Advertisement

Effect of Drugs on Energy Metabolism of the Brain and on Cerebral Transport

  • J. H. Quastel
Part of the Handbook of Psychopharmacology book series (HBKPS, volume 5)

Abstract

Aspects of this subject, whose scope is now so extensive that it cannot be treated adequately within the limits of this chapter, have been reviewed extensively in recent years, e.g., Shore (1971), Mullins (1971), Dettbarn (1971), Gabay (1971), Schildkraut and Gershon (1971), Clouet (1971), Sulser and Sanders-Bush (1971), Matthyse (1973), Quastel (1967, 1970), Løvtrup (1967), Glick (1972), McGeer and McGeer (1973). Accordingly, this chapter will deal with some of the main in vivo and in vitro effects on brain cell energetics and transport processes of a number of drugs that have awakened interest either because of their therapeutic value, or because of their public interest as drugs of abuse, or because of their value as tools for research.

Keywords

Brain Slice Brain Cortex Citric Acid Cycle Squid Giant Axon Barbiturate Anesthesia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abadom, P. N., and Scholefield, P. G., 1962, Amino acid transport in brain cortex slices, Canad. J. Biochem. Physiol. 40: 1575–1618.PubMedCrossRefGoogle Scholar
  2. Abdel-Latif, A. A., and Abood, L. G., 1964, Biochemical studies on mitochondria and other cytoplasmic fractions of developing rat brain, J. Neurochem. 11: 9–15.PubMedCrossRefGoogle Scholar
  3. Abdel-Latif, A. A., Brody, J., and Ramahi, H., 1967, Studies on Na-K-ATPase of nerve endings and appearance of electrical activity in developing rat brain, J. Neurochem. 14: 1133–1141.PubMedCrossRefGoogle Scholar
  4. Aldridge, W. N., 1962, in: Ciba Foundation Symposium on Enzymes and Drug Action (J. L. Mongar and A. V. S. de Reuck, eds.), p. 155, Churchill, London.Google Scholar
  5. Aldridge, W. N., and Parker, V. H., 1960, Barbiturates and oxidative phosphorylation, Biochem. J. 76: 47–56.PubMedGoogle Scholar
  6. Andrejew, A., and Rosenberg, A. J., 1956, Action de chlorpromazine, 2:4dinitrophenol, penthiobarbital et soneryl sur l’activité de ATP-ase, C. R. Soc. Biol. Paris 150: 681–683.Google Scholar
  7. Ariens, E. J. (ed.), 1964, Molecular Pharmacology, Academic Press, New York.Google Scholar
  8. Axelrod, J., Whitby, L. G., and Hertting, G., 1961, Effect of psychotropic drugs on the uptake of 3H-norepinephrine by tissues, Science 133: 383–384.PubMedCrossRefGoogle Scholar
  9. Bachelard, H. S., and Lindsay, J. R., 1966, Effects of neurotropic drugs on glucose metabolism in rat brain in vivo, Biochem. Pharmacol. 15: 1053–1058.PubMedCrossRefGoogle Scholar
  10. Bachelard, H. S., Gaitonde, M. K., and Vrba, R., 1966, Effects of psychotropic drugs on the utilization of glucose carbon atoms in the brain, heart and liver of the rat, Biochem. Pharmacol. 15: 1039–1043.PubMedCrossRefGoogle Scholar
  11. Bachelard, H. S., 1971, Specificity and kinetic property of monosaccharide uptake into guinea pig cerebral cortex in vitro, J. Neurochem. 18: 213–222.PubMedCrossRefGoogle Scholar
  12. Bachelard, H. S., Clark, A. G., and Thompson, M. F., 1971, Cerebral cortex hexokinases, Biochem. J. 123: 707–715.PubMedGoogle Scholar
  13. Bachelard, H. S., Daniel, P. M., Love, E. R., and Pratt, O. E., 1973, Transport of glucose into the brain of rat in vivo, Proc. Roy. Soc. Lond. Ser. B 183: 71–82.CrossRefGoogle Scholar
  14. Baker, P. F., Hodgkin, A. L., and Ridgeway, E. B., 1970, Two phases of Ca“ entry during the action potentials in giant axons of Loligo, J. Physiol. 208: 80 P.Google Scholar
  15. Balcar, V. J., and Johnston, G. A. R., 1972, Glutamate uptake by brain slices and its relation to the depolarization of neurons by acidic amino acids, J. Neurobiol. 3: 295–301.PubMedCrossRefGoogle Scholar
  16. Bauer, K. F., and Leonhardt, H., 1956, A contribution to the pathological physiology of the blood brain barrier, J. Comp. Neurol. 106: 363–370.PubMedCrossRefGoogle Scholar
  17. Baxter, C. F., and Roberts, E., 1961, Elevation of GABA in brain: Selective inhibition of GABA-a-ketoglutaric acid transaminase, J. Biol. Chem. 236: 3287–3294.PubMedGoogle Scholar
  18. Bebbington, A., and Brimblecombe, R. W., 1969, Actions of some psychotomimetics on the CNS, Brit. Med. Bull. 25: 293–298.PubMedGoogle Scholar
  19. Beer, C. T., and Quastel, J. H., 1958, Effects of aliphatic alcohols on the respiration of rat brain cortex slices and rat brain mitochondria, Canari. J. Biochem. Physiol. 36: 543–556.CrossRefGoogle Scholar
  20. Benitez, D., Pscheidt, G. R., and Stone, W. E., 1954, Formation of ammonium ions in the cerebrum in fluoroacetate poisoning, Am. J. Physiol. 176: 488–492.PubMedGoogle Scholar
  21. Benjamin, A. M., and Quastel, J. H., 1972, Locations of amino acids in brain slices from the rat: Tetrodotoxin-sensitive release of amino acids, Biochem. J. 128: 631–646.PubMedGoogle Scholar
  22. Benjamin, A. M., and Quastel, J. H., 1974, Fate of L-glutamate in the brain, J. Neurochem. 23: 457–464.PubMedCrossRefGoogle Scholar
  23. Berl, S., and Clark, D. D., 1969, Compartmentation of amino acid metabolism, in: Handbook of Neurochemistry, Vol. 2 ( A. Lajtha, ed.), pp. 447–472, Plenum Press, New York.Google Scholar
  24. Berl, S., and Frigyesi, T. L., 1969, Effect of reserpine on the turnover of glutamate, glutamine, aspartate and GABA, labelled with (1-’’C)-acetate, in caudate nucleus, thalamus, sensorimotor cortex (cat), Brain Res. 14: 683–695.PubMedCrossRefGoogle Scholar
  25. Berl, S., Takagaki, G., Clarke, D. D., and Waelsch, H., 1962, Metabolic components in vivo: Ammonia and glutamic acid metabolism in brain and liver, J. Biol. Chem. 237: 2562–2569.PubMedGoogle Scholar
  26. Berl, S., Clarke, D. D., and Nicklas, W. J., 1970, Compartmentation of citric acid cycle metabolism in brain. Effects of aminooxyacetate, ouabain and Ca“, J. Neurochem. 17: 999–1007.PubMedCrossRefGoogle Scholar
  27. Bidder, T. G., 1968, Hexose translocation across the blood-brain interface, J. Neurochem. 15: 867–874.PubMedCrossRefGoogle Scholar
  28. Bignami, A., Palladini, G., and Venturini, G., 1966, Na-K-ATPase in the developing chick brain, Brain Res. 3: 207–209.PubMedCrossRefGoogle Scholar
  29. Blackburn, K. J., French, P. C., and Merrills, R. J., 1967, 5-Hydroxytryptamine uptake in rat brain in vitro, Life Sci. 6: 1653–1663.Google Scholar
  30. Bloom, F. A., Costa, E., and Salmoiraghi, G. C., 1965, Anesthesia and the responsiveness of individual neurons of the caudate nucleus of the cat to Ach, norepinephrine and dopamine, J. Pharmacol. Exp. Ther. 150: 244–252.PubMedGoogle Scholar
  31. Bonting, S. L., Carravaggio, L. L., and Hawkins, N. M., 1962, Studies on Na-K-ATPase: Correlation with cation transport sensitive to cardiac glycosides, Arch. Biochem. Biophys. 98: 413–419.PubMedCrossRefGoogle Scholar
  32. Bourke, R. S., and Tower, D. B., 1966, Fluid compartmentation and electrolytes of cat cerebral cortex in vitro, J. Neurochem. 13: 1071–1099.PubMedCrossRefGoogle Scholar
  33. Bradley, P. B., and Dray, A., 1973, Modification of the responses of brain stem neurones to transmitter substances by anesthetic agents, Brit. J. Pharmacol. 48: 212–224.CrossRefGoogle Scholar
  34. Bradley, P. B., and Wolstencroft, J. H., 1965, Actions of drugs on single neurones in the brain stem, Brit. Med. Bull. 21: 15–18.PubMedGoogle Scholar
  35. Braganca, B. M., Faulkner, P., and Quastel, J. H., 1953, Effects of inhibitors of glutamine synthesis on the inhibition of Ach synthesis in brain slices by ammonium ions, Biochim. Biophys. Acta 10: 83–88.PubMedCrossRefGoogle Scholar
  36. Brierley, G. P., Murer, E., Bachmann, E., and Green, D. E., 1963, Studies on ion transport: Accumulation of phosphate and magnesium ions by heart mitochondria, J. Biol. Chem. 238: 3482–3489.PubMedGoogle Scholar
  37. Brodie, B. B., Finger, K. F., Orlans, F. B., Quinn, G. P., and Sulser, F., 1960, Evidence that tranquilising action of reserpine is associated with changes in brain serotonin and not in brain norepinephrine, J. Pharmacol. Exp. Ther. 129: 250–256.PubMedGoogle Scholar
  38. Brodie, B. B., Dengler, H. J., Titus, E., and Wilson, C. W. M., 1960b, Inhibition of the uptake of catecholamines in brain tissue by reserpine, J. Physiol. 154: 37 P.Google Scholar
  39. Brodie, B. B., Comer, M. S., Costa, E., and Dlabac, A., 1966, Role of brain serotonin in the mechanism of the central action of reserpine, J. Pharmacol. Exp. Ther. 152: 340–349.PubMedGoogle Scholar
  40. Bull, R. J., and Trevor, A. J., 1972, Saxitoxin, tetrodotoxin and the metabolism and cation fluxes in isolated cerebral tissues, J. Neurochem. 19: 999–1009.PubMedCrossRefGoogle Scholar
  41. Bulle, P. H., 1957, Effects of reserpine and chlorpromazine in prevention of cerebral edema and reversible cell damage, Proc. Soc. Exp. Biol. Med. 94: 553–556.PubMedGoogle Scholar
  42. Bunker, J. P., and Vandam, L. D., 1965, Effects of anesthesia on metabolism and cellular functions, Pharm. Rev. 17: 183–263.Google Scholar
  43. Caldwell, P. C., and Keynes, R. D., 1959, Effect of ouabain on the efflux of Na* from a squid giant axons, J. Physiol. 148: 8 P.Google Scholar
  44. Carlsson, A., 1966, Pharmacological depletion of catecholamine stores, Pharmacol. Rev. 18: 541–549.PubMedGoogle Scholar
  45. Carlsson, A., and Waldeck, B., 1965, Mechanisms of amine transport in the cell membranes of adrenergic nerves, Acta Pharmacol. 22: 293–300.CrossRefGoogle Scholar
  46. Carlsson, A., Fuxé, K., Hamberger, B., and Lindqvist, M., 1966, Biochemical and histochemical studies on the effects of imipramine-like drugs and of amphetamine on central and peripheral catecholamine neurons, Acta Physiol. Scand. 67: 481–497.PubMedCrossRefGoogle Scholar
  47. Carlsson, A., Fuxé, K., and Unterstedt, U., 1968, Effect of imipramine on central 5-HT neurons, J. Pharm. Pharmacol. 20: 150–151.PubMedCrossRefGoogle Scholar
  48. Carr, L. A., and Moore, K. E., 1969, Norepinephrine release from brain by d-amphetamine in vivo, Science 164: 322–323.PubMedCrossRefGoogle Scholar
  49. Catchlove, R. F. H., Krnjevic, K., and Maretic, H., 1972, Similarity between effects of general anesthetics and dinitrophenol on cortical neurons, Canad. J. Physiol. Pharmacol. 50: 1111–1114.CrossRefGoogle Scholar
  50. Chan, S. L., and Quastel, J. H., 1967, Tetrodotoxin effects on brain metabolism in vitro, Science 156: 1752–1753.PubMedCrossRefGoogle Scholar
  51. Chan, S. L., and Quastel, J. H., 1970, Effects of neurotropic drugs on sodium influx into rat brain cortex in vitro, Biochem. Pharmacol. 19: 1071–1085.CrossRefGoogle Scholar
  52. Chance, B., and Hollunger, G., 1963, Inhibition of electron and energy transfer in mitochondria, J. Biol. Chem. 278: 418–431.Google Scholar
  53. Chappell, J. B., and Crofts, A. R., 1965, Calcium ion accumulation and volume changes of isolated liver mitochondria, Biochem. J. 95: 378–386.PubMedGoogle Scholar
  54. Chappell, J. B., Corn, M., and Greville, G. D., 1963, in: Energy-Linked Functions of Mitochondria (B. Chance, ed.), p. 319, Academic Press, New York.Google Scholar
  55. Cherayil, A., Kandera, J., and Lajtha, A., 1967, Cerebral amino acid transport. Effect of inhibitors on exit, J. Neurochem. 14: 105–115.PubMedCrossRefGoogle Scholar
  56. Chessin, M., Kramer, E. R., and Scott, C. T., 1957, Modification of the pharmacology of reserpine and serotonin by iproniazid, J. Pharmacol. Exp. Ther. 119: 453–460.Google Scholar
  57. Christensen, J., Feng, Y. S. L., Polley, E., and Wase, A. W., 1958, Influence of chlorpromazine on transport of ions into cerebral tissue, Fed. Proc. 17: 358.Google Scholar
  58. Clark, G. M., and Eiseman, B., 1958, Studies in ammonia metabolism: Biochemical changes in brain tissue of dogs during ammonia induced coma, New Engl. J. Med. 259: 178–180.PubMedCrossRefGoogle Scholar
  59. Clark, W. G., 1963, Inhibition of amino acid decarboxylases, in: Metabolic Inhibitors, Vol. 1 ( R. M. Hochster and J. H. Quastel, eds.), pp. 315–381, Academic Press, New York.Google Scholar
  60. Clarke, D. D., Nicklas, W. J., and Berl, S., 1970, Tricarboxylic acid cycle metabolism in brain: Effects of fluoroacetate and fluorocitrate, Biochem. J. 120: 345–351.PubMedGoogle Scholar
  61. Clouet, D. H., 1971, Alteration of brain metabolism by narcotic analgesic drugs, in: Handbook of Neurochemistry, Vol. 6 ( A. Lajtha, ed.), pp. 479–499, Plenum Press, New York.Google Scholar
  62. Collins, G. G. S., 1973, Effects of aminooxyacetate, thiosemicarbazide and haloperidol on the metabolism of glutamate and GABA in rat brain, Biochem. Pharmacol. 22: 101–111PubMedCrossRefGoogle Scholar
  63. Cook, J., and Schanberg, S., 1968, Effect of methamphetamine on norepinephrine metabolism in brain, Pharmacologist 10: 195.Google Scholar
  64. Coyle, J. T., and Snyder, S. H., 1969, Catecholamine uptake by synaptosomes and in homogenates of rat tissue: Stereospecificity in different areas, J. Pharmacol. Exp. Ther. 170: 221–231.PubMedGoogle Scholar
  65. Crawford, J. M., 1970, Anesthetic agents and the chemical sensitivity of cortical neurons, Neuropharmacology 9: 31–46.PubMedCrossRefGoogle Scholar
  66. Cremer, J. E., 1967, Studies on brain cortex slices: Influence of inhibitors on retention of K’ and amino acids with glucose or pyruvate as substrate, Biochem. J. 104: 223–228.PubMedGoogle Scholar
  67. Crone, C., 1965, Facilitated transfer of glucose from blood into brain tissue, J. Physiol. 181: 103–113.PubMedGoogle Scholar
  68. Cummins, J., and Hyden, H., 1962, ATP levels and ATPase in neurons, glia and neuronal membranes of the vestibular nucleus, Biochim. Biophys. Acta 60: 271–275.Google Scholar
  69. Davidoff, R. A., Grayson, V., And Adair, R., 1973, GABA-transaminase inhibitors and presynaptic inhibition in the amphibian spinal cord, Am. J. Physiol. 224: 1230–1234.PubMedGoogle Scholar
  70. Davis, F. A., and Dettbarn, W. D., 1962, Depolarizing action of Ca“ depletion in frog nerve and its inhibition by compounds acting on the Ach system, Biochim. Biophys. Acta 63: 349–357.PubMedCrossRefGoogle Scholar
  71. Dawkins, M. J. R., Judah, J. D., and Rees, K. R., 1959, Mechanism of action of chlorpromazine, Biochem. J. 73: 16–23.PubMedGoogle Scholar
  72. Dawson, R. M. C., 1953, Cerebral amino acids in fluoroacetate-poisoned, anesthetised and hypoglycaemic rats, Biochim. Biophys. Acta 11: 548–552.PubMedCrossRefGoogle Scholar
  73. Dengler, H. G., Spiegel, H. E., and Titus, E. O., 1961, Effect of drugs on the uptake of isotopic norepinephrine by cat tissues, Nature 191: 816–817.PubMedCrossRefGoogle Scholar
  74. Dettbarn, W. D., 1967, The Ach system in peripheral nerve, Ann. N.Y. Acad. Sci. 144: Art. 2, p. 483.CrossRefGoogle Scholar
  75. Dettbarn, W. D., 1971, Local anesthetics, in: Handbook of Neurochemistry, Vol. 6 ( A. Lajtha, ed.), pp. 423–440, Plenum Press, New York.Google Scholar
  76. Diamond, I., 1971, Choline metabolism in brain, Arch. Neurol. 24: 333–339.PubMedCrossRefGoogle Scholar
  77. Donaldson, J., Minich, J., and Barbeau, A., 1972, Ouabain induced seizures in rats, Canad. J. Biochem. 50: 888–896.CrossRefGoogle Scholar
  78. Drakontides, A. B., Schneider, J. A., and Funderbark, W. H., 1962, Some effects of sodium y-hydroxybutyrate on the CNS, J. Pharmacol. Exp. Ther. 135: 275–284.PubMedGoogle Scholar
  79. Dunham, E. T., and Glynn, I. M., 1961, ATP-ase activity and the active movements of alkali metal ions, J. Physiol. 156: 274–293.PubMedGoogle Scholar
  80. Eiler, J. P., and Mcewen, W. K., 1949, Effect of pentobarbital on aerobic phosphorylation in brain homogenates, Arch. Biochem. 20: 163–165.PubMedGoogle Scholar
  81. Elliott, H. W., and Sutherland, V. C., 1952, The oxygen uptake of human cerebral cortex and the effects of some inhibitors, J. Cell. Comp. Physiol. 40: 221–241.CrossRefGoogle Scholar
  82. Ernster, L., Low, H., and Lindberg, O., 1955, The action of Amytal on the oxidation of NADH in rat liver mitochondria, Acta Chem. Scand. 9: 200–201.CrossRefGoogle Scholar
  83. Erwin, V. G., Tabakoff, B., and Bronaugh, R. L., 1971, Inhibition of a NADPH-linked aldehyde reductase from bovine brain by barbiturates, Mol. Pharmacol. 7: 169–176.PubMedGoogle Scholar
  84. Estabrook, R. S., and Mackler, B., 1957, Enzymatic and spectrophotometric studies of a reduced NADoxidase preparation from heart muscle, J. Biol. Chem. 229: 1091–1103.PubMedGoogle Scholar
  85. Fazekas, J. F., Albert, S. N., and Alman, R. W., 1955, Influence of chlorpromazine and alcohol on cerebral neurodynamics and metabolism, Am. J. Med. Sci. 230: 128–132.PubMedCrossRefGoogle Scholar
  86. Feinstein, M. B., 1964, Reaction of local anesthetics with phospholipids: A possible chemical basis for anesthesia, J. Gen. Physiol. 48: 357–374.PubMedCrossRefGoogle Scholar
  87. Findlay, M., Skickland, K. P., and Rossiter, R. J., 1954, Incorporation of radioactive phosphate into non-nucleotide protein-bound phosphorus fractions of respiring cat brain slices, Canad. J. Biochem: Physiol. 32: 504–514.CrossRefGoogle Scholar
  88. Folbergrova, J., 1963, Effect of methionine sulfoximine on the protein metabolism of brain cortex slices, J. Neurochem. 10: 775–782.PubMedCrossRefGoogle Scholar
  89. Folbergrova, J., 1964, Free glutamine levels in the rat brain in vivo after methionine sulfoximine administration, Physiol. Bohemoslay. 13: 21–27.Google Scholar
  90. Folbergrova, J., Passoneau, J. V., Lowry, O. H., and Schultz, D. W., 1969, Glycogen, ammonia, and related metabolites in the brain during seizures evoked by methionine sulfoximine, J. Neurochem. 16: 191–203.PubMedCrossRefGoogle Scholar
  91. Freter, K., Weissbach, H., Redfield, B., Udenfriend, S., and Witkop, B., 1958, Analogs of 5-hydroxy-tryptamine, and -tryptophan, as inhibitors of the biosynthesis and breakdown of serotonin, J. Am. Chem. Soc. 80: 983–987.CrossRefGoogle Scholar
  92. Fujisawa, H., Kajikawa, K., Ohi, . Hoshimoto, Y., and Yoshida, H., 1965, Movement of radioactive Ca“ in brain slices and influence of protoveratrine, ouabain, KCl and cocaine, Jap. J. Pharmacol. 15: 327–334.Google Scholar
  93. Gabay, S., 1971, Phenothiazines; Neurochemical aspects of their mode of action, in: Handbook of Neurochemistry ( A. Lajtha, ed.) 6: 325–348, Plenum Press, New York.Google Scholar
  94. Gaddum, J. H., 1954, in: Hypertension; Humoral and Neurogenic Factors, Ciba Foundation Symposium, p. 75, Churchill, London.Google Scholar
  95. Gatfield, P. D., Lowry, O. H., Schultz, D. W., and Passoneau, J. V., 1966, Regional energy reserves in mouse brain and changes with ischemia and anesthesia, J. Neurochem, 13: 185–195.PubMedCrossRefGoogle Scholar
  96. Geddes, H., and Quastel, J. H., 1956, Effects of local anesthetics on respiration of rat brain cortex in vitro, Anesthesiology 17: 666–671.PubMedCrossRefGoogle Scholar
  97. Gershfeld, N. L. and Shanes, A. M., 1959, Antagonism of veratrine by Ca“ in monolayers of stearic acid, Science 129: 1427–1428.PubMedCrossRefGoogle Scholar
  98. Gey, K. F., Rutihauser, M., and Pletscher, A., 1965, Suppression of glycolysis in rat brain in vivo by chlorpromazine, reserpine and phenobarbital, Biochem. Pharmacol. 14: 507–514.PubMedCrossRefGoogle Scholar
  99. Ghosh, J. J., and Quastel, J. H., 1954, Narcotics and brain respiration, Nature, Lond. 174: 28–31.CrossRefGoogle Scholar
  100. Giarman, N. J., and Schanberg, S. M., 1962, Drug induced alterations of subcellular distribution of 5HT in rat brain, Biochem. Pharmacol. 9: 93–96.PubMedCrossRefGoogle Scholar
  101. Giarman, N. J., and Schmidt, K. F., 1963, Some neurochemical aspects of the depressant action of y-butyrolactone in the CNS, Brit. J. Pharmacol. Chemother. 20: 563–568.Google Scholar
  102. Glick, N., 1972, Inhibition of transport reactions, in: Metabolic Inhibitors, Vol. 3 ( R. M. Hochster, M. Kates, and J. H. Quastel, eds.), pp. 1–45, Academic Press, New York.Google Scholar
  103. Glowinski, J., and Axelrod, J., 1964, Inhibition of uptake of sH-norepinephrine in the intact rat brain by imipramine and related compounds, Nature 204: 1318–1319.PubMedCrossRefGoogle Scholar
  104. Glowinski, J., Axelrod, J., and Iversen, L. L., 1966, Regional studies of catecholamines in rat brain: Effects of drugs on the disposition and metabolism of 3H-norepinephrine and 5H-dopamine, J. Pharmacol. Exp. Ther. 153: 30–41.PubMedGoogle Scholar
  105. Glowinski, J., Iversen, L. L., and Axelrod, J., 1966, Storage and synthesis of norepinephrine in the reserpine treated rat brain, J. Pharmacol. Exp. Ther. 151: 385–399.PubMedGoogle Scholar
  106. Godfraind, J. M., Kawamura, H., Krnjevic, K., and Pumain, R., 1971, Actions of dinitrophenol and some other metabolic inhibitors or cortical neurones, J. Physiol. 215: 199–222.PubMedGoogle Scholar
  107. Goldberg, N. D., Passoneau, J. V., and Lowry, O. H., 1966, Effects of changes in brain metabolism on the levels of citric acid cycle intermediates, J. Biol. Chem. 241: 3997–4003.PubMedGoogle Scholar
  108. Goldman, D. E., and Blaustein, M. P., 1966, Ions, drugs and the axon membrane, Ann. N.Y. Acad. Sci. 137: Art. 2, 967–981.CrossRefGoogle Scholar
  109. Gonda, O., and Quastel, J. H., 1962, Effects of ouabain on cerebral metabolism and transport mechanisms in vitro, Biochem. J. 84: 394–406.PubMedGoogle Scholar
  110. Gonda, O., and Quastel, J. H., 1963, Effects of acetylsalicylate and 2:4-dinitrophenol on metabolism and transport in rat brain cortex in vitro, Canad. J. Biochem. Physiol. 41: 435–454.PubMedCrossRefGoogle Scholar
  111. Gonda, O., and Quastel, J. H., 1966, Transport and metabolism of acetate in rat brain cortex in vitro, Biochem. J. 100: 83–94.PubMedGoogle Scholar
  112. Goodchild, M., and Neal, M. J., 1973, Uptake of sH-GABA by the retina, Brit. J. Pharmacol. 47: 529–542.CrossRefGoogle Scholar
  113. Goodrich, C. A., 1969, Effect of monoamine oxidase inhibitors on 5-hydroxy-tryptamine output from perfused cerebral ventricles of anesthetised cat, Brit. J. Pharmacol. 37: 87–93.CrossRefGoogle Scholar
  114. Gottesfeld, Z., and Elliott, K. A. C., 1971, Factors that affect binding and uptake of GABA by brain tissue, J. Neurochem. 18: 683–690.PubMedCrossRefGoogle Scholar
  115. Graeff, F. G., Leme, J. G., and Roche E Silva, M., 1965, Role played by catechol and indoleamines in the central actions of reserpine after monoamineoxidase inhibition, Int. J. Neuropharmacol. 4: 17–26.PubMedCrossRefGoogle Scholar
  116. Greig, M. E., Seay, P. H., and Freyburger, W. A., 1961, The pharmacology of etryptamine, J. Neuropsychiat. 2:131–135 (Suppl. 1 ).Google Scholar
  117. Grewaal, D. S., and Quastel, J. H., 1973, Control of synthesis and release of radioactive Ach in brain slices from the rat, Biochem. J. 132: 1–14.PubMedGoogle Scholar
  118. Haber, B., 1965, Effects of hydroxylamine and aminooxyacetate on the cerebral in vitro utilisation of glucose, fructose, glutamate and GABA, Canad. J. Biochem. 43: 865–876.CrossRefGoogle Scholar
  119. Haga, T., 1971, Synthesis and release of “C-Ach in synaptosomes, J. Neurochem. 18: 781–798.PubMedCrossRefGoogle Scholar
  120. Hammerstad, J. P., and Cutler, R. W. P., 1972, Na’ movements and the spontaneous and electrically stimulated release of GABA and glutamate from rat cortical slices, Brain Res. 47: 401–413.CrossRefGoogle Scholar
  121. Harpur, R. P., and Quastel, J. H., 1949, Relations between Ach synthesis and metabolism of carbohydrates and d-glucosamine in the CNS, Nature 164: 779–784.PubMedCrossRefGoogle Scholar
  122. Hathway, D. E., and Mallinson, A., 1964, Chemical studies in relation to convulsive conditions, Biochem. J. 90: 51–60.PubMedGoogle Scholar
  123. Hathway, D. E., Mallinson, A., and Akintonwa, D. A., 1965, Effects of dieldrin, picrotoxin and telodrin on the metabolism of ammonia in brain, Biochem. J. 94: 676–686.PubMedGoogle Scholar
  124. Heald, P. J., 1954, Rapid changes in creatine phosphate level in cerebral cortex slices, Biochem. J. 57: 673–679.PubMedGoogle Scholar
  125. Hemsworth, B. A., and Neal, M. J., 1968, Effect of central stimulant drugs on the release of Ach from the cerebral cortex, Brit. J. Pharm. Chemother. 32: 543–550.Google Scholar
  126. Hertting, G., Axelrod, J., and Whitby, L. G., 1961, Effects of drugs on the uptake and metabolism of ‘H-norepinephrine, J. Pharmacol. Exp. Ther. 134: 146–153.Google Scholar
  127. Hillman, H. H., Campbell, W. J., and Mcilwain, H., 1963, Membrane potentials in isolated and electrically stimulated mammalian cerebral cortex, J. Neurochem. 10: 325–339.CrossRefGoogle Scholar
  128. Himwich, H., 1951, Brain Metabolism and Cerebral Disorders, pp. 298–301, Williams and Wilkins, Baltimore.Google Scholar
  129. Himwich, W. A., Homburger, E., Maresca, R., and Himwich, H. E., 1947, Brain metabolism in man: unanesthetized and in pentothal narcosis, Am. J. Psychiat. 103: 689–696.PubMedGoogle Scholar
  130. Hodgkin, A. L., 1966, The Nature of the Nerve Impulse, p. 108, University Press, Liverpool.Google Scholar
  131. Holzbauer, M., and Vogt, M., 1956, Depression by reserpine of the noradrenaline concentration in the hypothalamus of the cat, J. Neurochem. 1: 8–11.PubMedCrossRefGoogle Scholar
  132. Hopper, S., and Segal, H. L., 1964, Comparative properties of glutamic-alanine transaminases from several sources, Arch. Biochem. Biophys. 105: 501–505.PubMedCrossRefGoogle Scholar
  133. Horita, A., 1970, Pharmacology of monoamine oxidase inhibitor antidepressants, in: Principles of Psychopharmacology ( W. G. Clarke and J. del Giudice, eds.), pp. 279–287, Academic Press, New York.Google Scholar
  134. Horn, A. S., Coyle, J. T., and Snyder, S. H., 1971, Catecholamine uptake by synaptosomes from rat brain, Mol. Pharmacol. 7: 66–80.PubMedGoogle Scholar
  135. Horton, R. W., Meldrum, B. S., and Bachelard, H. S., 1973, Enzymic and cerebral metabolic effects of 2-deoxyglucose, J. Neurochem. 21: 507–520.PubMedCrossRefGoogle Scholar
  136. Hosein, E. A., Stachiewicz, E., Bourne, W., and Denstedt, O. F., 1955, The influence of nitrous oxide on the metabolic activity of brain tissue, Anesthesiology 16: 708–715.PubMedCrossRefGoogle Scholar
  137. Hulme, N. A., and Krantz, J. C., 1955, Effect of ethylether on oxidative phosphorylation in the brain, Anesthesiology 16: 627–631.PubMedCrossRefGoogle Scholar
  138. Israel, Y., Kalant, H., and Laufer, I., 1965, Effects of ethanol on microsomal ATPase, Biochem. Pharmacol. 14: 1803–1814.PubMedCrossRefGoogle Scholar
  139. Iversen, L. L., and Johnston, G. A. R., 1971, GAGA uptake in rat CNS: Comparison of uptake in slices and homogenates and effects of some inhibitors, J. Neurochem. 18: 1939–1950.PubMedCrossRefGoogle Scholar
  140. Iversen, L. L., Glowinski, J., and Axelrod, J., 1965, Uptake and storage of ‘Hnorepinephrine in the reserpine treated rat heart, J. Pharmacol. Exp. Ther. 150: 173–183.PubMedGoogle Scholar
  141. Izumi, K., Donaldson, J., Minnich, J., and Barbeau, A., 1973, Ouabain-induced seizures in rats: Relationship to brain monoamines, Canad. J. Biochem. 51: 198–203.Google Scholar
  142. Jalling, O., Lindberg, O., and Ernster, L., 1955, On the effect of substituted barbiturates on mitochondrial respiration, Acta Chem. Scand. 9: 198–199.CrossRefGoogle Scholar
  143. Järnefelt, J., 1961, Inhibition of brain microsomal ATPase by depolarizing agents, Biochim. Biophys. Acta 48: 111–116.Google Scholar
  144. Johnson, E. S., Roberts, M. H. T., and Straughan, D. W., 1969, Responses of cortical neurons to monoamines under differing anesthetic conditions, J. Physiol. 203: 261–280.PubMedGoogle Scholar
  145. Johnson, W. J., and Quastel, J. H., 1953, A comparison of the effects of narcotics and of 2:4-dinitrophenol on sulfanilamide acetylation, J. Biol. Chem. 205: 163–171.PubMedGoogle Scholar
  146. Jones, D. A., and Mcilwain, H., 1971, Amino acid production and translocation in incubated and superfused tissues from the brain, J. Neurobiol. 2: 311–326.PubMedCrossRefGoogle Scholar
  147. Kao, C. Y., 1966, Tetrodotoxin, saxitoxin and their significance in the study of excitation phenomena, Pharmacol. Rev. 18: 997–1049.PubMedGoogle Scholar
  148. Kini, M. M., and Quastel, J. H., 1959, Carbohydrate-amino acid interrelations in brain cortex in vitro, Nature 184: 252–256.PubMedCrossRefGoogle Scholar
  149. Kini, M. M., and Quastel, J. H., 1960, Effects of veratrine and cocaine on cerebral carbohydrate—amino acid interrelations, Science 131: 412–414.PubMedCrossRefGoogle Scholar
  150. Kolousek, J., and Jiracek, U., 1959, Stickstoff Metabolismus des Gehirns und der Leber bei Ratten nach einer Applikation von Methionine sulfoximine, J. Neurochem. 4: 178–181.PubMedCrossRefGoogle Scholar
  151. Kopin, J., 1966, Biochemical aspects of release of norepinephrine and other amines from synpathetic nerve endings, Pharmacol. Rev. 18: 513–523.PubMedGoogle Scholar
  152. Krnjevic, K., 1972, Excitable membranes and anesthetics, in: Cellular Biology and Toxicity of Anesthetics, (B. R. Fink, ed.), pp. 3–9, Williams and Wilkins, Baltimore.Google Scholar
  153. Krnjevic, K., and Phillis, J. W., 1963, Ach sensitive cells in the cerebral cortex, J. Physiol. 166: 296–327.PubMedGoogle Scholar
  154. Kuffler, S. W., 1967, Neuroglial cells: Physiological properties and a K’-mediated effect of neuronal activity on the glial membrane potential, Proc. Roy. Soc. Lond. Ser. B 168: 1–21.CrossRefGoogle Scholar
  155. Kuffler, S. W., and Nicholls, J. G., 1966, The physiology of neuroglial cells, Ergeb. Physiol. 57: 1–90.PubMedCrossRefGoogle Scholar
  156. Kuhar, M. J., and Snyder, S. H., 1970, The subcellular distribution of free 3H-glutamicacid in rat cerebral cortex slices, J. Pharmacol. Exp. Ther. 171: 141–152.PubMedGoogle Scholar
  157. Kunz, H. A., and Sulser, F., 1957, Uber die Hemming des activen Kationen transport durch Herz glykoside, Experientia 13: 365–367.PubMedCrossRefGoogle Scholar
  158. Laborit, H. M., 1964, Sodium 4-hydroxybutyrate, Int. J. Neuropharmacol. 3: 433–457.PubMedCrossRefGoogle Scholar
  159. Laborit, H. M., and Sanseigne, A., 1970, Pharmacology of antipsychotic drugs, in: Principles of Psychopharmacology (W. G. Clark and J. del Giudice, eds. ), pp. 259–267.Google Scholar
  160. Lahiri, S., and Lajtha, A., 1964, Cerebral amino acid transport in vitro: Some requirements and properties of uptake, J. Neurochem. 11: 77–86.PubMedCrossRefGoogle Scholar
  161. Lahiri, S., and Quastel, J. H., 1963, Fluoroacetate and the metabolism of ammonia in brain, Biochem. J. 89: 157–163.PubMedGoogle Scholar
  162. Lamar, C., and Sellinger, O. Z., 1965, Inhibition in vivo of cerebral glutamine synthetase and glutamine transferase by methionine sulfoximine, Biochem. Pharmacol. 14: 489–506.PubMedCrossRefGoogle Scholar
  163. Larrabee, M. G., and Posternak, J. M., 1952, Selective action of anesthetics on synapses and axons in mammalian sympathetic ganglia, J. Neurophysiol. 15: 91–99.PubMedGoogle Scholar
  164. Lazlo, J., Humphreys, S. R., and Goldin, A., 1960, Effects of glucose analogs (2-deoxyglucose) on experimental tumors, J. Natl. Cancer Inst. 24: 267–281.Google Scholar
  165. Lehninger, A. L., Rossi, C. S., and Greenawalt, J. W., 1963, Respiration dependent accumulation of inorganic phosphate and Ca“, Biochem. Biophys. Res. Commun. 10: 444–448.PubMedCrossRefGoogle Scholar
  166. Levi, G., Cherayil, A., and Lajtha, A., 1965, Cerebral amino acid transport. Heterogeneity of exit, J. Neurochem. 12: 757–770.PubMedCrossRefGoogle Scholar
  167. Liang, C. C., and Quastel, J. H., 1969, Effects of drugs on the uptake of Ach in rat brain cortex slices, Biochem. Pharmacol. 18: 1187–1194.CrossRefGoogle Scholar
  168. Lindan, O., Quastel, J. H., and Sved, S., 1957, Biochemical studies on chlorpromazine, Canari. J. Biochem. 35: 1135–1144.CrossRefGoogle Scholar
  169. Lindbohm, R., and Wallgren, H., 1962, Changes in respiration of rat brain cortex slices induced by some aliphatic alcohols, Acta Pharmacol. Toxicol. 19: 53–58.CrossRefGoogle Scholar
  170. Lovtrup, S., 1967, On the correlation between psychic action, chemical effects, and physical properties of chlorpromazine and imipramine, in: Molecular Basis of Some Aspects of Mental Activity, Vol. 2 ( O. Walaas, ed.), pp. 39–73, Academic Press, New York.Google Scholar
  171. Lowry, O. H., and Passoneau, J. V., 1962, Application of quantitative histochemistry to the pharmacology of the nervous system, Biochem. Pharmacol. 9: 173–180.PubMedCrossRefGoogle Scholar
  172. Lowry, O. H., and Passoneau, J. V., 1964, The relationships between substrates and enzymes of glycolysis in brain, J. Biol Chem. 239: 31–42.PubMedGoogle Scholar
  173. Lowry, O. H., Passoneau, J. V., Hasselberger, F. X., and Schultz, D. W., 1964, Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain, J. Biol. Chem. 239: 18–30.PubMedGoogle Scholar
  174. Lundberg, P., and Stitzel, R. E., 1968, Studies on the relationship between adrenergic nerve function and granular uptake mechanisms, Brit. J. Pharmacol. 33: 98–104.Google Scholar
  175. Maizels, M., Remington, M., and Truscoe, R., 1958, Effects of certain physical factors and of cardiac glycosides on Na’ transfer by mouse ascites tumor cells, J. Physiol. 140: 61–79.PubMedGoogle Scholar
  176. Majchrowicz, E., 1965, Effects of aliphatic alcohols and aldehydes on the metabolism of K’ stimulated rat brain cortex slices, Canad. J. Biochem. 43: 1041–1051.CrossRefGoogle Scholar
  177. Manara, L., Carminati, P., and Mennini, T., 1972, In vivo persistent binding of 3H-reserpine to rat brain subcellular components, Eur. J. Pharmacol. 20: 109–113.PubMedCrossRefGoogle Scholar
  178. Mann, P. J. G., and Quastel, J. H., 1940, Benzedrine and brain metabolism, Biochem. J. 34: 414–431.PubMedGoogle Scholar
  179. Mann, P. J. G., Tennenbaum, M., and Quastel, J. H., 1938, On the mechanism of Ach formation in brain in vitro, Biochem. J. 32: 243–261.PubMedGoogle Scholar
  180. Martin, W. R., and Sloan, J. W., 1970, Effects of infused tryptamine in man, Psychopharmacologia 18: 231–237.PubMedCrossRefGoogle Scholar
  181. Matthyse, S., 1973, Antipsychotic drug actions, Fed. Proc. 32: 200–205.Google Scholar
  182. Maxwell, R. G., and Nickel, V. S., 1954, Chelating agents, barbiturates and stimulation of rat brain ATPase, Proc. Soc. Exp. Biol. Med. 86: 846–848.PubMedGoogle Scholar
  183. Mayman, C. I., Gatsfield, P. D., and Breckenbridge, B. MC. L., 1964, The glucose content of brain in anesthesia, J. Neurochem. 11: 483–487.PubMedCrossRefGoogle Scholar
  184. Mcgeer, E. G., and Mcgeer, P., 1973, Amino acid hydroxylase inhibitors, in: Metabolic Inhibitors, Vol. 4 ( R. M. Hochster, M. Kates, and J. H. Quastel, eds.), pp. 45–105, Academic Press, New York.Google Scholar
  185. Mcilwain, H., 1953, Effects of depressants on the metabolism of stimulated cerebral tissues, Biochem. J. 53: 403–412.PubMedGoogle Scholar
  186. Mcilwain, H., 1967, Tetrodotoxin and the cation content, excitability and metabolism of isolated mammalian cerebral tissues, Biochem. Pharmacol. 16: 1389–1396.PubMedCrossRefGoogle Scholar
  187. Mcilwain, H., and Bachelard, H. S., 1971, Biochemistry and the CNS, 4th ed., Churchill, London.Google Scholar
  188. Mcilwain, H., and Gore, M. B. R., 1951, Actions of electrical stimulation and of 2:4dinitrophenol on the phosphates in sections of mammalian brain in vitro, Biochem. J. 50: 24–28.PubMedGoogle Scholar
  189. Mcilwain, H., and Greengard, O., 1957, Excitants and depressants of the CNS in isolated electrically stimulated cerebral tissues, J. Neurochem. 1: 348–357.PubMedCrossRefGoogle Scholar
  190. Mclennan, H., and Elliott, K. A. L., 1951, Effects of convulsant and narcotic drugs on Ach synthesis, J. Pharmacol. Exp. Ther. 103: 35–43.PubMedGoogle Scholar
  191. Meek, J. L., and Fuxe, K., 1971, Serotonin accumulation after monoamine oxidation inhibition: Effects of some antidepressants and hallucinogens, Biochem. Pharmacol. 20: 693–706.PubMedCrossRefGoogle Scholar
  192. Meldrum, B. S., and Horton, R. W., 1973, Cerebral functional effects of 2-deoxy-D-glucose and 3–0-methylglucose in Rhesus monkeys, Electroenceph. Clin. Neurophysiol. 35: 59–66.PubMedCrossRefGoogle Scholar
  193. Michaelis, M., and Hashimoto, S., 1962, Action of chloretone on reduced cozymase oxidation by cytochrome c, Nature 194: 680–681.PubMedCrossRefGoogle Scholar
  194. Michaelis, M., and Quastel, J. H., 1941, Site of action of narcotics in respiratory processes, Biochem. J. 35: 518–533.PubMedGoogle Scholar
  195. Mitoma, C., and Neubauer, S. E., 1968, y-Hydroxybutyric acid and sleep, Experientia 24: 12–13.Google Scholar
  196. Moore, J. W., 1966, Effects of ethanol on ionic conductances in the squid axon membrane, Psychosom. Med. 28: 450–457.Google Scholar
  197. Moore, K. E., and Lariviere, E. W., 1963, Effects of d-amphetamine and restraint on the content of norepinephrine and dopamine in rat brain, Biochem. Pharmacol. 12: 1283–1288.PubMedCrossRefGoogle Scholar
  198. Morrison, A. B., and Webster, R. H., 1973, Reserpine rigidity and adrenergic neurons, Neuropharmacology 12: 725–733.PubMedCrossRefGoogle Scholar
  199. Mullins, L. J., 1971, Anesthetics, in: Handbook of Neurochemistry, Vol. 6 ( A. Lajtha, ed.), pp. 395–423, Plenum Press, New York.Google Scholar
  200. Nadler, J. V., Horwitch, P., and Cooper, J. R., 1972, Effects of sodium fluoroacetate on the metabolism of N-acetylaspartate and aspartate in mouse brain, J. Neurochem. 19: 2107–2118.PubMedCrossRefGoogle Scholar
  201. Nakamura, Y., Nakajima, S., and Grundfest, H., 1965, Action of tetrodotoxin on electrogenic components of squid giant axons, J. Gen. Physiol. 48: 985–996.CrossRefGoogle Scholar
  202. Nakazawa, S., and Quastel, J. H., 1968, Effects of inorganic salts and of ouabain on some metabolic responses of rat brain cortex slices to cationic and electrical stimulation, Canad. J. Biochem. 46: 355–362.CrossRefGoogle Scholar
  203. Narahashi, T., Moore, J. W., and Scott, W. R., 1964, Tetrodotoxin blockage of sodium conductance increase in lobster giant axons, J. Gen. Physiol. 47: 965–974.PubMedCrossRefGoogle Scholar
  204. Neal, M. J., and Starr, M. S., 1973, Effect of inhibitors of GABA transaminase on the accumulation of GABA by the retina, Brit. J. Pharmacol. 47: 543–555.CrossRefGoogle Scholar
  205. Nistri, A., Bartiolini, A., Defenu, G., and Pepeu, G., 1972, Investigations into the release of Ach from cerebral cortex of the cat: Effects of amphetamine, of scopolamine and of septal lesions, Neuropharmacology 11: 665–674.PubMedCrossRefGoogle Scholar
  206. Okamoto, K., and Quastel, J. H., 1970, Tetrodotoxin sensitive uptake of ions and water by slices of rat brain in vitro, Biochem. J. 120: 37–47.PubMedGoogle Scholar
  207. Okamoto, K., and Quastel, J. H., 1972, Uptake and release of glutamate in cerebral cortex from the rat, Biochem. J. 128: 1117–1124.PubMedGoogle Scholar
  208. Okamoto, K., and Quastel, J. H., 1973, Spontaneous action potentials in isolated guinea pig cerebellar slices: Effects of amino acids and conditions affecting sodium and water uptake, Proc. Roy. Soc. Lond. Ser. B 184: 83–90.CrossRefGoogle Scholar
  209. Page, I. H., and Carlsson, A., 1970, Serotonin, in: Handbook of Neurochemistry, Vol. 4 ( A. Lajtha, ed.), pp. 251–262, Plenum Press, New York.Google Scholar
  210. Paton, W. D. M., and Speden, R. N., 1965, Uptake of anesthetics and their actions on the CNS, Brit. Med. Bull. 21: 44–48.PubMedGoogle Scholar
  211. Peters, E. L., and Tower, D. B., 1959, Glutamic acid and glutamine metabolism in cerebral cortex after seizures induced by methionine sulfoximine, J. Neurochem. 5: 80–90.PubMedCrossRefGoogle Scholar
  212. Peters, R. A., 1957, Mechanism of toxity of Dichapetalum cymosum, Advan. Enzymol. 18: 113–159.Google Scholar
  213. Pletscher, A., 1968, in: Psychopharmacology: A Review of Progress 1957–1967(D. H. Efron, ed.), pp. 649–654, Government Printing Office, Washington, D.C.Google Scholar
  214. Pletscher, A., Shore, P. A., and Brodie, B. B., 1956, Serotonin as a mediator of reserpine action in brain, J. Pharmacol. Exp. Ther. 116: 84–89.PubMedGoogle Scholar
  215. Pletscher, H., Burkard, W. P., and Gey, K. F., 1964, Effect of monoamine releasers and decarboxylase inhibitors on endogenous 5-hydroxyindole derivatives in brain, Biochem. Pharmacol. 13: 385–390.PubMedCrossRefGoogle Scholar
  216. Post, R. L., Merritt, C. R., Kinsolving, C. R., and Albright, C. D., 1960, Membrane ATPase as a participant in the active transport of Na’ and K’ in the human erythrocyte, J. Biol. Chem. 235: 1796–1802.PubMedGoogle Scholar
  217. Proler, M., and Kellaway, P., 1962, The methionine sulfoximine syndrome in the cat, Epilepsia 4th Ser. 3: 117–130.CrossRefGoogle Scholar
  218. Quastel, D. M. J., Hackett, J. T., and Okamoto, K., 1972, Presynaptic action of central depressant drugs, Canad. J. Physiol. Pharmacol. 50: 279–284.CrossRefGoogle Scholar
  219. Quastel, J. H., 1958, Enzymatic basis of drug action, in: Proc. Internat. Symp. Enz. Chem. Tokyo, 1957, pp. 510–521, Maruzen, Tokyo.Google Scholar
  220. Quastel, J. H., 1959, Enzymatic mechanisms of the brain: Effects of some neurotropic agents, in: Biochemistry of the Central Nervous System, Vol. 3 ( F. Brucke, ed.), pp. 90–114, Proc. Fourth Int. Cong. Biochem., Vienna, Pergamon Press, London.Google Scholar
  221. Quastel, J. H., 1962, Effects of electrolytes on brain metabolism, in: Neurochemistry, 2nd ed. ( K. A. C. Elliott, I. H. Page, and J. H. Quastel, eds.), pp. 226–237, Thomas, Springfield, Ill.Google Scholar
  222. Quastel, J. H., 1965, Effects of drugs on the metabolism of the brain in vitro, Brit. Med. Bull. 21: 49–56.PubMedGoogle Scholar
  223. Quastel, J. H., 1967, Effects of neurotropic drugs on brain metabolism in vitro, in: Molecular Basis of Some Aspects of Mental Activity, Vol. 2 ( O. Walaas, ed.), pp. 19–37, Academic Press, New York.Google Scholar
  224. Quastel, J. H., 1970, Transport processes at the brain cell membrane, in: Neurosciences Research, Vol. 3 ( S. Ehrenpreis and O. C. Solnitzky, eds.), pp. 1–41, Academic Press, New York.Google Scholar
  225. Quastel, J. H., and Wheatley, A. H. M., 1932, Narcosis and oxidations of the brain, Proc. Roy. Soc. Lond. Ser. B 112: 60–79.CrossRefGoogle Scholar
  226. Ramsey, R. L., and Mcilwain, H., 1970, Calcium content and exchange in neocortical tissues during the cation movements induced by glutamates, J. Neurochem. 17: 781–787.PubMedCrossRefGoogle Scholar
  227. RANDRUP, A., and MUNKVAD, J., 1966, Role of catecholamines in the amphetamine excitatory response, Nature 211: 540.PubMedCrossRefGoogle Scholar
  228. Reading, H. W., and Wallwork, J., 1969, Oxidation of succinate and pyruvate in rat brain and its effect on barbiturate anesthesia, Biochem. Pharmacol. 18: 2211–2214.PubMedCrossRefGoogle Scholar
  229. Richens, A., 1969, Microelectrode studies in the frog isolated spinal cord during depression by general anesthetic agents, Brit. J. Pharmacol. 36: 312–319.CrossRefGoogle Scholar
  230. Ritchie, J. M., and Greengard, P., 1966, On the mode of action of local anesthetics, Ann. Rev. Pharmacol. 6: 405–430.PubMedCrossRefGoogle Scholar
  231. Roa, P. D., Tews, J. K., and Stone, W. E., 1964, A neurochemical study of thiosemicarbazide seizures and their inhibition by aminooxyacetate, Biochem. Pharmacol. 13: 477–487.PubMedCrossRefGoogle Scholar
  232. Ronzto, R. A., and Meister, A., 1967, Attachment of methionine sulfoximine to the active site of glutamine synthetase, Fed. Proc. 26: 389.Google Scholar
  233. Ronzto, R. A., and Meister, A., 1968, Phosphorylation of methionine sulfoximine by glutamine synthetase, Proc. Natl. Acad. Sci. 59: 164–170.CrossRefGoogle Scholar
  234. Rose, S. P. R., 1965, Effects of ouabain, glutamate and cations on phosphate incorporation in brain slices, Biochem. Pharmacol. 14: 589–601.PubMedCrossRefGoogle Scholar
  235. Rosina, A., and Sotgiu, M. L., 1967, Effects of intravertebral injection of a barbiturate on unit-activity in the lower brain stem, Brain Res. 6: 510–522.PubMedCrossRefGoogle Scholar
  236. Ross, S. B., and Renyi, A. L., 1967, Accumulation of sH-5-hydroxytryptamine in brain slices, Life Sci. 6: 1407–1415.PubMedCrossRefGoogle Scholar
  237. Rutledge, C. O., 1970, The mechanisms by which amphetamine inhibits oxidative deamination of norepinephrine in the brain, J. Pharmacol. Exp. Ther. 171: 188–195.PubMedGoogle Scholar
  238. Rutledge, C. O., and Weiner, H., 1967, Effect of reserpine on the synthesis of norepinephrine in the isolated rabbit heart, J. Pharmacol. Exp. Ther. 157: 290–302.PubMedGoogle Scholar
  239. Ryman, B. E., and Walsh, E. O’F., 1954, Site of inhibitory action of cocaine on cellular respiration, Biochem. J. 58: 111–115.PubMedGoogle Scholar
  240. Sanan, S., and Vogt, M., 1962, Effects of drugs on the noradrenaline content of brain and peripheral tissue, Brit. J. Pharmacol. 18: 109–127.Google Scholar
  241. Santini, M., and Berl, S., 1972, Effects of reserpine and monoamine oxidase inhibitors on the levels of amino acids in sensory ganglia, sympathetic ganglia and spinal cord, Brain.Res. 47: 167–176.PubMedCrossRefGoogle Scholar
  242. Schanberg, N. J., and Schanberg, S. M., 1962, Drug induced alterations of the sub-cellular distribution of serotonin in rat brain, Biochem. Pharmacol. 9: 93–96.PubMedCrossRefGoogle Scholar
  243. Schanberg, S. M., Schildkraut, J. J., and Kopin, I. J., 1967, Effect of psychoactive drugs on sH-norepinephrine metabolism in brain, Biochem. Pharmacol. 16: 393–399.PubMedCrossRefGoogle Scholar
  244. Schatzmann, H. J., 1953, Herzglykoside als Hemmstoffe fur den aktiven K’ und Na’ transport durch die erythrocyten Membran, Helv. Physiol. Acta 11: 346–354.Google Scholar
  245. Schildkraut, J. J., 1965, The catecholamine hypothesis of affective disorders: A review of supporting evidence, Am. J. Psychiat. 122: 509–522.PubMedGoogle Scholar
  246. Schildkraut, J. J., and Gershon, S. S., 1971, Antidepressants and related drugs, in: Handbook of Neurochemistry, Vol. 6 ( A. Lajtha, ed.) pp. 357–386, Plenum Press, New York.Google Scholar
  247. Schildkraut, J. J., Klerman, G. L., Hammond, R., and Friend, D. G., 1964, Excretion of 3-methoxy-4-hydroxymandelic acid in depressed patients treated with antidepressant drugs, J. Psychiat. Res. 2: 257–266.CrossRefGoogle Scholar
  248. Schildkraut, J. J., Schanberg, S. M., Breese, G. R., and Kopin, I. J., 1967, Norepinephrine metabolism and drugs used in the affective disorders, Am. J. Psychiat. 124: 600–608.Google Scholar
  249. Schuberth, J., Spare, B., and Sundwall, A., 1969, A technique for the study of Ach turnover in mouse brain in vivo, J. Neurochem. 16: 695–700.PubMedCrossRefGoogle Scholar
  250. Schwartz, A., and Laseter, A. H., 1964, A Na’- and K’-stimulated ATP-ase from cardiac tissue: Effects of ouabain and other agents that modify enzyme activity, Biochem. Pharmacol. 13: 337–348.PubMedCrossRefGoogle Scholar
  251. Seeman, P., 1972, The membrane actions of anesthetics and tranquilisers, Pharmacol. Rev. 24: 583–655.PubMedGoogle Scholar
  252. Segawa, T., and Kuruma, I., 1968, Influence of drugs on uptake of 5-HT by nerve ending particles of rabbit brain stem, J. Pharm. Pharmacol. 20: 320–322.PubMedCrossRefGoogle Scholar
  253. Sellinger, O. Z., 1967, Inactivation of glutamine synthetase by methionine sulfoximine, Biochim. Biophys. Acta 132: 514–516.Google Scholar
  254. Sellinger, O. Z., and Weiler, P., 1963, Nature of inhibition in vitro of cerebral glutamine synthetase by methionine sulfoximine, Biochem. Pharmacol. 12: 989–1000.PubMedCrossRefGoogle Scholar
  255. Shanes, A. M., 1958, Electrochemical aspects of physiological and pharmacological action in excitable cells, Pharmacol. Rev. 10: 59–103.PubMedGoogle Scholar
  256. Shanes, A. M., Treygang, W. H., GRUNDFEST, H., and Amatnik, E., 1959, Anesthetic and calcium action in the voltage-clamped squid axon, J. Gen. Physiol. 42: 793–802.PubMedCrossRefGoogle Scholar
  257. Shankar, R., and Quastel, J. H., 1972, Effects of tetrodotoxin and anesthetics on brainmetabolism and transport during anoxia, Biochem. J. 126: 851–867.PubMedGoogle Scholar
  258. Shankaran, R., and Quastel, J. H., 1972, Effects of anesthetics on sodium uptake into rat brain cortex in vitro, Biochem. Pharmacol. 21: 1763–1773.PubMedCrossRefGoogle Scholar
  259. Sharma, S. K., Johnstone, R. N., and Quastel, J. H., 1963, Active transport of ascorbic acid in adrenal cortex and brain cortex in vitro, Canad. J. Biochem. Physiol. 41: 597–604.PubMedCrossRefGoogle Scholar
  260. Shemisa, D. A., and Fahlen, L. A., 1971, Modifications of glutamate dehydrogenase by various drugs which affect behaviour, Mol. Pharmacol. 7: 8–25.PubMedGoogle Scholar
  261. Shimizu, N., and Hamuro, Y., 1958, Deposition of glycogen and changes in some enzymes in brain wounds, Nature 181: 781–782.PubMedCrossRefGoogle Scholar
  262. Shiu, P. C., and Elliott, K. A. C., 1973, Binding and uptake of amino acids by brain tissue, Canad. J. Biochem. 51: 121–128.CrossRefGoogle Scholar
  263. Shore, P. A., 1971, Reserpine: A survey of its pharmacology, in: Handbook of Neurochemistry, Vol. 6 ( A. Lajtha, ed.), pp. 349–356, Plenum Press, New York.Google Scholar
  264. Shore, P. A., and Brodie, B. B., 1957, LSD-like effects elicited by reserpine in rabbits pretreated with iproniazid, Proc. Soc. Exp. Biol. 94: 433–435.PubMedGoogle Scholar
  265. Shore, P. A., Mead, J. A. R., Kuntzman, R. G., Spector, S. and Brodie, B. B., 1957, On the physiological significance of monoamine oxidase in brain, Science 126: 1063–1064.PubMedCrossRefGoogle Scholar
  266. Silberman, A., Yu, C.-T., and Lam, K.-W., 1972, Alleviation of barbiturate inhibition on the oxidative activity of mitochondrial particles by alkali, Res. Commun. Chem. Pathol. Pharmacol. 4: 115–119.PubMedGoogle Scholar
  267. Skou, J. C., 1957, Influence of some cations on an ATPase from peripheral nerves, Biochim. Biophys. Acta 23: 394–401.PubMedCrossRefGoogle Scholar
  268. Skou, J. C., 1960, Further investigations on a Mg“ + Na’-activated ATPase possibly related to the active linked transport of Na’ and K’ across the nerve membrane, Biochim. Biophys. Acta 42: 6–23.CrossRefGoogle Scholar
  269. Smith, C. B., 1965, Effects of d-amphetamine on brain amine content and locomotor activity of mice, J. Pharmacol. Exp. Ther. 147: 96–102.PubMedGoogle Scholar
  270. Snyder, S. H., 1970, Catecholamines, brain function and how psychotropic drugs act, in: Principles of Psychopharmacology ( W. G. Clark and J. del Giudice, eds.), pp. 115–125, Academic Press, New York.Google Scholar
  271. Sourkes, T. L., 1962, Biochemistry of Mental Disease, p. 358, Harper and Row, New York.Google Scholar
  272. Sourkes, T. L., and D’iorio, A., 1963, Inhibition of catecholamine metabolism, in: Metabolic Inhibitors, Vol. 2 ( R. M. Hochster and J. H. Quastel, eds.), pp. 79–98, Academic Press, New York.Google Scholar
  273. Spector, S., Hirsch, C. W., and Brodie, B. B., 1963, Association of behavioural effects of pargyline with increase in brain norepinephrine, Int. J. Neuropharmacol. 2: 81–93.CrossRefGoogle Scholar
  274. Stein, L., 1964, Self-stimulation of the brain and the central stimulant action of amphetamine, Fed. Proc. 23: 836–849.PubMedGoogle Scholar
  275. Stein, L., and Wise, C. D., 1969, Release of norepinephrine from hypothalamus and amygdala, J. Comp. Physiol. Psychol. 67: 189–198.PubMedCrossRefGoogle Scholar
  276. Stein, L., and Wise, C. D., 1971, Behavioural pharmacology of central stimulants, in: Principles of Psychopharmacology ( W. G. Clark and J. del Giudice, eds.), pp. 313–325, Academic Press, New York.Google Scholar
  277. Stewart, G. G., Abbs, E. T., and Roberts, D. J., 1969, Biochemical effects of fluoroacetate admininstration in rat brain, heart and blood, Biochem. Pharmacol. 19: 1861–1866.CrossRefGoogle Scholar
  278. Stomer, V., 1971, Investigations into mechanisms responsible for seizures induced by chlorinated hydrocarbon insecticides, J. Neurochem. 18: 365–374.CrossRefGoogle Scholar
  279. Stone, W. E., Tews, J. K., and Mitchell, E. N., 1960, Chemical concomitants of convulsive activity in the cerebrum, Neurology 10: 241–248.PubMedCrossRefGoogle Scholar
  280. Strang, R. H. C., and Bachelard, H. S., 1973, Rates of cerebral glucose utilization in rats anesthetized with phenobarbitone, J. Neurochem. 20: 987–996.PubMedCrossRefGoogle Scholar
  281. Sugrue, M. F., and Shore, P. A., 1970, Further evidence for a Na’ dependent, optically specific, reserpine-sensitive amine carrier mechanism in the adrenergic neuron, Pharmacologist 12: 214.Google Scholar
  282. Sulser, F., and Sanders-Bush, E., 1971, Effect of drugs on amines in the CNS, Ann. Rev. Pharmacol. 11: 209–230.PubMedCrossRefGoogle Scholar
  283. Sulser, F., Owens, M. L., and Dingell, J. V., 1966, Mechanism of amphetamine potentiation by desipramine, Life Sci. 5: 2005–2010.CrossRefGoogle Scholar
  284. Sulser, F., Owens, M. L., Strada, S. J., and Dingell, J. V., 1969, Modification by desipramine of the availability of norepinephrine released by reserpine in rat hypothalamus in vivo, J. Pharmacol. Exp. Ther. 168: 272–282.Google Scholar
  285. Swanson, P. D., 1968, Effects of tetrodotoxin and ouabain on electrically stimulated cerebral cortex slices, Biochem. Pharmacol. 17: 129–141.PubMedCrossRefGoogle Scholar
  286. Taberner, P. B., Rick, J. T., and Kerkut, G. A., 1972, The action of y-hydroxybutyrate on cerebral glucose metabolism, J. Neurochem. 19: 245–254.PubMedCrossRefGoogle Scholar
  287. Takagaki, G., Hirano, S., and Tsukada, Y., 1958, Effects of some inhibitors on the metabolism of guinea pig brain slices, J. Biochem. Tokyo 45: 41–48.Google Scholar
  288. Takagaki, G., Hirano, S., and Nagata, Y., 1959, Some observations on the effect of D-glutamate on glucose metabolism, and accumulation of K`, in brain cortex slices, J. Neurochem. 4: 124–134.PubMedCrossRefGoogle Scholar
  289. Tasaki, I., and Singer, I., 1966, Membrane macromolecules and nerve excitability: A physico-chemical interpretation of excitation in squid giant axons, Ann. N.Y. Acad. Sci. 137: 792–806.PubMedCrossRefGoogle Scholar
  290. Taylor, T., and Snyder, S. H., 1970, Amphetamine: Differentiation by d-and 1-isomers of behaviour involving brain norepinephrine or dopamine, Science 168: 1487–1489.PubMedCrossRefGoogle Scholar
  291. Tews, J. K., and Stone, W. E., 1964, Effects of methionine sulfoximine on levels of free amino acids and related substances in the brain, Biochem. Pharmacol. 13: 543–545.PubMedCrossRefGoogle Scholar
  292. Tews, J. K., and Stone, W. E., 1965, Free amino acids and related compounds in brain and other tissues: Effects of convulsant drugs, in: Progress in Brain Research, Vol. 16: Horizons in Neuropsychopharmacology (W. A. Himwich and J. P. Schadé, eds.), pp. 135–163, Elsevier, New York.Google Scholar
  293. Thesleff, S., and Quastel, D. M. J., 1965, Neuromuscular pharmacology, Ann. Rev. Pharnacol. 5: 263–284.CrossRefGoogle Scholar
  294. Tissari, A. H., And Bogdanski, D. F., 1971, Biogenic amine transport: Comparison of effects of ouabain and K’ deficiency in transport of 5-HT and norepinephrine by synaptosomes, Pharmacology 5: 225–234.PubMedCrossRefGoogle Scholar
  295. Tissari, A. H., Schönhöfer, P. S., Bogdanski, D. F., and Brodie, B. B., 1969, Mechanism of biogenic amine transport: Relation between Na’ and mechanism of ouabain blockade of accumulation of 5-HT and norepinephrine by synaptosomes, Mol. Pharmacol. 5: 593–604.PubMedGoogle Scholar
  296. Tower, D. B., 1958, Effects of 2-deoxy-D-glucose on metabolism of slices of cerebral cortex incubated in vitro, J. Neurochem. 3: 185–205.CrossRefGoogle Scholar
  297. Tower, D. B., 1960, Neurochemistry of Epilepsy (I. N. Kugelmass, ed.), pp. 174–175, Thomas, Springfield, Ill.Google Scholar
  298. Tower, D. B., 1967, Brain Edema (I. Klatzo and F. Seitelberger, eds.), pp. 313, 318, Springer, New York.Google Scholar
  299. Trachtenberg, M. C., and Pollen, D. A., 1970, Neuroglia: Biophysical properties and physiological function, Science 167: 1248–1252.PubMedCrossRefGoogle Scholar
  300. Truitt, E. B., Bell, F. K., and Krantz, J. G., 1956, Effects of alcohols and acetaldehyde on oxidative phosphorylation in brain, Quart, J. Stud. Alcohol 17: 594–600.Google Scholar
  301. Udenfriend, S., Weissbach, H., and Bogdanski, D. F., 1957, Increase of tissue seiotonin following administration of its precursor, 5-hydroxy-tryptophan, J. Biol. Chem. 224: 803–810.PubMedGoogle Scholar
  302. van Harreveld, A., and Fifkova, E., 1972, Effects of metabolic inhibitors on the release of glutamate from the retina, J. Neurochem. 19: 1439–1450.PubMedCrossRefGoogle Scholar
  303. Venturini, G., and Palladini, G., 1973, ATPase activity, Na and K content in guinea pig cortex after ouabain treatment in vivo, J. Neurochem. 20: 237–239.CrossRefGoogle Scholar
  304. Wallach, D. P., 1961, Studies on the GABA pathway, Biochem. Pharmacol. 5: 232–331.CrossRefGoogle Scholar
  305. Wallgren, H., 1960, Effects of alcohol on biochemical processes in the CNS, Psychosom. Med. 28: 431–442.Google Scholar
  306. Wallgren, H., 1971, Alcohol, in: Handbook of Neurochemistry, Vol. 6 ( A. Lajtha, ed.), pp. 509–523, Plenum Press, New York.Google Scholar
  307. Wallgren, H., and Kulonen, E., 1960, Effects of ethanol on respiration of rat brain cortex slices, Biochem. J. 75: 150–158.PubMedGoogle Scholar
  308. Warren, K. S., and Schenker, S., 1964, Effect of an inhibitor of glutamine synthesis (methionine sulfoximine) on ammonia toxicity and metabolism, J. Lab. Clin. Med. 64: 442–449.PubMedGoogle Scholar
  309. Watanabe, A., Tasaki, I., Singer, I., and Lerman, L., 1967, Effects of tetrodotoxin on excitability of squid giant axons in sodium free media, Science 155: 95–97.PubMedCrossRefGoogle Scholar
  310. Watson, P. G., 1960, The mode of action of local anesthetics, J. Pharm. Pharmacol. 12: 257–292.PubMedCrossRefGoogle Scholar
  311. Weakly, J. N., 1969, Effects of barbiturates on “quantal” synaptic transmission in spinal motor neurons, J. Physiol. 204: 63–77.PubMedGoogle Scholar
  312. Wechsler, R. L., Dripps, R. D., and Kety, S. S., 1951, Blood flow and oxygen consumption of the human brain during anesthesia produced by thiopental, Anesthesiology 12: 308–314.PubMedCrossRefGoogle Scholar
  313. Weil-Malherbe, H., Whitby, L. G., and Axelrod, J., 1961, Uptake of circulating 3Hnorepinephrine by the pituitary gland and various areas of the brain, J. Neurochem. 8: 55–64.PubMedCrossRefGoogle Scholar
  314. Weissman, A., Koe, B. K., and Tenen, S. S., 1966, Antiamphetamine effects following inhibition of tyrosine hydroxylase, J. Pharmacol. Exp. Ther. 151: 339–352.PubMedGoogle Scholar
  315. Whittam, R., and Blond, D. M., 1964, Respiratory control by an ATPase involved in active transport in brain cortex, Biochem. J. 92: 147–158.PubMedGoogle Scholar
  316. Wollenberger, A., 1955, Action of protoveratrine on metabolism of cerebral cortex, Biochem. J. 61: 68–80.PubMedGoogle Scholar
  317. Wolpert, H., Truitt, E. B., Bell, F. K., and Krantz, J. C., 1956, Anesthesia: Effect of certain narcotics on oxidative phosphorylation, J. Pharmacol. Exp. Ther. 117: 358–361.Google Scholar
  318. Wood, J. D., and Peesker, S. J., 1973, Role of GABA metabolism in the convulsant and anticonvulsant actions of aminooxyacetate, J. Neurochem. 20: 379–387.PubMedCrossRefGoogle Scholar
  319. Yessaian, N. H., Armenian, A. R., Kazarova, E. K., and Buniatian, H. C., 1971, On the involvement of inorganic ions in the effect of GABA on brain 5-HT and norepinephrine, J. Neurochem. 18: 307–321.PubMedCrossRefGoogle Scholar
  320. Yoshida, H., Nukada, T., and Fujisawa, H., 1961, Effects of ouabain on ion transport and metabolic turnover of phospholipids of brain slices, Biochim. Biophys. Acta 48: 614–615.PubMedCrossRefGoogle Scholar
  321. Zadunaisky, J. A., Wald, F., and de Robertis, E., 1965, Osmotic behaviour and glial changes in isolated frog brains, Prog. Brain Res. 15: 196–218.PubMedCrossRefGoogle Scholar
  322. Zeller, E. A., Barsky, J., and Berman, E. R., 1955, Amine oxidases: Inhibition of monoamine oxidase by isonicotinyl-isopropylhydrazine, J. Biol. Chem. 214: 267–274.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • J. H. Quastel
    • 1
  1. 1.Division of Neurological Sciences, Department of PsychiatryUniversity of British ColumbiaVancouverCanada

Personalised recommendations