Teen, U., Oesch, F., and Thoenen, H., 1973, Dissociation between changes in cyclic AMP and subsequent induction of tyrosine hydroxylase in rat superior cervical ganglion and adrenal medulla, Naunyn-Schmiedebergs Arch. Pharmacol. 280: 129–140.

    Article  Google Scholar 

  • Otten, U., Mueller, R. A., Oesch, F., and Thoenen, H., 1974, Location of an isoproterenolresponsive cyclic AMP-pool in adrenergic nerve cell bodies and its relationship to tyrosine hydroxylase induction, Proc. Natl. Acad. Sci. 71: 2217–2221.

    Article  PubMed  Google Scholar 

  • Palmer, G. C., 1972, Increased cyclic AMP response to norepinephrine in the rat brain following 6-hydroxydopamine, Neuropharmacology 11: 145–149.

    Article  PubMed  Google Scholar 

  • Palmer, G. C., 1973a, Adenyl cyclase in neuronal and glial-enriched fractions from rat and rabbit brain, Res. Commun. Chem. Pathol. Pharmacol. 5: 603–613.

    PubMed  Google Scholar 

  • Palmer, G. C., 1973b, Influence of amphetamines, protriptyline and pargyline on the time course of the norepinephrine-induced accumulation of cyclic AMP in rat brain, Life Sci. 12 (II): 345–355.

    Article  Google Scholar 

  • Palmer, G. C., and Burks, T. F., 1971, Central and peripheral adrenergic blocking actions of LSD and BOL, Eur. J. Pharmacol. 16: 113–116.

    Google Scholar 

  • Palmer, G. C., Robison, G. A., and Sulser, F., 1971, Modification by psychotropic drugs of the cyclic adenosine monophosphate response to norepinephrine in rat brain, Biochem. Pharrnacol. 20: 236–239.

    Article  Google Scholar 

  • Palmer, G. C., Schmidt, M. J., and Robison, G. A., 1972a, Development and characteristics of the histamine-induced accumulation of cyclic AMP in the rabbit cerebral cortex, J. Neurochem. 19: 2251–2256.

    Article  PubMed  Google Scholar 

  • Palmer, G. C., Robison, G. A., Manian, A. A., and Sulser, F., 1972b, Modification by psychotropic drugs of the cyclic AMP response to norepinephrine in the rat brain in vitro, Psychopharmacologia 23: 201–211.

    Article  Google Scholar 

  • Palmer, G. C., Sulser, F., and Robison, G. A., 1973, Effects of neurohumoral and adrenergic agents on cyclic AMP levels in various areas of the rat brain in vitro, Neuropharmacology 12: 327–337.

    Article  Google Scholar 

  • Pannbacker, R. G., 1973, Control of guanylate cyclase activity in the rod outer segment, Science 182: 1138–1139.

    Article  PubMed  Google Scholar 

  • Pannbacker, R. G., Fleischman, D. E., and Reed, D. W., 1972, Cyclic nucleotide phosphodiesterase: High activity in a mammalian photoreceptor, Science 175: 757–758.

    Article  PubMed  Google Scholar 

  • Paul, M. I., Pauk, G. L., and Ditzion, B. R., 1970a, The effect of centrally acting drugs on the concentration of brain adenosine 3’,5’-monophosphate, Pharmacology 3: 148–154.

    Article  Google Scholar 

  • Paul, M. I., Drrzlon, B. R., Pauk, G. L., and Janowsky, D. S., 1970b, Urinary adenosine 3’,5’-monophosphate excretion in affective disorders, Am. J. Psychiat. 126: 1493–1497.

    Google Scholar 

  • Paul, M. I., Cramer, H., and Goodwin, F. K., 1970c, Urinary cyclic AMP in affective illness, Lancet 1: 996.

    Article  PubMed  Google Scholar 

  • Paul, M. I., Ditzion, B. R., and Janowsky, D. S., 1970d, Affective illness and cyclic-AMP excretion, Lancet i:88.

    Google Scholar 

  • Paul, M. I., Cramer, H., and Goodwin, F. K., 197la, Urinary cyclic AMP excretion in depression and mania, Arch. Gen. Psychiat. 24: 327–333.

    Google Scholar 

  • Paul, M. I., Cramer, H., and Bunney, W. E., JR., 1971b, Urinary adenosine 3’,5’- monophosphate in the switch process from depression to mania, Science 171: 300–303.

    Article  PubMed  Google Scholar 

  • Peach, M. J., 1972, Stimulation of release of adrenal catecholamine by adenosine 3’:5’-cyclic monophosphate and theophylline in the absence of extracellular Ca’, Proc. Natl. Acad. Sci. 69: 834–836.

    Article  PubMed  Google Scholar 

  • Perkins, J. P., 1973, Adenyl cyclase, Advan. Cyclic Nucleotide Res. 3: 1–64.

    Google Scholar 

  • Perkins, J. P., and Moore, M. M., 1971, Adenyl cyclase of rat cerebral cortex, J. Biol. Chem. 246: 62–68.

    PubMed  Google Scholar 

  • Perkins, J. P., and Moore, M. M., 1973a, Characterization of the adrenergic receptors mediating a rise in cyclic 3’,5’-adenosine monophosphate in rat cerebral cortex, J. Pharmacol. Exp. Ther. 185: 371–378.

    PubMed  Google Scholar 

  • Perkins, J. P., and Moore, M., 1973b, Regulation of the adenosine cyclic 3’,5’-monophosphate content of rat cerebral cortex: Ontogenetic development of the responsiveness to catecholamines and adenosine, Mol. Pharmacol. 9: 774–782.

    PubMed  Google Scholar 

  • Perkins, J. P., Macintyre, E. H., Riley, W. D., and Clark, R. B., 1971, Adenyl cyclase, phosphodiesterase and cyclic AMP dependent protein kinase of malignant glial cells in culture, Life Sci. 10 (I): 1069–1080.

    Article  Google Scholar 

  • Perry, T. L., Hemmings, S., Drummond, G. I., Hansen, S., and Gjessing, L. R., 1973, Urinary cyclic AMP in periodic catatonia, Am. J. Psychiat. 130: 927–929.

    PubMed  Google Scholar 

  • Phillis, J. W., Lake, N., and Yarbrough, G., 1973, Calcium mediation of the inhibitory effects of biogenic amines on cerebral cortical neurones, Brain Res. 53: 465–469.

    Google Scholar 

  • Pichard, A.-L., Hanoune, J., and Kaplan, J.-C., 1972, Human brain and platelet cyclic adenosine 3’,5’-monophosphate phosphodiesterases: Different response to drugs, Biochim. Biophys. Acta 279: 217–220.

    Article  PubMed  Google Scholar 

  • Pichichero, M., Beer, B., and Clody, D. E., 1973, Effects of dibutyryl cyclic AMP on restoration of function of damaged sciatic nerve in rats, Science 182: 724–725.

    Article  PubMed  Google Scholar 

  • Poech, G., and Kukovetz, W. R., 1971, Papaverine-induced inhibition of phosphodiesterase activity in various mammalian tissues, Life Sci. 10 (1): 133–144.

    Article  Google Scholar 

  • Prasad, K. N., 1972a, Neuroblastoma clone: Prostaglandin versus dibutyryl cyclic AMP, 8-benzylthio-cyclic AMP, phosphodiesterase inhibitors and x-rays, Proc. Soc. Exp. Biol. Med. 140: 126–129.

    PubMed  Google Scholar 

  • Prasad, K. N., 1972b, Morphological differentiation induced by prostaglandin in mouse neuroblastoma cells in culture, Nature New Biol. 236: 49–52.

    PubMed  Google Scholar 

  • Prasad, K. N., 1972c, Cyclic AMP-induced differentiated mouse neuroblastoma cells lose tumourgenic characteristics, Cytobios 6: 163–166.

    PubMed  Google Scholar 

  • Prasad, K. N., and Hsie, A. W., 1971, Morphologic differentiation of urine neuroblastoma cells induced in vitro by dibutyryl adenosine 3’:5’-cyclic monophosphate, Nature New Biol. 233: 141–142.

    PubMed  Google Scholar 

  • Prasad, K. N., and Kumar, S., 1973, Cyclic 3’,5’-phosphodiesterase activity during cyclic AMP-induced differentiation of neuroblastoma cells in culture, Proc. Soc. Exp. Biol. Med. 142: 406–409.

    PubMed  Google Scholar 

  • Prasad, K. N., and Mandal, B., 1972, Catechol-O-methyl-transferase activity in dibutyryl cyclic AMP, prostaglandin and x-ray-induced differentiated neuroblastoma cell culture, Exp. Cell Res. 74: 532–534.

    Article  PubMed  Google Scholar 

  • Prasad, K. N., and Mandal, B., 1973, Choline acetyltransferase level in cyclic AMP and X-ray induced morphologically differentiated neuroblastoma cells in culture, Cytobios 8: 75–80.

    PubMed  Google Scholar 

  • Prasad, K. N., and Sheppard, J. R., 1972a, Neuroblastoma cell culture: Membrane changes during cyclic AMP-induced morphological differentiation, Proc. Soc. Exp. Biol. Med. 141: 240–243.

    PubMed  Google Scholar 

  • Prasad, K. N., and Sheppard, J. R., 1972b, Inhibitors of cyclic-nucleotide phosphodiesterase induce morphological differentiation of mouse neuroblastoma cell culture, Exp. Cell. Res. 73: 436–440.

    Article  PubMed  Google Scholar 

  • Prasad, K. N., and Vernadakis, A., 1972, Morphological and biochemical study in x-ray and dibutyryl cyclic AMP-induced differentiated neuroblastoma cells, Exp. Cell Res. 70: 27–32.

    Article  PubMed  Google Scholar 

  • Prasad, K. N., Waymire, J. C., and Weiner, N., 1972, A further study on the morphology and biochemistry of X-ray and dibutyryl cyclic AMP-induced differentiated neuroblastoma cells in culture, Exp. Cell Res. 74: 110–114.

    Article  PubMed  Google Scholar 

  • Prasad, K. N., Mandal, B., Waymire, J. C., Lees, G. J., Vernadakis, A., and Weiner, N., 1973a, Basal level of neurotransmitter synthesizing enzymes and effect of cyclic AMP agents on the morphological differentiation of isolated neuroblastoma clones, Nature New Biol. 241: 117–119.

    PubMed  Google Scholar 

  • Prasad, K. N., Gilmer, K., and Kumar, S., 1973b, Morphologically “differentiated” mouse neuroblastoma cells induced by noncyclic AMP agents: Levels of cyclic AMP, nucleic acid and protein, Proc. Soc. Exp. Biol. Med. 143: 1168–1171.

    PubMed  Google Scholar 

  • Pun, I., and Mcilwain, H., 1972a, Adenine derivatives as neurohumoral agents in the brain: The quantities liberated on excitation of superfused cerebral tissues, Biochem. J. 130: 975–981.

    Google Scholar 

  • Pull, I., and mcilwain, H., 1972b, Metabolism of [“C]adenine and derivatives by cerebral tissues, superfused and electrically stimulated, Biochem. J. 126: 965–973.

    PubMed  Google Scholar 

  • Pull, I., and Mcilwain, H., 1973, Output of [“C]adenine nucleotides and their derivatives from cerebral tissues: Tetrodotoxin-resistant and calcium ion—requiring components, Biochem. J. 136: 893–901.

    PubMed  Google Scholar 

  • Purpura, D. P., and Shofer, R. J., 1972, Excitatory action of dibutyryl cyclic adenosine monophosphate on immature cerebral cortex, Brain Res. 38: 179–181.

    Google Scholar 

  • Quastel, D. M. J., and Hackett, J. T., 1971, Quantal release of acetylcholine at the neuromuscular junction is not mediated by cyclic 3’,5’adenosine monophosphate, Fed. Proc. 30:557Abs.

    Google Scholar 

  • Rall, T. W., and Sattin, A., 1970, Factors influencing the accumulation of cyclic AMP in brain Res. Prog. Bull. 8 (3): 221–317.

    Google Scholar 

  • Rall, T. W., and Sattin, A., 1970, Factors influencing the accumulation of cyclic AMP in brain tissue, Advan. Biochem. Psychopharmacol. 3: 113–133.

    Google Scholar 

  • Ramsden, E. N., 1970, Cyclic AMP in depression and mania, Lancet ii:108.

    Google Scholar 

  • Rappaport, L., Leterrier, J. F., and Nunez, J., 1972, Non phosphorylation in vitro of the 6S tubulin from brain and thyroid tissue, FEBS Letters 26: 349–352.

    Article  PubMed  Google Scholar 

  • Rasmussen, H., 1970, Cell communication, calcium ion, and cyclic adenosine monophosphate, Science 170: 404–412.

    Article  PubMed  Google Scholar 

  • Rasmussen, H., and Tenenhouse, A., 1968, Cyclic adenosine monophosphate, Ca“ and membranes, Proc. Natl. Acad. Sci. 59: 1364–1370.

    Article  PubMed  Google Scholar 

  • Reddington, M., Rodnight, R., and Williams, M., 1973, Turnover of protein-bound serine phosphate in respiring slices of guinea-pig cerebral cortex, Biochem. J. 132: 475–482.

    PubMed  Google Scholar 

  • Richelson, E., 1973, Stimulation of tyrosine hydroxylase activity in an adrenergic clone of mouse neuroblastoma by dibutyryl cyclic AMP, Nature New Biol. 242:175–176.

    Google Scholar 

  • Rigberg, M., Vacik, J. P., and Shelver, W. H., 1969, Utilization of radiometric analysis for measurement of activation of adenyl cyclase by sympathomimetic amines, J. Pharmaceut. Sci. 58: 358–359.

    Article  Google Scholar 

  • Rindi, G., Sciorelli, G., Poloni, M., and Acanfora, F., 1972, Induction of ingestive responses by cAMP applied into the rat hypothalamus, Experientia 28: 1047–1049.

    Article  PubMed  Google Scholar 

  • Roberts, E., and Simonsen, D. G., 1970, Some properties of cyclic 3’,5’-nucleotide phosphodiesterase of mouse brain: Effects of imidazole-4-acetic acid, chlorpromazine, cyclic 3’,5’-GMP, and other substances, Brain Res. 24: 91–111.

    Article  PubMed  Google Scholar 

  • Robison, G. A., Copper, A. J., Whybrow, P. C., and Prange, A. J., 1970a, Cyclic AMP in affective disorders, Lancet II: 1028–1029.

    Article  Google Scholar 

  • Robison, G. A., Schmidt, M. J., and Sutherland, E. W., 1970b, On the development and properties of the brain adenyl cyclase system, Advan. Biochem. Psychopharmacol. 3: 11–30.

    Google Scholar 

  • Roisen, F. J., and Murphy, R. A., 1973, Neurite development in vitro. II. The role of microfilaments and microtubules in dibutyryl adenosine 3’,5’-cyclic monophosphate and nerve-growth-factor stimulated maturation, J. Neurobiol. 4: 397–417.

    Article  PubMed  Google Scholar 

  • Roisen, F. J., Murphy, R. A., Richichero, M. E., and Braden, W. G., 1972a, Cyclic adenosine monophosphate stimulation of axonal elongation, Science 175: 73–74.

    Article  PubMed  Google Scholar 

  • Roisen, F. J., Murphy, R. A., and Braden, W. G., 1972b, Neurite development in vitro. I. The effects of adenosine 3’,5’-cyclic monophosphate (cyclic AMP), J. Neurobiol. 4: 347–368.

    Article  Google Scholar 

  • Roisen, F. J., Murphy, R. A., and Braden, W. G., 1972c, Dibutyryl cyclic adenosine monophosphate stimulation of colcemid-inhibited axonal elongation, Science 177: 809–811.

    Article  PubMed  Google Scholar 

  • Roisen, F. J., Murphy, R. A., and Braden, W. G., 1972d, Neurite development in vitro. I. The effects of adenosine 3’5’-cyclic monophosphate (cyclic AMP), J. Neurobiol. 3: 347–368.

    Article  PubMed  Google Scholar 

  • Rojakovick, A. S., and March, R. B., 1972, The activation and inhibition of adenyl cyclase from the brain of the Madagascar cockroach (Gromphadorhina portentosa), Comp. Biochem. Physiol. 43B: 209–215.

    Article  Google Scholar 

  • Russell, J. R., Thompson, W. J., Schneider, F. W., and Appleman, M. M., 1972, 3’:5’-Cyclic monophosphate phosphodiesterase: Negative cooperativity, Proc. Natl. Acad. Sci. 69: 1791–1795.

    Google Scholar 

  • Sattin, A., 1971, Increase in the content of adenosine 3’,5’-monophosphate in mouse forebrain during seizures and prevention of the increase by methylxanthines, J. Neurochem. 18: 1087–1096.

    Article  PubMed  Google Scholar 

  • Sattin, A., and Rall, T. W., 1970, The effect of adenosine and adenine nucleotides on the cyclic adenosine 3’,5’-phosphate content of guinea pig cerebral cortex slices, Mol. Pharmacol. 6: 13–23.

    PubMed  Google Scholar 

  • Schimmer, B. P., 1971, Effects of catecholamines and monovalent cations on adenylate cyclase activity in cultured glial tumor cells, Biochem. Biophys. Acta 252: 567–573.

    Article  PubMed  Google Scholar 

  • Schimmer, B. P., 1973, Influence of Li-on epinephrine-stimulated adenylate cyclase activity in cultured glial tumor cells, Biochem. Biophys. Acta 326: 186–192.

    Google Scholar 

  • Schmidt, M. J., and Robison, G. A., 1971, The effect of norepinephrine on cyclic AMP levels in discrete regions of the developing rabbit brain, Life Sci. 10 (í): 459–464.

    Article  Google Scholar 

  • Schmidt, M. J., and Robison, G. A., 1972, The effect of neonatal thyroidectomy on the development of the adenosine 3’,5’-monophosphate system in the rat brain, J. Neurochem. 19: 937–947.

    Article  PubMed  Google Scholar 

  • Schmidt, M. J., and Sokoloff, L., 1973, Activity of cyclic AMP-dependent microsomal protein kinase and phsphorylation of ribosomal protein in rat brain during postnatal development, J. Neurochem. 21: 1193–1205.

    Article  PubMed  Google Scholar 

  • Schmidt, M. J., Palmer, E. C., Dettbarn, W.-D., and Robison, G. A., 1970, Cyclic AMP and adenyl cyclase in the developing rat brain, Develop. Psychobiol. 3: 53–67.

    Article  Google Scholar 

  • Schmidt, M. J., Schmidt, D. E., and Robison, G. A., 1971, Cyclic adenosine monophosphate in brain areas: Microwave irradiation as a means of tissue fixation, Science 173: 1142–1143.

    Article  PubMed  Google Scholar 

  • Schmidt, M. J., Hopkins, J. T., Schmidt, D. E., and Robison, G. A., 1972, Cyclic AMP in brain areas: Effects of amphetamine and norepinephrine assessed through the use of microwave radiation as a means of tissue fixation, Brain Res. 42: 465–477.

    Article  PubMed  Google Scholar 

  • Schmidt, S. Y., and Lolley, R. N., 1973, Cyclic-nucleotide phosphodiesterase: An early defect in inherited retinal degeneration in C3H mice, J. Cell Biol. 57: 117–123.

    Article  PubMed  Google Scholar 

  • Schrier, B. K., and Gilman, A. G., 1973, Elevation of cyclic AMP content of rat brain cell cultures by adenosine, Fed. Proc. 32:680Abs.

    Google Scholar 

  • Schrier, B. K., and Shapiro, D. L., 1973, Effects of N6-monobutyryl-cyclic AMP on glutamate decarboxylase activity in fetal rat brain cells and glial tumor cells in culture, Exp. Cell Res. 80: 459–465.

    Article  PubMed  Google Scholar 

  • Schorderet, M., Mcafee, D. A., and Greengard, P., 1972, Cyclic AMP as a possible mediator of adrenergic transmission in sympathetic ganglia, Advan. Cyclic Nucleotide Res. 1: 337356.

    Google Scholar 

  • Schultz, J., 1974a, Adenosine 3’,5’-monophosphate in guinea pig cerebral cortical slices: Effect of benzodiazepines, J. Neurochem., 22: 685–690

    Article  PubMed  Google Scholar 

  • Schultz, J., 1974b, Inhibition of 3’,5’-nucleotide phosphodiesterase in guinea pig cerebral cortical slices, Arch. Biochem. Biophys. 163: 15–20.

    Article  PubMed  Google Scholar 

  • Schultz, J. and Daly, J. W., 1973a, Cyclic adenosine 3’,5’-monophosphate in guinea pig cerebral cortical slices. I. Formation of cyclic adenosine 3’,5’-monophosphate from endogenous adenosine triphosphate and from radioactive adenosine triphosphate formed during a prior incubation with radioactive adenine, J. Biol. Chem. 248: 843–852.

    PubMed  Google Scholar 

  • Schultz, J., and Daly, J. W., 1973b, Cyclic adenosine 3’,5’-monophosphate in guinea pig cerebral cortical slices. II. The role of phosphodiesterase activity in the regulation of levels of cyclic adenosine 3’,5’-monophosphate, J. Biol. Chem. 248: 853–859.

    PubMed  Google Scholar 

  • Schultz, J., and Daly, J. W., 1973c, Cyclic adenosine 3’,5’-monophosphate in guinea pig cerebral cortical slices. III. Formation, degradation, and reformation of cyclic adenosine 3’,5’-monophosphate during sequential stimulations by biogenic amines and adenosine, J. Biol. Chem. 248: 860–866.

    PubMed  Google Scholar 

  • Schultz, J., and Daly, J. W., 1973d, Adenosine 3’,5’-monophosphate in guinea pig cerebral cortical slices: Effects of a-and ß-adrenergic agents, histamine, serotonin and adenosine, J. Neurochem. 21: 573–579.

    Article  PubMed  Google Scholar 

  • Schultz, J., and Daly, J. W., 1973e, Accumulation of cyclic adenosine 3’,5’-monophosphate in cerebral cortical slices from rat and mouse stimulatory effect of a-and ß-adrenergic agents and adenosine, J. Neurochem. 21: 1319–1326.

    Article  PubMed  Google Scholar 

  • Schultz, J., and Hamprecht, B., 1973, Adenosine 3’,5’-monophosphate in cultured neuroblastoma cells: Effect of adenosine, phosphodiesterase inhibitors and benzazepines, NaunynSchmiedebergs Arch. Pharmacol. 278: 215–225.

    Article  Google Scholar 

  • Schultz, J., Hamprecht, B., and Daly, J. W., 1972, Accumulation of adenosine 3’:5’-cyclic monophosphate in clonal glial cells: Labeling of intracellular adenine nucleotides with radioactive adenine, Proc. Natl. Acad. Sci. 69: 1266–1270.

    Article  PubMed  Google Scholar 

  • Schwartz, J. P., Morris, N. R., and Breckenridge, B. M., 1973, Adenosine 3’,5’monophosphate in glial tumor cells, J. Biol. Chem. 248: 2699–2704.

    PubMed  Google Scholar 

  • Sciorelli, G., Poloni, M., and Rindi, G., 1972, Evidence for cholinergic mediation of ingestive responses elicited by dibutyryl-adenosine-3’,5’-monophosphate in rat hypothalamus, Brain Res. 48: 427–431.

    Article  PubMed  Google Scholar 

  • Seeds, N. W., and Gilman, A. G., 1971, Norepinephrine stimulated increase of cyclic AMP levels in developing mouse brain cell cultures, Science 174: 292.

    Article  PubMed  Google Scholar 

  • Shanta, T. R., Woods, W. D., Waitzman, M. B., and Bourne, G. H., 1966, Histochemical method for localization of cyclic 3’,5’-nucleotide phosphodiesterase, Histochemie 7: 177–190.

    Article  PubMed  Google Scholar 

  • Shapiro, D. L., 1973, Morphological and biochemical alterations in fetal rat brain cells cultured in the presence of monobutyryl cyclic AMP, Nature 241: 203–204.

    Article  PubMed  Google Scholar 

  • Shashoua, V. E., 1971, Dibutyryl adenosine cyclic 3’:5’-monophosphate effects on goldfish behavior and brain RNA metabolism, Proc. Natl. Acad. Sci. 68: 2835–2838.

    Article  PubMed  Google Scholar 

  • Sheppard, H., and Wiggan, G., 1971, Different sensitivities of the phosphodiesterases (adenosine-3’,5’-cyclic phosphate 3’-phosphohydrolase) of dog cerebral cortex and erythrocytes to inhibition by synthetic agents and cold, Biochem. Pharmacol. 20: 2128–2130.

    Article  PubMed  Google Scholar 

  • Sheppard, H., Wiggan, G., and Tsien, W. H., 1972, Structure-activity relationships for inhibitors of phosphodiesterase from erythrocytes and other tissues, Advan. Cyclic Nucleotide Res. 1: 103–112.

    Google Scholar 

  • Sheppard, J. R., and Prasad, K. N., 1973, Cyclic AMP levels and the morphological differentiation of mouse neuroblastoma cells, Life Sci. 12: 431–439.

    Article  Google Scholar 

  • Shimizu, H., and Daly, J., 1970, Formation of cyclic adenosine 3’,5’-monophosphate from adenosine in brain slices, Biochim. Biophys. Acta 222: 465–473.

    Article  PubMed  Google Scholar 

  • Shimizu, H., and Daly, J. W., 1972a, Methods for the measurement of cyclic AMP in brain, in: Methods in Neurochemistry, Vol. 2 ( R. Fried, ed.), pp. 147–168, Marcel Dekker, New York.

    Google Scholar 

  • Shimizu, H., and Daly, J. W., 1972b, Effect of depolarizing agents on accumulation of cyclic adenosine 3’,5’-monophosphate in cerebral cortical slices, Eur. J. Pharmacol. 17: 240–252.

    Article  PubMed  Google Scholar 

  • Shimizu, H., and Okayama, H., 1973, An ATP pool associated with adenyl cyclase of brain tissue, J. Neurochem. 20: 1279–1283.

    Article  PubMed  Google Scholar 

  • Shimizu, H., Daly, J. W., and Creveling, C. R., 1969, A radioisotopic method for measuring the formation of adenosine 3’,5’-cyclic monophosphate in incubated slices of brain, J. Neurochem. 16: 1609–1619.

    Article  PubMed  Google Scholar 

  • Shimizu, K, Creveling., C. R., and Daly, J., 1970a, Stimulated formation of adenosine 3’,5’-cyclic phosphate in cerebral cortex: Synergism between electrical activity and biogenic amines, Proc. Natl. Acad. Sci. 65: 1033–1040.

    Google Scholar 

  • Shimizu, H., Creveling, C. R., and Daly, J. W., 1970b, Cyclic adenosine 3’,5’-monophosphate formation in brain slices: Stimulation by batrachotoxin, ouabain, veratridine, and potassium ions, Mol. Pharmacol. 6: 184–188.

    PubMed  Google Scholar 

  • Shimizu, H., Creveling, C. R., and Daly, J. W., 1970c, The effect of histamines and other compounds on the formation of adenosine 3’,5’-monophosphate in slices from cerebral cortex, J. Neurochem. 17: 441–444.

    Article  PubMed  Google Scholar 

  • Shimizu, H., Creveling, C. R., and Daly, J. W., 1970d, Effect of membrane depolarization and biogenic amines on the formation of cyclic AMP in incubated brain slices, Advan. Biochem. Psychopharmacol. 3: 135–154.

    Google Scholar 

  • Shimizu, H., Tanaka, S., Suzuki, T., and Matsukado, Y., 1971, The response of human cerebrum adenyl cyclase to biogenic amines, J. Neurochem. 18: 1157–1161.

    Article  PubMed  Google Scholar 

  • Shimizu, H., Tanaka, S., and Kodama, T., 1972, Adenosine kinase of mammalian brain: Partial purification and its role for the uptake of adenosine, J. Neurochem. 19: 687–698.

    Article  PubMed  Google Scholar 

  • Shimizu, H., Takenoshita, M., Huang, M., and Daly, J. W., 1973, Accumulation of adenosine 3’,5’-monophosphate in brain slices: Interaction of local anaesthetics and depolarizing agents, J. Neurochem. 20: 91–95.

    Article  PubMed  Google Scholar 

  • Siggins, G. R., Hoffer, B. J., and Bloom, F. E., 1969, Cyclic adenosine monophosphate: Possible mediator for norepinephrine effects on cerebellar Purkinje cells, Science 165: 1018–1020.

    Article  PubMed  Google Scholar 

  • Siggins, G. B., Hoffer, B. J., and Bloom, F. E., 1971a, Cyclic adenosine monophosphate and norepinephrine: Effect on Purkinje cells in rat cerebellar cortex, Science 174: 1258–1259.

    Google Scholar 

  • Siggins, G. R., Oliver, A. P., Hoffer, B. J., and Bloom, F. E., 1971b, Cyclic adenosine monophosphate and norepinephrine: Effects on transmembrane properties of cerebellar Purkinje cells, Science 171: 192–194.

    Google Scholar 

  • Siggins, G. R., Hoffer, B. J., and Bloom, F. E., 1971c, Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. III. Evidence for mediation of norepinephrine effects by cyclic 3’,5’-adenosine monophosphate, Brain Res. 25: 535–553.

    Article  PubMed  Google Scholar 

  • Siggins, G., Hoffer, B., and Bloom, F., 1971d, Prostaglandin—norepinephrine interactions in brain: Microelectrophoretic and histochemical correlates, Ann. N.Y. Acad. Sci. 180: 302–323.

    Article  PubMed  Google Scholar 

  • Siggins, G. R., Hoffer, B. J., Oliver, A. P., and Bloom, F. E., 1971e, Activation of a central noradrenergic projection to cerebellum, Nature 233: 481–483.

    Article  PubMed  Google Scholar 

  • Siggins, G. R., Battenberg, E. F., Hoffer, B. J., and Bloom, F. E., 1973, Noradrenergic stimulation of cyclic adenosine monophosphate in rat Purkinje neurons: An immunocytochemical study, Science 179: 585–588.

    Article  PubMed  Google Scholar 

  • Silberstein, S. D., Brimijoin, S., Molinoff, P. B., and Lemberger, L., 1972, Induction of dopamine-ß-hydroxylase in rat superior ganglia in organ culture, J. Neurochem. 19: 919–921.

    Article  PubMed  Google Scholar 

  • Simantov, R., and Sachs, L., 1972, Enzyme regulation in neuroblastoma cells: Selection of clones with low acetyl-cholinesterase activity and the independent control of acetylcholinesterase and choline-O-acetyltransferase, Eur. J. Biochem. 30: 123–129.

    Article  Google Scholar 

  • Simantov, R., and Sachs, L., 1973, Regulation of acetylcholine receptors in relation to acetylcholinesterase in neuroblastoma cells, Proc. Natl. Acad. Sci. 70: 2902–2905.

    Article  PubMed  Google Scholar 

  • Simon, L. N., Shuman, D. A., and Robins, R. K., 1973, The chemistry and biological properties of nucleotides related to nucleoside 3’,5’-cyclic phosphates, Advan. Cyclic Nucleotide Res. 3: 225–353.

    Google Scholar 

  • Singhal, R. L., Lafreniere, R., and Ling, G. M., 1973, Cerebrocortical adenyl cyclase activity following neonatal thyroid hormone deficiency, Int. J. Clin. Pharmacol. Ther. Toxicol. 8: 1–4.

    Google Scholar 

  • Skolnick, P., and Daly, J. W., 1974a, Norepinephrine-elicited accumulation of adenosine 3’,5’-monophosphate in brain slices: Relationship to spontaneous behavioral activity and levels of brain tyrosine hydroxylase in several rat strains, Science 184: 175–177.

    Article  PubMed  Google Scholar 

  • Skolnick, P., and Daly, J. W., 1974b, The accumulation of adenosine 3’,5’-monophosphate in cerebral cortical slices of the quaking mouse, a neurologic mutant, Brain Res., 73: 513–525.

    Article  PubMed  Google Scholar 

  • Skolnick, P., and Daly, J. W., 1975, Functional compartments of adenine nucleotides serving as precursors of adenosine 3’,5’-monophosphate in mouse cerebral cortex, J. Neurochem. 24: 451–456.

    Article  PubMed  Google Scholar 

  • Skolnick, P., Huang, M., Daly, J., and Hoffer, B., 1973, Accumulation of adenosine 3’,5’-monophosphate in incubated slices from discrete regions of squirrel monkey cerebral cortex: Effect of norepinephrine, serotonin and adenosine, J. Neurochem. 21: 237–240.

    Article  PubMed  Google Scholar 

  • Soifer, D., Laszlo, A. H., and Scorro, J. M., 1972, Enzymatic activity in tubulin preparations. I. Intrinsic protein kinase activity in lyophilized preparations of tubulin from porcine brain, Biochim. Biophys. Acta 271: 182–192.

    Article  PubMed  Google Scholar 

  • Somerville, A. R., and Smith, A. A., 1972, The effects of propranolol and electrical stimulation on the cyclic 3’,5’-AMP content of isolated cerebral tissue, J. Neurochem. 19: 2003–2006.

    Article  PubMed  Google Scholar 

  • Steiner, A. L., Parker, C. W., and Kipnis, D. M., 1970, The measurement of cyclic nucleotides by radioimmunoassay, Advan. Biochem. Psychopharmacol. 3: 89–112.

    Google Scholar 

  • Steiner, A. L., Ferrendelli, J. A., and Kipnis, D. M., 1972, Radioimmunoassay for cyclic nucleotides. III. Effect of ischemia, changes during development and regional distribution of adenosine 3’,5’-monophosphate and guanosine 3’,5’-monophosphate in mouse brain, J. Biol. Chem, 247: 1121–1124.

    PubMed  Google Scholar 

  • Straschill, M., and Perwein, J., 1969, The inhibition of retinal ganglion cells by catecholamines and y-aminobutyric acid, Pfluegers Arch. 312: 45–54.

    Article  Google Scholar 

  • Swtslocki, N. I., and Tierney, J., 1973, Solubilization, stabilization, and partial purification of brain adenylate cyclase from rat, Biochemistry 12: 1862–1866.

    Article  Google Scholar 

  • Tagliamonte, A., Tagliamonte, P., Forn, J., Perez-Cruet, J., Krishna, G., and Gessa, G. L., 1971a, Stimulation of brain serotonin synthesis by dibutyryl-cyclic AMP in rats, J. Neurochem. 18: 1191–1196.

    Article  PubMed  Google Scholar 

  • Tagliamonte, A., Tagliamonte, P., Perez-Cruet, J., and Gessa, G. L., 1971b, Increase of brain tryptophan caused by drugs that stimulate serotonin synthesis, Nature New Biol. 229: 125–126.

    Article  PubMed  Google Scholar 

  • Tagliamonte, A., Tagliamonte, P., Perez-Cruet, J., Stern, A., and Gessa, G. L., 1971c, Effect of psychotropic drugs on tryptophan concentration in the rat brain, J. Pharmacol. Exp. Ther. 177: 475–480.

    PubMed  Google Scholar 

  • Takagaki, G., 1972, Control of aerobic glycolysis in guinea-pig cerebral cortex slices, J. Neurochem. 19: 1737–1751.

    Article  PubMed  Google Scholar 

  • Thompson, W. J., and Appleman, M. M., 1971a, Characterizations of cyclic nucleotide phosphodiesterases of rat tissues, J. Biol. Chem. 246: 3145–3150.

    PubMed  Google Scholar 

  • Thompson, W. J., and Appleman, M. M., 1971b, Multiple cyclic nucleotide phosphodiesterase activities from rat brain, Biochemistry 10: 311–316.

    Article  PubMed  Google Scholar 

  • Thompson, W. J., and Appleman, M. M., 1971c, Cyclic nucleotide phosphodiesterase and cyclic AMP, Ann. N.Y. Acad. Sci. 185: 36–41.

    Article  PubMed  Google Scholar 

  • Torda, C., 1972a, Cyclic AMP—dependent diphosphoinositide kinase, Biochim. Biophys. Acta 286: 389–395.

    Article  PubMed  Google Scholar 

  • Torda, C., 19726, Hyperpolarization by cyclic AMP (activation of diphosphoinositide kinase), Experientia 28: 1438–1439.

    Google Scholar 

  • Tsien, R. W., 1973, Adrenaline-like effects of intracellular iontophoresis of cyclic AMP in cardiac Purkinje fibres, Nature New Biol. 245: 120–122.

    Article  PubMed  Google Scholar 

  • Tsien, R. W., Giles, W., and Greengard, P., 1972, Cyclic AMP mediates the effects of adrenaline on cardiac Purkinje fibers, Nature New Biol. 240: 181–183.

    PubMed  Google Scholar 

  • Tuganowski, W., Krause, M., and Korezak, K., 1973, The effect of dibutyryl 3’,5’-cyclic AMP on the cardiac pacemaker, arrested with reserpine and a-methyltyrosine, NaunynSchmiedebergs Arch. Pharmacol. 280: 63–70.

    Article  PubMed  Google Scholar 

  • Ueda, T., Maeno, H., and Greengard, P.,1973, Regulation of endogenous phsophbrylation of specific proteins in synaptic membrane fractions from rat brain by adenosine 3’:5’monophosphate, J. Biol. Chem. 248: 8295–8305.

    Google Scholar 

  • Uzunov, P., and Weiss, B., 1971, Effects of phenothiazine tranquilizers on the cyclic 3’,5’-adenosine monophosphate system of rat brain, Neuropharmacology 10: 697–708.

    Article  PubMed  Google Scholar 

  • Uzunov, P., and Weiss, B., 1972, Separation of multiple molecular forms of cyclic adenosine 3’,5’-monophosphate phosphodiesterase in rat cerebellum by polyacrylamide gel electrophoresis, Biochim. Biophys. Acta 284: 220–226.

    Article  PubMed  Google Scholar 

  • Uzunov, P., Shein, H. M., and Weiss, B., 1973, Cyclic AMP phosphodiesterase in cloned astrocytoma cells: Norepinephrine induces a specific enzyme form, Science 180: 304–306.

    Article  PubMed  Google Scholar 

  • Varagic, V. M., and Beleslin, D. B., 1973, The effect of cyclic N-2-O-dibutyryladenosine-3’,5’monophosphate, adenosine triphosphate and butyrate on the body temperatures of conscious cats, Brain Res. 57: 252–254.

    Article  PubMed  Google Scholar 

  • Varagic, V. M., and Zugic, M., 1971, Interactions of xanthine derivatives, catecholamines and glucose-6-phosphate on the isolated phrenic nerve diaphragm preparation of the rat, Pharmacology 5: 275–286.

    Article  PubMed  Google Scholar 

  • Varagic, V. M., and Zucic, M., 1973, The effect of N6–2’-O-dibutyryl 3’,5’-cyclic adenosine monophosphate, imidazole and aminophylline on ganglionic transmission in the superior cervical ganglion of the cat, Brit. J. Pharmacol. 49: 407–414.

    Google Scholar 

  • Varagic, V. M., Zugic, M., and Mrsulja, B. B., 1972, The effect of cyclic N-2–0-dibutyryladenosine-3’,5’-monophosphate on neuromuscular transmission and concentration of glycogen in the isolated phrenic nerve-diaphragm preparation of the rat, Experientia 28: 305–306.

    Article  PubMed  Google Scholar 

  • Vargui, L., and Spano, P. F., 1971, Some central effects of a new derivative of cyclic 3’,5’-adenosine monophosphate, Naunyn-Schmiedebergs Arch. Pharmacol. 269:410Abs.

    Google Scholar 

  • Vernikos-Danellis, J., and Harris, C. G., III, 1968, The effect of in vitro and in vivo caffeine, theophylline and hydrocortisone on the phosphodiesterase activity of the pituitary, median eminence, heart and cerebral cortex of the rat, Proc. Soc. Exp. Biol. Med. 128: 1016–1021.

    Google Scholar 

  • Volicer, L., and Gold, B. I., 1973, Effect of ethanol on cyclic AMP levels in the rat brain, Life Sci. 13: 269–280.

    Article  PubMed  Google Scholar 

  • Von Hungen, K., and Roberts, S., 1973a, Adenylate-cyclase receptors for adrenergic neurotransmitters in rat cerebral cortex, Eur. J. Biochem. 36: 391–401.

    Article  Google Scholar 

  • Von Hungen, K., and Roberts, S., 1973b, Catecholamine and Ca’ activation of adenylate cyclase systems in synaptosomal fractions from rat cerebral cortex, Nature New Biol. 242: 58–60.

    Google Scholar 

  • Waldeck, B., 1971, Some effects of caffeine and aminophylline on the turnover of catecholamines in the brain, J. Pharm. Pharmacol. 23: 824–830.

    Article  PubMed  Google Scholar 

  • Walinder, O., 1972, Calf brain phosvitin kinase: Purification of the kinase associated with a phosphate-incorporating protein, Biochim. Biophys. Acta 258: 411–421.

    Article  PubMed  Google Scholar 

  • Walker, J. B., and Walker, J. P., 1973a, Neurohumoral regulation of adenylate cyclase activity in rat striatum, Brain Res. 54: 386–390.

    Google Scholar 

  • Walker, J. B., and Walker, J. P., 19736, Properties of adenylate cyclase from senescent rat brain, Brain Res. 54: 391–396.

    Google Scholar 

  • Walker, J. E., Lewin, E., Sheppard, J. R., and Cromwell, R., 1973, Enzymatic regulation of adenosine 3’,5’-monophosphate (cyclic AMP) in the freezing epileptogenic lesion of rat brain and in homologous contralateral cortex, J. Neurochem. 21: 79–85.

    Article  PubMed  Google Scholar 

  • Walsh, D. A., Ashby, C. D., Gonzalez, C., Calkins, D., Fischer, E. H., and Krebs, E. G., 1971, Purification and characterization of a protein inhibitor of adenosine 3’,5’monophosphate-dependet protein kinases, J. Biol. Chem. 246: 1977–1985.

    PubMed  Google Scholar 

  • Waymire, J. C., Wainer, N., and Prasad, K. N., 1972, Regulation of tyrosine hydroxylase activity in cultured mouse neuroblastoma cells: Elevation induced by analogs of adenosine 3’:5’-cyclic monophosphate, Proc. Natl. Acad. Sci. 69: 2241–2245.

    Article  PubMed  Google Scholar 

  • Weiner, M., and Olson, J. W., 1973, The behavioral effects of dibutyryl cyclic AMP in mice, Life Sci. 12: 345–356.

    Google Scholar 

  • Weinryb, I., Chasin, M., Free, C. A., Harris, D. N., Goldenberg, H., Michel, I. M., Paik, V. S., Phillips, M., Samaniego, S., and Hess, S. M., 1972, Effects of therapeutic agents on cyclic AMP metabolism in vitro, J. Pharm. Sci. 61: 1556–1567.

    Article  Google Scholar 

  • Weiss, B., 1969, Effects of environmental lighting and chronic denervation on the activation of adenyl cyclase of rat pineal gland by norepinephrine and sodium fluoride, J. Pharmacol. Exp. Ther. 168: 146–152.

    PubMed  Google Scholar 

  • Weiss, B., 1971, Ontogenetic development of adenyl cyclase and phosphodiesterase in rat brain, J. Neurochem. 18: 469–477.

    Article  PubMed  Google Scholar 

  • Weiss, B., 1972, Psychopharmacological agents and the cyclic AMP system of rat brain, Advan. Cyclic Nucleotide Res. 1: 435–453.

    Google Scholar 

  • Weiss, B., and Costa, E., 1967, Adenyl cyclase activity in rat pineal gland: Effects of chronic denervation and norepinephrine, Science 156: 1750–1752.

    Article  PubMed  Google Scholar 

  • Weiss, B., and Costa, E., 1968, Regional and subcellular distribution of adenyl cyclase and 3’,5’-cyclic nucleotide phosphodiesterase in brain and pineal gland, Biochem. Pharmacol. 17: 2107–2116.

    Article  PubMed  Google Scholar 

  • Weiss, B., and Strada, S. J., 1972, Neuroendocrine control of the cyclic AMP system of brain and pineal gland, Advan. Cyclic Nucleotide Res. 1: 357–374.

    Google Scholar 

  • Weiss, B., Shein, H. M., and Snyder, R., 1971, Adenylate cyclase and phosphodiesterase activity of normal and SV40 virus transformed hamster astrocytes in cell culture, Life Sci. 10 (I): 1253–1260.

    Article  Google Scholar 

  • Weller, M., and Rodnight, R., 1970, Stimulation by cyclic AMP of intrinsic protein kinase activity in ox brain membrane preparation, Nature 225: 187–188.

    Article  PubMed  Google Scholar 

  • Weller, M., and Rodnight, R., 1971, Turnover of proten-bound phosphorylserine in membrane preparations of ox brain catalyzed by intrinsic kinase and phosphatase activity, Biochem. J. 124: 393–406.

    PubMed  Google Scholar 

  • Weller, M., and Rodnight, R., 1973, Protein kinase activity in membrane preparations from ox brain: Stimulation of intrinsic activity by adenosine 3’:5’-cyclic monophosphate, Biochem. J. 132: 483–492.

    Google Scholar 

  • Weller, M., Rodnight, R., and Carrera, D., 1972, Determination of adenosine 3’,5’-cyclic monophosphate in cerebral tissues by saturation analysis: Assessment of a method using a binding protein from ox muscle, Biochem. J. 129: 113–121.

    PubMed  Google Scholar 

  • Wellmann, W., and Schwabe, U., 1973, Effects of prostaglandins E,, E2 and Fla on cyclic AMP levels in brain in vivo, Brain Res. 59: 371–378.

    Google Scholar 

  • Werner, I., Peterson, G. R., and Shuster, L., 1971, Choline acetyltransferase and acetylcholine esterase in cultured brain cells from chick embryos, J. Neurochem. 18: 141–151.

    Article  PubMed  Google Scholar 

  • White, A. A., and Aurbach, G. D., 1969, Detection of guanyl cyclase in mammalian tissues, Biochim. Biophys. Acta 191: 686.

    Article  PubMed  Google Scholar 

  • Williams, R. H., Little, S. A., and Ensinck, J. W., 1969, Adenyl cyclase and phosphodiester- ase activities in brain areas of man, monkey and rat, Am. J. Med. Sci. 258: 190–202.

    Article  Google Scholar 

  • Williams, R. H., Little, S. A., Beug, A. G., and Ensinck, J. W., 1971, Cyclic nucleotide phosphodiesterase activity in man, monkey, and rat, Metab. Clin. Exp. 20: 743–748.

    Article  PubMed  Google Scholar 

  • Wollenberger, A., Babskii, E. B., Krause, E.-G., Genz, S., Blohm, D., and Bogdanova, E. V., 1973, Cyclic changes in levels of cyclic AMP and cyclic GMP in frog myocardium during the cardiac cycle, Biochem. Biophys. Res. Commun. 55: 446–452.

    Article  PubMed  Google Scholar 

  • Woodward, D. J., Hoffer, B. J., Siggins, G. R., and Bloom, F. E., 1971, The ontogenetic development of synaptic junctions, synaptic activation and responsiveness to neurotransmitter substances, in rat cerebellar Purkinje cells, Brain Res. 34: 73–97.

    Article  PubMed  Google Scholar 

  • Wooten, G. F., Thoa, N. B., Kopin, I. J., and Axelrod, J., 1973, Enhanced release of dopamine-ß-hydroxylase and norepinephrine from sympathetic nerves by dibutyryl cyclic adenosine monophosphate and theophylline, Mol. Pharmacol. 9: 178–183.

    PubMed  Google Scholar 

  • Wulff, V. J., 1971, The effect of cyclic AMP on Limulus lateral eye retinular cells, Vision Res. 11: 1493–1495.

    Article  PubMed  Google Scholar 

  • Yamamoto, M., and Massey, K. L., 1969, Cyclic 3’,5’-nucleotide phosphodiesterase of fish (Salmo gairdnerii) brain, Comp. Biochem. Physiol. 30: 941–954.

    Article  PubMed  Google Scholar 

  • Yarbrough, G. G., Lake, N., and Phillis, J. W., 1974, Calcium antagonism and its effect on the inhibitory actions of biogenic amines on cerebral cortical neurones, Brain Res. 67: 77–88.

    Google Scholar 

  • York, D. H., 1972, Dopamine receptor blockade: A central action of chlorpromazine on striatal neurones, Brain Res. 37: 91–99.

    Article  PubMed  Google Scholar 

  • Zanella, J., JR., and Rall, T. W., 1973, Evaluation of electrical pulses and elevated levels of potassium ions as stimulants of adenosine 3’,5’-monophosphate (cyclic AMP) accumulation in guinea-pig brain, J. Pharmacol. Exp. Ther. 186: 241–251.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Daly, J. (1975). Role of Cyclic Nucleotides in the Nervous System. In: Iversen, L.L., Iversen, S.D., Snyder, S.H. (eds) Synaptic Modulators. Handbook of Psychopharmacology, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3177-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3177-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3179-7

  • Online ISBN: 978-1-4684-3177-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics