Advertisement

Amine and Amino Acid Receptors in Gastropod Neurons

  • P. Ascher
  • J. S. Kehoe
Part of the Handbook of Psychopharmacology book series (HBKPS, volume 4)

Abstract

Of the molluscan preparations, the squid giant axon and gastropod central ganglia have offered the most to cellular neurophysiology. Like the squid giant axon, gastropod neurons are large, can be identified from one preparation to another (see Fig. 1), and can be studied in a medium of controlled composition. By combining these advantages of gastropod neurons with modern electrophysiological techniques (intracellular recording, double-barreled microelectrodes, electrophoretic application of drugs), Taue and Gerschenfeld (1962) introduced an exceptionally useful experimental situation for the study of transmitter receptors. This preparation has gained further usefulness with the identification of acetylcholine-synthesizing (Giller and Schwartz, 1971; McCaman and Dewhurst, 1970; Eisenstadt et al., 1973), serotonin-containing (Cottrell and Osborne, 1970; Weinreich et al., 1973), and dopamine-containing (Marsden and Kerkut, 1970; Cottrell et al., 1974) neurons, along with their respective follower cells, thus permitting the study of the functional role of these three transmitter substances.

Keywords

Inhibitory Response Excitatory Response Dependent Response Synaptic Potential Bathing Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alving, B. O., 1961, The action of strychnine at cholinergic junctions, Arch. Int. Pharmacodyn.- 131:123–150.PubMedGoogle Scholar
  2. Arvanitaki, A., and Chalazonitis, N., 1968, Electrical properties and temporal organization in oscillatory neurons, in: Symposium on Neurobiology of Invertebrates, pp. 169–199, Publishing House of the Hungarian Academy of Sciences, Budapest.Google Scholar
  3. Ascher, P., 1972, Inhibitory and excitatory effects of dopamine on Aplysia neurones, J. Physiol. 225:173–209.PubMedGoogle Scholar
  4. Ascher, P., 1973, Excitatory effects of dopamine on molluscan neurones, in: Frontiers in Catecholamine Research (E. Usdin and S. Snyder, eds.), pp. 667–671, Pergamon Press, New York.Google Scholar
  5. Ascher, P., Gerschenfeld, H. M., and Kehoe, J. S., 1972, Réinterprétation du rôle des ions Cldans certains effets excitateurs de l’acétylcholine sur les neurones de Mollusques, J. Physiol. (Paris) 65:92A.Google Scholar
  6. Barker, J. L., and Gainer, H., 1973, Pentobarbital: Selective depression of excitatory synaptic potentials, Science 182:720–722.PubMedGoogle Scholar
  7. Barlow, R. B., 1964, Introduction to Chemical Pharmacology, 2nd ed. p. 134, Methuen, London.Google Scholar
  8. Berry, M.S., and Cottrell, G. A., 1973a, Dopamine: Excitatory and inhibitory transmission from a giant dopamine neurone, Nature New Biol. 242:250–253.PubMedGoogle Scholar
  9. Berry, M. S., and Cottrell, G. A., 1973b, Post-synaptic blockage of dopaminergic transmission by 6-hydroxydopamine, J. Pharm. Pharmacol. 25:1010.PubMedGoogle Scholar
  10. Berry, M. S. and Cottrell, G. A., 1975, Excitatory, inhibitory and biphasic synaptic potentials mediated by an identified dopamine-containing neurone, J. Physiol. 244:589–612.PubMedGoogle Scholar
  11. Blankenship, J. E., Wachtel, H., and Kandel, E. R., 1971, Ionic mechanisms of excitatory, inhibitory, and dual synaptic actions mediated by an identified inter neuron in abdominal ganglion of Aplysia, J. Neurophysiol. 34:76–92.Google Scholar
  12. Boisson, M., and Chalazonitis, N., 1972, Abolition by noradrenaline of the waving bursting neuronal activity (Br neuron of Aplysia fasciata), Comp. Biochem. Physiol. 41:883–886.Google Scholar
  13. Boistel, J., and Fatt, P., 1958, Membrane permeability changes during inhibitory transmitter action in crustacean muscle, J. Physiol. 144:176–191.PubMedGoogle Scholar
  14. Borys, H. K., Weinreich, D., and McCaman, R. E., 1973, Determination of glutamate and glutamine in individual neurons of Aplysia californica, J. Neurochem. 21:1349.Google Scholar
  15. Carpenter, D., and Gaubatz, G., 1974, Specific receptors for octopamine, dopamine and phenylethanolamine on Aplysia neurons, Fed. Proc. 33:541.Google Scholar
  16. Cedar, H., and Schwartz, J. H., 1972, Cyclic adenosine monophosphate in the nervous system of Aplysia californica. II. Effects of serotonin and dopamine, J. Gen Physiol. 60:570–587.PubMedGoogle Scholar
  17. Cedar, H., Kandel, E. R., and Schwartz, J. H., 1972, Cyclic adenosine monophosphate in the system of Aplysia californica. I. Increased synthesis in response to synaptic stimulation, J. Gen. Physiol. 60:558–569.PubMedGoogle Scholar
  18. Colquhoun, D., 1973, The relation between classical and cooperative models for drug action, in: Drug Receptors (H. P. Rang, ed.), pp. 149–182, Macmillan, London.Google Scholar
  19. Cottrell, G. A., 1970, Direct post-synaptic response to stimulation of serotonin-containing neurones, Nature 225:1060–1062.PubMedGoogle Scholar
  20. Cottrell, G. A., and Macon, J. B., 1974, Synaptic connexions of two symmetrically placed giant serotonin-containing neurones, J. Physiol. 236:435–464.PubMedGoogle Scholar
  21. Cottrell, G. A., and Osborne, N. N., 1970, Subcellular localization of serotonin in an identified serotonin containing neurone, Nature 225:470–472.PubMedGoogle Scholar
  22. Cottrell, G. A., Berry, M. S., and Macon, J. B., 1975, Synapses of a giant serotonin neurone and giant dopamine neurone: Studies using antagonists, Neuropharmacology, in press.Google Scholar
  23. Coyle, J. T., and Henry, D., 1973, Catecholamines in foetal and new-born rat brain, J. Neurochem. 21:61–87.PubMedGoogle Scholar
  24. Cuello, A. C., Hiley, R., and Iversen, L. L., 1973, Use of catechol-O-methyl transferase for the enzyme radio-chemical assay of dopamine, J. Neurochem. 21:1337–1340.PubMedGoogle Scholar
  25. Cull-Candy, S. G., and Usherwood, P. N. R., 1973, Two populations of l-glutamate receptors on locust muscle fibres, Nature New Biol. 246:62–64.PubMedGoogle Scholar
  26. Curtis, D. R., and Watkins, J. C., 1960, The excitation and depression of spinal neurons by structurally related amino-acids, J. Neurochem. 6:117–141.PubMedGoogle Scholar
  27. Curtis, D. R., and Watkins, J. C., 1963, Acidic amino-acids with strong excitatory actions of mammalian neurones, J. Physiol. 166:1–14.PubMedGoogle Scholar
  28. Curtis, D. R., and Watkins, J. C., 1965, The pharmacology of amino-acids related to gamma-aminobutyric acid, Pharm. Rev. 17:347–391.PubMedGoogle Scholar
  29. Dolezalova, H., Giacobini, E., Seiber, N., and Schneider, H. H., 1973, Determination of piperidine in snail brain (Helix pomatia), Brain Res. 55:242–244.PubMedGoogle Scholar
  30. Eisenstadt, M., Goldman, J., Kandel, E. R., Koike, H., Koester, J., and Schwartz, J. H., 1973, Intrasomatic injection of radioactive precursors for studying transmitter synthesis in identified neurons of Aplysia californica, Proc. Natl. Acad. Sci. 70:3371–3375.Google Scholar
  31. Faber, D. S., and Klee, M. R., 1974, Strychnine interactions with acetylcholine, dopamine and serotonin receptors in Aplysia neurons, Brain Res. 65:109–126.PubMedGoogle Scholar
  32. Frazier, W. T., Kandel, E. R., Kupfermann, I., Waziri, R., and Coggeshall, R. E., 1967, Morphological and functional properties of identified neurons in the abdominal ganglion of Aplysia californica, J. Neurophysiol. 30:1288–1351.Google Scholar
  33. Gardner, D., 1971, Bilateral symmetry and interneuronal organization in the buccal ganglia of Aplysia, Science 173:550–553.Google Scholar
  34. Gardner, D., and Kandel, E. R., 1972, Diphasic postsynaptic potential: A chemical synapse capable of mediating conjoint excitation and inhibition, Science 176:675–678.PubMedGoogle Scholar
  35. Gerschenfeld, H. M., 1971, Two different inhibitory actions of serotonin on snail neurons, Science 171:1252–1254.PubMedGoogle Scholar
  36. Gerschenfeld, H. M., 1973, Chemical transmission in invertebrate central nervous systems and neuromuscular junctions, Physiol. Rev. 53:1–119.PubMedGoogle Scholar
  37. Gerschenfeld, H. M., and Lasansky, A., 1964, Action of glutamic acid and other naturally occurring amino-acids on snail central neurons, Int. J. Neuropharmacol. 3:301–314.PubMedGoogle Scholar
  38. Gerschenfeld, H. M., and Paupardin, D., 1973, Actions of serotonin on molluscan neuronal membranes, in: Drug Receptors (H. P. Rang, ed.), pp. 45–60, Macmillan, London.Google Scholar
  39. Gerschenfeld, H. M., and Paupardin-Tritsch, D., 1973, Excitatory and inhibitory monosynaptic actions mediated by a serotonin containing neurone in Aplysia californica, J. Physiol. 234:28–29P.Google Scholar
  40. Gerschenfeld, H. M., and Paupardin-Tritsch, D., 1974a, Ionic mechanisms and receptor properties underlying the responses of molluscan neurones to 5-hydroxytryptamine, J. Physiol. 243:427–456.PubMedGoogle Scholar
  41. Gerschenfeld, H. M., and Paupardin-Tritsch, D., 1974b, On the transmitter function of 5-hydroxytryptamine at excitatory and inhibitory monosynaptic junctions, J. Physiol. 243:457–481.PubMedGoogle Scholar
  42. Gerschenfeld, H. M., and Stefani, E., 1966, An electrophysiological study of 5-hydroxytryptamine receptors of neurones in the molluscan nervous system, J. Physiol. 185:684–700.PubMedGoogle Scholar
  43. Gerschenfeld, H. M., and Stefani, E., 1968, Evidence of an excitatory transmitter role of serotonin in molluscan central synapses, Advan. Pharmacol. 6A:369–392.Google Scholar
  44. Gerschenfeld, H. M., and Tauc, L., 1961, Pharmacological specificities of neurones in an elementary nervous system, Nature 189:924–925.PubMedGoogle Scholar
  45. Giller, E., Jr., and Schwartz, J. H., 1971, Choline acetyltransferase in identified neurons of abdominal ganglion of Aplysia californica, J. Neurophysiol. 34:93–107.Google Scholar
  46. Gorman, A. L. F., and Mirolli, M., 1972, The passive electrical properties of the membrane of a molluscan neurone, J. Physiol. 227:35–49.PubMedGoogle Scholar
  47. Graubard, K., 1973, Electrotonic decrements within Aplysia neurons, in: Soc. Neurose, III Ann. Meeting, San Diego, 47, 2:292.Google Scholar
  48. Greencard, P., Nathanson, J. A., and Kebabian, J. W., 1973, Aminergic receptors in neural tissue: Dopamine-, octopamine-, and serotonin-sensitive adenylate cyclases, in: Frontiers in Catecholamine Research (E. Usdin and S. Snyder, eds.), pp. 377–382, Pergamon Press, New York.Google Scholar
  49. Hancock, J. C., 1973, Action of nicotine on identified cells of the snail brain, Naunyn Schmiedebergs Arch. Pharmacol. 280:275–294.PubMedGoogle Scholar
  50. Hancock, J. C., and Volle, R. L., 1973, Responses of molluscan neurons to catecholamines, Arch. Int. Pharmacodyn. 201:5–15.PubMedGoogle Scholar
  51. Harris, A. J., Kuffler, S. W., and Dennis, M. J., 1971, Differential chemosensitivity of synaptic and extrasynaptic areas on the neuronal surface membrane in parasympathetic neurons of the frog, tested by microapplication of acetylcholine, Proc. Roy. Soc. Lond. Ser. B 177:541–553.Google Scholar
  52. Kandel, E. R., Frazier, W. T., Waziri, R., and Coggeshall, R. E., 1967, Direct and common connections among identified neurons in Aplysia J. Neurophysiol. 39:1352–1376.Google Scholar
  53. Katz, B., and Miledi, R., 1972, The statistical nature of the acetylcholine potential and its molecular components, J. Physiol. 224:665–699.PubMedGoogle Scholar
  54. Katz, B., and Thesleff, S., 1957, A study of the “desensitization” produced by acetylcholine at the motor end-plate, J. Physiol. 138:63–80.PubMedGoogle Scholar
  55. Kehoe, J. S., 1967, Pharmacological characteristics and ionic bases of a two component post-synaptic inhibition, Nature 215:1503–1505.PubMedGoogle Scholar
  56. Kehoe, J. S., 1969a, Single presynaptic neurone mediates a two component postsynaptic inhibition, Nature 221:866–868.PubMedGoogle Scholar
  57. Kehoe, J. S., 1969b, Suppression sélective par l’ion tétraéthylammonium d’une inhibition cholinergique résistant au curare, C. R. Acad. Sci. 268:111–114.Google Scholar
  58. Kehoe, J. S., 1971, Pharmacological analysis of a two-component depolarizing response in Aplysia neurones, in: Proc. XXV Int. Congr. Physiol., p. 877.Google Scholar
  59. Kehoe, J. S. 1972a, Ionic mechanisms of a two component cholinergic inhibition in Aplysia neurones, J. Physiol. 225:85–114.PubMedGoogle Scholar
  60. Kehoe, J. S., 1972b, Three acetylcholine receptors in Aplysia neurones, J. Physiol. 225:115–146.PubMedGoogle Scholar
  61. Kehoe, J. S., 1972c, The physiological role of three acetylcholine receptors in synaptic transmission in Aplysia, J. Physiol. 225:147–172.PubMedGoogle Scholar
  62. Kehoe, J. S., 1973, Acetylcholine receptors in Aplysia neurones, in: Drug Receptors (H. P. Rang, ed.), pp. 63–86, Macmillan, London.Google Scholar
  63. Kehoe, J. S., 1975, Analysis of a “resting” potassium permeability that can be synaptically reduced, J. Physiol. 244:23–24P.Google Scholar
  64. Kerkut, G. A., and Walker, R. J., 1961, The effects of drugs on the neurones of the snail Helix aspersa, Comp. Biochem. Physiol. 3:143–160.PubMedGoogle Scholar
  65. Kerkut, G. A., and Walker, R. J., 1962, The specific chemical sensitivity of Helix nerve cells, Comp. Biochem. Physiol. 7:277–288.PubMedGoogle Scholar
  66. Kerkut, G. A., Walker, R. J., and Woodruff, G. N., 1968, The effects of histamine and other naturally occurring imidazoles on neurones of Helix aspersa, Brit. J. Pharmacol. 32:241–252.PubMedGoogle Scholar
  67. Kerkut, G. A., Horn, N., and Walker, R. J., 1969, Long-lasting synaptic inhibition and its transmitter in the snail Helix aspersa, Comp. Biochem. Physiol. 30:1061–1074.PubMedGoogle Scholar
  68. Kerkut, G. A., Lambert, J. D. C., and Walker, R. J., 1973, The action of acetylcholine and dopamine on a specified snail neurone, in: Drug Receptors (H. P. Rang, ed.), p. 37–44, Macmillan, London.Google Scholar
  69. Klee, M. R., and Faber, D. S., 1971, The effect of strychnine on acetylcholine and dopamine receptors in Aplysia neurons, Experientia 27:8–9.Google Scholar
  70. Klee, M. R., Faber, D. S., and Heiss, W. D., 1973, Strychnine- and pentylenetetrazol-induced changes of excitability in Aplysia neurons, Science 179:1133–1136.PubMedGoogle Scholar
  71. Koelle, G. B., 1970, Drugs acting at synaptic and neuroeffector junctional sites: Neurohumoral transmission and the autonomic nervous system, in: The Pharmacological Basis of Therapeutics, 4th ed. (L. S. Goodman and A. Gilman, eds.), pp. 402–441, Macmillan, New York.Google Scholar
  72. Langlais, P. J., and Blankenship, J. E., 1972, Cholinomimetic compound extracted from digestive gland of Aplysia, Fed. Proc. 31:822.Google Scholar
  73. Levitan, H., and Tauc, L., 1972, Acetylcholine receptors: Topographic distribution and pharmacological properties of two receptor types on a single molluscan neurone, J. Physiol. 222:537–558.PubMedGoogle Scholar
  74. Lowagie, C., and Gerschenfeld, H. M., 1973, Mécanisme ionique des réponses au glutamate des neurones centraux d’Helix aspersa, J. Physiol. (Paris) 67:350–351A.Google Scholar
  75. Marsden, C., and Kerkut, G. A., 1970, The occurrence of monoamines in Planorbis corneus: A fluorescence microscopic and microspectrometric study, Comp. Gen. Pharmacol. 1:101–116.PubMedGoogle Scholar
  76. McCaman, R. E., and Dewhurst, S. A., 1970, Choline acetyltransferase in individual neurons of Aplysia californica, J. Neurochem. 17:1421–1426.Google Scholar
  77. McCaman, M. W., Weinreich, D., and McCaman, R. E., 1973, The determination of picomole levels of 5-hydroxytryptamine and dopamine in Aplysia, Tritonia, and leech nervous tissues, Brain Res. 53:129–137.PubMedGoogle Scholar
  78. Nachmansohn, D., 1938, Sur l’action de la strychnine, C. R. Soc. Biol. 129:941–943.Google Scholar
  79. Neild, T. O., 1973, Chloride activity in snail neurones measured with a chloride-sensitive microelectrode and its relationship to the effects of acetylcholine, Ph.D. thesis, University of Bristol.Google Scholar
  80. Neild, T. O., and Thomas, R. C., 1974, Intracellular chloride activity and the effects of acetylcholine in snail neurones. J. Physiol. 242:453–470.PubMedGoogle Scholar
  81. Parmentier, J., and Case, J., 1972, Structure activity relationships of amino acid receptor sites on an identifiable cell body in the brain of the land snail Helix aspersa, Comp. Biochem. Physiol. 43A:511–518.Google Scholar
  82. Paupardin-Tritsch, D., and Gerschenfeld, H. M., 1973a, Neuronal responses to 5-hydroxytryptamine resulting from membrane permeability decreases, Nature New Biol. 244:171–173.PubMedGoogle Scholar
  83. Paupardin-Tritsch, D. and Gerschenfeld, H. M., 1973b, Transmitter role of serotonin in identified synapses in Aplysia nervous system, Brain Res. 58:529–534.PubMedGoogle Scholar
  84. Pentreath, V. W., Osborne, N. N., and Cottrell, G. A., 1973, Anatomy of giant serotonin-containing neurones in the cerebral ganglia of Helix pomatia and Limax maximus, Z. Zellforsch. 143:1–20.PubMedGoogle Scholar
  85. Pinsker, H., and Kandel, E. R., 1969, Synaptic activation of an electrogenic sodium pump, Science 163:931–935.PubMedGoogle Scholar
  86. Sato, M., Austin, G. M., and Yai, H., 1967, Increases in permeability of the post-synaptic membrane to potassium produced by “Nembutal,” Nature 215:1507–1508.Google Scholar
  87. Shain, W., Green, L. A., Carpenter, D. O., Sytkowski, A. J., and Vogel, Z., 1974, Aplysia acetylcholine receptors: Blockade by and binding of α-bungarotoxin, Brain Res. 72:225–240.PubMedGoogle Scholar
  88. Stefani, E., and Gerschenfeld, H. M., 1969, Comparative study of acetyl-choline and 5-hydroxytryptamine receptors on single snail neurones, J. Neurophysiol. 32:64–74.PubMedGoogle Scholar
  89. Stephenson, R. P., 1956, A modification of receptor theory, Brit. J. Pharmacol. 11:379–393.PubMedGoogle Scholar
  90. Stepita-Klauco, M., Dolezalova, H., and Giacobini, E., 1973, The action of piperidine on cholinoceptive neurons of the snail, Brain Res. 63:141–152.PubMedGoogle Scholar
  91. Stinnakre, J., and Tauc, L., 1974, Mise en évidence d’une perméabilité post-synaptique au calcium chez l’Aplysie, C. R. Acad. Sci.Paris 278:1409–1412.Google Scholar
  92. Struyker Boudier, H. A. J., Gielen, W., and van Rossum, J. M., 1973, Analysis of dopamine specific excitatory and inhibitory actions on neurons of the snail, in: Frontiers in Catecholamine Research (E. Usdin and S. Snyder, eds.), pp. 673–674, Pergamon Press, New York.Google Scholar
  93. Szczepaniak, A. C., 1974, Effect of a-bungarotoxin and dendroaspis neurotoxins on acetylcholine responses of snail neurones, J. Physiol. 241:55–56P.Google Scholar
  94. Szczepaniak, A. C., and Cottrell, G. A., 1973, Biphasic action of glutamic acid and synaptic inhibition in an identified serotonin-containing neurone, Nature New Biol. 241:62–64.PubMedGoogle Scholar
  95. Takeuchi, A., and Takeuchi, N., 1964, The effect on crayfish muscle of iontophoretically applied glutamate, J. Physiol. 170:296–317.PubMedGoogle Scholar
  96. Tauc, L., 1960, Evidence of synaptic inhibitory actions not conveyed by inhibitory post-synaptic potentials, in: Inhibitions of the Nervous System and Gamma-aminobutyric Acid (E. Roberts, ed.), pp. 85–89, Pergamon Press, Oxford.Google Scholar
  97. Tauc, L., 1967, Transmission in invertebrate and vertebrate ganglia, Physiol. Rev. 47:521–593.PubMedGoogle Scholar
  98. Tauc, L., and Bruner, J., 1963, “Desensitization” of cholinergic receptors by acetylcholine in molluscan central neurones, Nature 198:33–34.PubMedGoogle Scholar
  99. Tauc, L., and Gerschenfeld, H. M., 1962, A cholinergic mechanism of inhibitory synaptic transmission in a molluscan nervous system, J. Neurophysiol. 25:236–262.PubMedGoogle Scholar
  100. Vulfius, E. A., Veprintzev, B. N., Zeimal, E. V., and Michelson, M.J., 1967, Arrangement of cholinoreceptors on the neuronal membrane of two pulmonate gastropods, Nature 216:400–401.PubMedGoogle Scholar
  101. Wachtel, H., and Kandel, E. R., 1967, A direct synaptic connection mediating both excitation and inhibition, Science 158:1206–1207.PubMedGoogle Scholar
  102. Wachtel, H., and Kandel, E. R., 1971, Conversion of synaptic excitation to inhibition at a dual chemical synapse, J. Neurophysiol. 34:56–68PubMedGoogle Scholar
  103. Walker, R. J., and Hedges, A., 1967, The effect of cholinergic antagonists on the response to acetylcholine, acetyl-β-methylcholine and nicotine of neurones of Helix aspersa, Comp. Biochem. Physiol. 23:977–989.Google Scholar
  104. Walker, R. J., and Hedges, A., 1968, The effect of cholinergic agonists on the spontaneous activity of neurones of Helix aspersa, Comp. Biochem. Physiol. 24:355–376.PubMedGoogle Scholar
  105. Walker, R. J., and Woodruff, G. N., 1972, The effect of bufotenine, melatonin, psilocybin and related compounds on the 5-hydroxytryptamine excitatory receptors of Helix aspersa neurons, Comp. Gen. Pharmacol. 3:27–40.Google Scholar
  106. Walker, R. J., Hedges, A., and Woodruff, G. N., 1968a, The pharmacology of the neurones of Helix aspersa, Symp. Zool. Soc. Lond. 22:33–74.Google Scholar
  107. Walker, R. J., Woodruff, G. N., Glaizner, B., Sedden, C. B., and Kerkut, G. A., 1968b, The pharmacology of Helix dopamine receptor of specific neurones in the snail Helix aspersa, Comp. Biochem. Physiol. 24:455–470.PubMedGoogle Scholar
  108. Walker, R. J., Woodruff, G. N., and Kerkut, G. A., 1971a, The effect of ibotenic acid and muscimol on single neurons of the snail, Helix aspersa, Comp. Gen. Pharmacol. 2:168–174.Google Scholar
  109. Walker, R. J., Crossman, A. R., Woodruff, G. N., and Kerkut, G. A., 1971b, The effect of bicuculline on the gamma-aminobutyric acid (GABA) receptors of neurones of Periplaneta and Helix aspersa, Brain Res. 34:75–82.Google Scholar
  110. Weinreich, D., McCaman, M. W., McCaman, R. E., and Vaughn, J. E., 1973, Chemical, enzymatic and ultrastructural characterization of 5-hydroxytryptamine neurons from the ganglia of Aplysia californica and Tritonia diomedia, J. Neurochem. 20:969–972.PubMedGoogle Scholar
  111. Welsh, J. H., 1972, Catecholamines in invertebrates, in: Catecholamines (H. Blaschko and E. Muscholl, eds.), pp. 79–109, Springer, Berlin.Google Scholar
  112. Woodruff, G. N., and Walker, R. J., 1969, The effect of dopamine and other compounds on the activity of neurones in Helix aspersa, structure-activity relationships, Int. J. Neurophar-macol. 8:279–289.Google Scholar
  113. Zeimal, E. B., and Vulfius, E. A., 1967, The action of cholinomimetics and cholinolytics on the gastropod neurons, in: Symposium on Neurobiology of Invertebrates, pp. 255–265, Publishing House of the Hungarian Academy of Sciences, Budapest.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • P. Ascher
    • 1
  • J. S. Kehoe
    • 1
  1. 1.Laboratoire de NeurobiologieEcole Normale SupérieureParisFrance

Personalised recommendations