Peptide Receptors in CNS

  • Roger A. Nicoll
Part of the Handbook of Psychopharmacology book series (HBKPS, volume 4)


The existence of peptide receptors in the central nervous system (CNS) has been considered a possibility for over 20 years. Two lines of evidence form the basis for this possibility. First, neurons in the CNS are known to contain peptides. For instance, the peptide substance P is widely distributed in the CNS, suggesting that neurons might utilize this substance as a neurotransmitter. A pharmacological action was, however, difficult to define clearly for many years, owing to technical difficulties, including impurities in the extracts of substance P. Recent experiments with pure, synthetic substance P have shown it to act on central neurons. Also, the peptides antidiuretic hormone (ADH) and oxytocin are synthesized by the hypothalamic neurosecretory cells. Formerly it was thought that these cells released their peptide secretions exclusively into the vascular system for peripheral action, but there is now both anatomical and physiological evidence that these “peptidergic” neurons participate in synaptic events in the CNS. However, direct proof that these peptide hormones are the transmitter substances released by neurosecretory cells has been limited.


Cerebral Spinal Fluid Peptide Receptor Neurosecretory Cell Area Postrema Subfornical Organ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aars, H., and Akre, S., 1968, Effect of angiotensin on sympathetic nerve activity, Acta Physiol. Scand. 74:134–141.PubMedGoogle Scholar
  2. Abrash, L., Walter, R., and Marks, N., 1971, Inactivation studies of angiotensin II by purified enzymes, Experientia 27:1352–1353.PubMedGoogle Scholar
  3. Andersson, B., and Eriksson, L., 1971, Conjoint action of sodium and angiotensin on brain mechanisms controlling water and salt balance, Acta Physiol. Scand. 81:18–29.PubMedGoogle Scholar
  4. Andersson, B., and Westbye, O., 1970, Synergistic action of sodium and angiotensin on brain mechanisms controlling fluid balance, Life Sci. 9:601–608.Google Scholar
  5. Andersson, B., Eriksson, L., and Oltner, R., 1970, Further evidence for angiotensin sodium interaction in central control of fluid balance, Life Sci. 9:1091–1096.Google Scholar
  6. Andersson, B., Eriksson, L., and Fernandez, O., 1971, Reinforcement by Na+ of centrally mediated hypertensive response to angiotensin II, Life Sci. 10:633–638.Google Scholar
  7. Andrews, T. M., and Holton, P., 1958, The substance P and adenosinetriphosphate (ATP) contents of sensory nerve on degeneration, J. Physiol. 143:45P–46P.Google Scholar
  8. Angelucci, L., 1956, Experiments with perfused frog’s spinal cord, Brit. J. Pharmacol. 11:161–170.PubMedGoogle Scholar
  9. Baile, C. A., and Meinardi, H., 1967, Action of substance P on the central nervous system of a goat, Brit. J. Pharmacol. 30:302–306.PubMedGoogle Scholar
  10. Bargmann, W., Lindner, E., and Andres, K. H., 1967, Über Synapsen an endokrinen Epithelzellen und die Definition sekretorischer Neurone, Z. Zellforsch. 77:282–298.PubMedGoogle Scholar
  11. Barker, J. L., Crayton, J. W., and Nicoll, R. A., 1971a, Noradrenaline and acetylcholine responses of supraoptic neurosecretory cells, J. Physiol. 218:19–32.PubMedGoogle Scholar
  12. Barker, J. L., Crayton, J. W., and Nicoll, R. A., 1971b, Antidromic and orthodromic responses of paraventricular and supraoptic neurosecretory cells, Brain Res. 33:353–366.PubMedGoogle Scholar
  13. Beaulnes, A., and Ling, G. M., 1968, Vasoactive polypeptides and brain acetylcholine, Proc. Canad. Fed. Biol. Soc. 11:77–78.Google Scholar
  14. Bell, C., 1972, Mechanism of enhancement by angiotensin II of sympathetic adrenergic transmission in the guinea pig, Circ. Res. 31:348–355.PubMedGoogle Scholar
  15. Benetato, Gr., Hauliciä, I., Uluitu, M., Bubiuanu, E., Mocodean, J., Stefănescu, P., and Suhaciu, G., 1964, The central nervous action of angiotensin on aldosterone secretion and electrolytic balance, Int. J. Neuropharmacol. 3:565–570.PubMedGoogle Scholar
  16. Bickerton, R. K., and Buckley, J. P., 1961, Evidence for a central mechanism in angiotensin-induced hypertension, Proc. Soc. Exp. Biol. Med. 106:834–836.Google Scholar
  17. Bloom, F. E., 1972, Amino acids and polypeptides in neuronal function, Neurosci. Res. Prog. Bull. 10:121–251.Google Scholar
  18. Bloom, F. E., Iversen, L. L., and Schmitt, F. O., 1970, Macromolecules in synaptic function, Neurosci. Res. Prog. Bull. 8:325–455.Google Scholar
  19. Bloom, F. E., Hoffer, B. J., and Siggins, G. R., 1972, Norepinephrine mediated cerebellar synapses: A model system for neuropharmacology, Biol. Psychiat. 4:157–177.PubMedGoogle Scholar
  20. Bonjour, J. P., and Malvin, R. L., 1970, Stimulation of ADH release by the renin-angiotensin system, Am. J. Physiol 218:1555–1559.PubMedGoogle Scholar
  21. Bonta, I. L., Wijmenga, H. G., and Hohensee, F., 1961, Über die Wirkung von Substanz P und anderen Hirnextrakten auf das Zentralnervensystem, Acta Physiol. Pharmacol. Neerl. 10:114–118.PubMedGoogle Scholar
  22. Booth, D. A., 1968, Mechanism of action of norepinephrine in eliciting an eating response on injection into the rat hypothalamus, J. Pharmacol. Exp. Ther. 160:336–348.PubMedGoogle Scholar
  23. Buckley, J. P., Bickerton, R. K., Halliday, R. P., and Kato, H., 1963, Central effects of peptides on the cardiovascular system, Ann. N.Y. Acad. Sci. 104:299–311.PubMedGoogle Scholar
  24. Cajal, S. R., 1911, in: Histologie du Système Nerveux de l’Homme et des Vertébrés, Vol. 2, Maloine, Paris.Google Scholar
  25. Capek, R., Masek, K., Sramka, M., Krsiak, M., and Svec, P., 1969, The similarities of the angiotensin and bradykinin action on the central nervous system, Pharmacology 2:161–170.PubMedGoogle Scholar
  26. Caspers, H., and Stern, P., 1961, Die Wirkung von Substanz P auf das Dendritenpotential und die Gleichspannungskomponente des Neocortex, Pflügers Arch. Ges. Physiol. 273:94–110.Google Scholar
  27. Chang, M. M., and Leeman, S. E., 1970, Isolation of a sialogogic peptide from bovine hypothalamic tissue and its characterization as substance P, J. Biol. Chem. 245:4784–4790.PubMedGoogle Scholar
  28. Chang, M. M., Leeman, S. E., and Niall, H. D., 1971, Amino-acid sequence of substance P, Nature New Biol. 232:86–87.PubMedGoogle Scholar
  29. Christ, J. F., 1966, Nerve supply, blood supply, and cytology of the neurohypophysis, in: The Pituitary Gland, Vol. 3 (G. W. Harris and B. T. Donovan, eds.), pp. 62–130, Butterworth, London.Google Scholar
  30. Collin, R., 1928, La neurocrinie hypophysaire: Etude histophysiologique du complex tubero-infundibulo-pituitaire, Arch. Morphol. 28:1–102.Google Scholar
  31. Cooling, M., and Day, M. D., 1973, Drinking in cat induced by centrally administered angiotensin, Brit. J. Pharmacol. 49:150P–151P.Google Scholar
  32. Cotzias, G. C., Woert, M. H., and Schiffer, L. M., 1967, Aromatic amino acids and modification of Parkinsonism, New Engl. J. Med. 276:374–379.PubMedGoogle Scholar
  33. Coury, J. N., 1967, Neural correlates of food and water intake in the rat, Science 156:1763–1765.PubMedGoogle Scholar
  34. Covian, M. R., Gentil, C. G., and Antunes-Rodrigues, J., 1972, Water and sodium chloride intake following microinjections of angiotensin II into the septal area of the rat brain, Physiol. Behav. 9:373–377.PubMedGoogle Scholar
  35. Cross, BA, and Dyer, R. G., 1969, Does oxytocin influence the activity of hypothalamic neurones? J. Physiol. 203:70–71P.Google Scholar
  36. Curtis, D. R., and Phillis, J. W., 1960, The action of procaine and atropine on spinal neurons, J.Physiol. 153:17–34.PubMedGoogle Scholar
  37. Curtis, D. R., and Watkins, J. C., 1960, The excitation and depression of spinal neurones by structurally related amino acids, J. Neurochem. 6:117–141.PubMedGoogle Scholar
  38. Dale, H. H., 1934, Pharmacology and nerve endings, Proc. Roy. Soc. Med. 28:319–322.Google Scholar
  39. Da Silva, G. R., and Rochae Silva, M., 1971, Catatonia induced in the rabbit by bradykinin and morphine by intracerebral routes, Eur. J. Pharmacol. 15:180–186.PubMedGoogle Scholar
  40. Deuben, R. R., and Buckley, J. P., 1970, Identification of a central site of action of angiotensin II, J. Pharmacol. Exp. Ther. 175:139–146.PubMedGoogle Scholar
  41. De Wied, D., 1966, Inhibitory effect of ACTH and related peptides on extinction of conditioned avoidance behavior in rats, Proc. Soc. Exp. Biol. Med. 122:28–32.PubMedGoogle Scholar
  42. Dickinson, C. J., and Lawrence, JR, 1963, A slowly developing pressor response to small concentrations of angiotensin—Its bearing on the pathogenesis of chronic renal hypertension, Lancet 1:1354–1356.PubMedGoogle Scholar
  43. Douglas, W. W., Kamno, T., and Sampson, S. R., 1967, Effects of acetylcholine and other medullary secretagogues and antagonists on the membrane potential of adrenal chromaffin cells: An analysis employing techniques of tissue culture, J. Physiol. 188:107–120.PubMedGoogle Scholar
  44. Dreifuss, J. J., Nordmann, J. J., and Vincent, J. D., 1974, Recurrent inhibition of supraoptic neurosecretory cells in homozygous Brattleboro rats, J. Physiol. 237:25–26p.Google Scholar
  45. Dusseau, J. W., and Meier, A. H., 1971, Diurnal and seasonal variations of plasma adrenal steroid hormone in the white-throated sparrow, Zonotrichia albicollis, Gen. Comp. Endocrinol. 16:399–408.Google Scholar
  46. Dyball, R. E. J., and Dyer, R. G., 1971, Plasma oxytocin concentration and paraventricular neurone activity in rats in diencephalic islands and intact brains, J. Physiol. 216:227–235.PubMedGoogle Scholar
  47. Eccles, J. C., Fatt, P., and Koketsu, K., 1954, Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones, J. Physiol. 126:524–562.PubMedGoogle Scholar
  48. Eccles, J. C., Llinas, R., and Sasaki, K. 1966, The action of antidromic impulses on the cerebellar Purkinje cells, J. Physiol. 182:316–345.PubMedGoogle Scholar
  49. Ehrenpreis, T., and Pernow, B., 1952, On the occurrence of substance P in the rectosigmoid in Hirschsprung’s disease, Acta Physiol. Scand. 27:380–388.Google Scholar
  50. Elie, R., and Panisset, J.-C., 1970, Effect of angiotensin and atropine on the spontaneous release of acetylcholine from cat cerebral cortex, Brain Res. 17:297–305.PubMedGoogle Scholar
  51. Epstein, A. N., Fitzsimons, J. T., and Rolls, B. J., 1970, Drinking induced by injection of angiotensin into the brain of the rat, J. Physiol. 210:457–474.PubMedGoogle Scholar
  52. Epstein, A. N., Fitzsimons, J. T., and Johnson, A. K., 1973, Prevention by angiotensin II antiserum of drinking induced by intracranial angiotensin, J. Physiol. 230:42P–43P.PubMedGoogle Scholar
  53. Erspamer, V., 1971, Biogenic amines and active polypeptides of the amphibian skin, Ann. Rev. Pharmacol. 11:327–350.PubMedGoogle Scholar
  54. Farner, D. S., King, J. R., and Stetson, M. H., 1969, The control of fat metabolism in migratory birds, in: Progress in Endocrinology, pp. 152–385, Proceedings of the Third International Congress of Endocrinology, Mexico.Google Scholar
  55. Feldberg, W., and Lewis, G. P., 1964, The action of peptides on the adrenal medulla: Release of adrenaline by bradykinin and angiotensin, J. Physiol. 171:98–108.PubMedGoogle Scholar
  56. Feldberg, W., and Lewis, G. P., 1965, Further studies on the effects of peptides on the suprarenal medulla of cats, J. Physiol. 178:239–251.PubMedGoogle Scholar
  57. Fencl, V., Koski, G., and Pappenheimer, J. R., 1971, Factors in cerebrospinal fluid from goats that affect sleep and activity in rats, J. Physiol. 216:565–589.PubMedGoogle Scholar
  58. Ferrario, C. M., Dickinson, C. J., and McCubbin, J. W., 1970, Central vasomotor stimulation by angiotensin, Clin. Sci. 39:239–245.PubMedGoogle Scholar
  59. Ferrario, C. M., Gildenberg, P. L., and McCubbin, J. W., 1972, Cardiovascular effects of angiotensin mediated by the central nervous system, Circ. Res. 30:257–262.PubMedGoogle Scholar
  60. Fischer-Ferraro, C., Nahmod, V. E., Goldstein, D. J., and Finkielman, S., 1971, Angiotensin and renin in rat and dog brain, J. Exp. Med. 133:353–361.PubMedGoogle Scholar
  61. Fitzsimons, J. T., 1971, The effect on drinking of peptide precursors and of shorter chain peptide fragments of angiotensin II injected into the rat’s diencephalon, J. Physiol. 214:295–303.PubMedGoogle Scholar
  62. Fitzsimons, J. T., 1972, Thirst, Physiol. Rev. 52:468–561.PubMedGoogle Scholar
  63. Fitzsimons, J. T., and Setler, P. E., 1971, Catecholaminergic mechanisms in angiotensin-induced drinking, J. Physiol. 218:43P–44P.PubMedGoogle Scholar
  64. Florey, E., 1967, Neurotransmitters and modulators in the animal kingdom, Fed. Proc. 26:1164–1178.PubMedGoogle Scholar
  65. Friedman, E., Friedman, J., and Gershon, S., 1973, Dopamine synthesis: Stimulation by a hypothalamic factor, Science 182:831–832.PubMedGoogle Scholar
  66. Fukiyama, K, 1972, Central action of angiotensin and hypertension-increased central vasomotor outflow by angiotensin, Jap. Cire. J. 36:599–602.Google Scholar
  67. Gaddum, J. H., and Schild, H., 1934, Depressor substances in extracts of intestine, J. Physiol. 83:1–14.PubMedGoogle Scholar
  68. Gaddum, J. H., Randic, M., and Smith, M. W., 1964, An antistrychnine extract from horse intestine, J. Physiol. 172:207–215.PubMedGoogle Scholar
  69. Gagnon, D. J., Cousineau, D., and Boucher, P. J., 1973, Release of vasopressin by angiotensin II and prostaglandin E2 from the rat neurohypophysis in vitro, Life Sci. 12:487–497.Google Scholar
  70. Galindo, A., Krnjević, K., and Schwartz, S., 1967, Micro-iontophoretic studies on neurones in the cuneate nucleus, J. Physiol. 192:359–377.PubMedGoogle Scholar
  71. Ganten, D., Marquez-Julio, A., Granger, P., Hayduk, K., Karsunky, K. P., Boucher, R., and Genest, J., 1971a, Renin in dog brain, Am. J. Physiol. 221:1733–1737.PubMedGoogle Scholar
  72. Ganten, D., Minnich, J., Granger, P., Hayduk, K., Brecht, H. M., Barbeau, A., Boucher, R., and Genest, J., 1971b, Angiotensin-forming enzyme in brain tissue, Science 173:64–65.PubMedGoogle Scholar
  73. Giardina, A. R., and Fisher, A. E., 1971, Effect of atropine on drinking induced by carbachol, angiotensin and isoproterenol, Physiol. Behav. 7:653–655.PubMedGoogle Scholar
  74. Gildenberg, P. L., 1969, Localization of a site of angiotensin vasopressor activity in the brain, Physiologist 12:235.Google Scholar
  75. Gildenberg, P. L., Ferrario, C. M., and McCubbin, J. W., 1973, Two sites of cardiovascular action of angiotensin II in the brain of the dog, Clin. Sci. 44:417–420.PubMedGoogle Scholar
  76. Goldman, W., Lehr, D., and Frank, E., 1972, Pharmacologic characterization of the dipsogenic property of angiotensin II (ANG), Fed. Proc. 31:573.Google Scholar
  77. Goldstein, D. J., Diaz, A., Finkielman, S., Nahmod, V. E., and Fischer-Ferraro, C., 1972, Angiotensinase activity in rat and dog brain, J. Neurochem. 19:2451–2452.PubMedGoogle Scholar
  78. Grabner, K., and Lembeck, K., 1960, Utersuchungers über den Gehalt cerebraler Tumoren and Substance P und Serotinin, Arch. Exp. Pathol. Pharmakol. 240:157.Google Scholar
  79. Graeff, F. G., Pela, I.R., and Rochae Silva, M., 1969, Behavioral and somatic effects of bradykinin injected into the cerebral ventricles of unanaesthetized rabbits, Brit. J. Pharmacol. 37:723–732.Google Scholar
  80. Gujllemin, R., and Burgus, R., 1972, The hormones of the hypothalamus, Sci. Am. 227:24–33.Google Scholar
  81. Haefely, W., and Hurlimann, A., 1962, Substance P, a highly active naturally occurring polypeptide, Experientia 18:297–303.PubMedGoogle Scholar
  82. Haefely, W., Thoenen, H., and Hurlimann, A., 1962, The effect of intraventricular application of substance P preparations of different purity, Med. Pharmacol. Exp. 7:245.Google Scholar
  83. Halliday, R. P., and Buckley, J. P., 1962, Central hypertensive effects of angiotensin II, Int. J. Neuropharmacol. 1:43–47.Google Scholar
  84. Harris, M. C., 1971, Release of an antidiuretic substance by bradykinin in the rat, J. Physiol 219:403–419.PubMedGoogle Scholar
  85. Hayward, J. N., and Jennings, D. P., 1973, Activity of magnocellular neuroendocrine cells in the hypothalamus of unanaesthetized monkeys. 1. Functional cell types and their anatomical distribution in the supraoptic nucleus and the internuclear zone, J. Physiol. 232:515–543.PubMedGoogle Scholar
  86. Hess, W. R., 1944, Das Schlaf syndrom als Folge diencephaler Reizung, Helv. Physiol. Pharmacol. Ado 2:305–344.Google Scholar
  87. Hoffer, B. J., Siggins, G. R., and Bloom, F. E., 1971, Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. II. Sensitivity of Purkinje cells to norepinephrine and related substances administered by microiontophoresis, Brain Res. 25:523–534.PubMedGoogle Scholar
  88. Hökfelt, T., and Fuxe, K., 1972, Effects of prolactin and ergot alkoloids on the tubero-infundibular dopamine (DA) neurons, Neuroendocrinology 9:100–122.PubMedGoogle Scholar
  89. Holton, P., 1959, Further observations on substance P in degenerating nerve, J. Physiol. 149:35–36P.Google Scholar
  90. Holton, P., 1960, Substance P concentration in degenerating nerve, in: Polypeptides Which Affect Smooth Muscles and Blood Vessels (M. Schachter, ed.), pp. 192–194, Pergamon Press, Oxford.Google Scholar
  91. Hughes, J., and Roth, R. H., 1971, Evidence that angiotensin enhances transmitter release during sympathetic nerve stimulation, Brit. J. Pharmacol. 41:239–255.Google Scholar
  92. Janowsky, D. S., Davis, J. M., Fann, W. E., Freeman, J., Nixon, R., and Michelakis, A. A., 1972, Angiotensin effect on uptake of norepinephrine by synaptosomes, Life Sci. 11:1–11.Google Scholar
  93. Joy, MD, and Lowe, R. D., 1970, Evidence that the area postrema mediates the central cardiovascular response to angiotensin II, Nature 228:1303–1304.PubMedGoogle Scholar
  94. Kandel, E. R., 1964, Electrical properties of hypothalamic neurosecretory cells, J. Gen. Physiol. 47:691–717.PubMedGoogle Scholar
  95. Kastin, A. J., and Schally, A. V., 1967, Autoregulation of release of melanocyte stimulating hormone from the rat pituitary, Nature 213:1238–1240.Google Scholar
  96. Kastin, A. J., Miller, L. H., Gonzalez-Barcena, D., Hawley, W. D., Dyster-Aas, K., Schally, A. V., Parra, M. L. V., and Velasco, M., 1971, Psychophysiologic correlates of MSH activity in man, Physiol. Behav. 7:893–896.PubMedGoogle Scholar
  97. Kastin, A. J., Miller, L. H., Nockton, R., Sandman, C. A., Schally, A. V., and Stratton, L. O., 1973, Behavioral aspects of melanocyte-stimulating hormone (MSH), in: Drug Effects on Neuroendocrine Regulation (E. Zimmerman, W. H. Gispen, B. H. Marks, and D. De Weid, eds.), Prog. Brain Res. 39:461–470.Google Scholar
  98. Kataoka, K., 1962, The subcellular distribution of substance P in the nervous tissues, Jap. J. Physiol. 12:81–96.Google Scholar
  99. Kawaguchi, S., Imaizumi, M., Shio, H., and Kataoka, K., 1968, Substance P and antistrych-nine activity, Arch. Exp. Pathol. Pharmakol. 260:284–297.Google Scholar
  100. Kawakami, M., and Saito, H., 1967, Unit activity in the hypothalamus of the cat: Effect of genital stimuli, luteinizing hormone, and oxytocin, Jap. J. Physiol. 17:466–486.Google Scholar
  101. Kawakami, M., and Saito, H., 1969, The analysis of interspike interval fluctuation of hypothalamic unit activity in response to luteinizing hormone and oxytocin, Jap. J. Physiol. 19:243–259.Google Scholar
  102. Kawamura, H., 1972, A study of hypertension: The effects of angiotensin II on the MAO activity and roles of calcium ion on the catecholamine contents in the rat hypothalamus and striatum, Jap. Cire. J. 36:349–362.Google Scholar
  103. Keim, K. L., and Sigg, E. B., 1971, Activation of central sympathetic neurons by angiotensin II, Life Sci. 10:565–574.Google Scholar
  104. Kelly, J. J., and Dreifuss, J. J., 1970, Antidromic inhibition of identified rat supraoptic neurones, Brain Res. 22:406–409.PubMedGoogle Scholar
  105. Khairallah, P. A., 1972, Action of angiotensin on adrenergic nerve endings: Inhibition of norepinephrine uptake, Fed. Proc. 31:1351–1357.PubMedGoogle Scholar
  106. King, J. R., and Farner, D. S., 1963, The relationship of fat deposition to Zugunruhe and migration, Condor 65:200–223.Google Scholar
  107. King, J. R., and Farner, D. S., 1965, Studies of fat deposition in migratory birds, Ann. N.Y. Acad. Sci. 131:422–440.PubMedGoogle Scholar
  108. Kissel, J. W., and Domino, E. F., 1959, The effects of some possible neurohumoral agents on spinal cord reflexes, J. Pharmacol. Exp. Ther. 125:168–177.PubMedGoogle Scholar
  109. Koizumi, K., and Yamashita, H., 1972, Studies of antidromically identified neurosecretory cells of the hypothalamus by intracellular and extracellular recordings, J. Physiol. 221:683–705.PubMedGoogle Scholar
  110. Koizumi, K., Ishikawa, T., and McC. Brooks, C., 1974, The existence of facilitatory axon collaterals in neurosecretory cells of the hypothalamus, Brain Res. 63:408–413.Google Scholar
  111. Konishi, S., and Otsuka, M., 1974, The effects of substance P and other peptides on spinal neurons of the frog, Brain Res. 65:397–410.PubMedGoogle Scholar
  112. Krivoy, W. A., and Guillemin, R., 1961, On a possible role of β-melanocyte stimulating hormone (β-MSH) in the central nervous system of mammalia: An effect of β-MSH in the spinal cord of the cat, Endocrinology 69:170–175.PubMedGoogle Scholar
  113. Krivoy, W. A., and Zimmerman, E., 1973, A possible role of polypeptides in synaptic transmission, in: Chemical Modulation of Brain Function (H. C. Sabelli ed.), Raven Press, New York.Google Scholar
  114. Krnjević, K., and Morris, M., 1973, Depolarizing action of substance P in the cuneate nucleus of the cat, Soc. Neurosci., 349.Google Scholar
  115. Lechner, H., and Lembeck, F., 1958, Einfluss der Substanz P auf die elektrische Aktivität des Gehirus, Arch. Exp. Pathol. Pharmakol. 234:419–425.Google Scholar
  116. Leeman, S. E., and Hammerschlag, R., 1967, Stimulation of salivary secretion by a factor from hypothalamic tissue, Endocrinology 81:803–810.PubMedGoogle Scholar
  117. Legendre, R., and Piéron, H., 1910, Des résultats histo-physiologiques de l’injection intra-occipito-altantoidienne des liquides insomniques, C. R. Seanc. Soc. Biol. 68:1108–1109.Google Scholar
  118. Legendre, R., and Piéron, H., 1913, Recherches sur le besoin de sommeil consécutif à une veille prolongée, Z. Allg. Physiol. 14:235–262.Google Scholar
  119. Lehr, D., Goldman, H. W., and Casner, P., 1973, Renin-angiotensin role in thirst: Paradoxical enhancement of drinking by angiotensin converting enzyme inhibitor, Science 182:1031–1034.PubMedGoogle Scholar
  120. Lembeck, F., 1953, Zur Frage der zentralen Ubertragung afferenter Impulse. III. Das Vorkommen und die Bedeutung der Substanz P in den dorsalen Wurseln des Rückenmarks, Arch. Exp. Pathol. Pharmakol. 219:197–213.Google Scholar
  121. Lembeck, F., and Fischer, G., 1967, Crossed tachyphylaxis of peptides, Arch. Exp. Pathol. Pharmakol. 258:452–456.Google Scholar
  122. Lembeck, F., and Starke, K., 1968, Substance P and salivary secretion, Arch. Exp. Pathol. Pharmakol. 259:375–385.Google Scholar
  123. Lembeck, F., and Zetler, G., 1962, Substance P: A polypeptide of possible physiological significance, especially within the nervous system, Int. Rev. Neurobiol. 4:159–215.Google Scholar
  124. Lembeck, F., and Zetler, G., 1971, Substance P, in: International Encyclopedia of Pharmacology and Therapeutics, Section 72: Pharmacology of Naturally-Occurring Polypeptides and Lipid-Soluble Acids, (J. M. Walker, ed.).Google Scholar
  125. Lim, R. K. S., 1968, Neuropharmacology of pain and analgesia, in: Pharmacology of Pain (R. K. S. Lim, D. Armstrong, and E. G. Pardo, eds.), pp. 169–217, Pergamon Press, London.Google Scholar
  126. Lowe, R. D., and Scroop, G. C., 1969, Cardiovascular response to vertebral artery infusions of angiotensin in the dog, Clin. Sci. 37:593–603.PubMedGoogle Scholar
  127. Matsuua, S., Kawaguchi, S., Ichiki, M., Sorimachi, M., Kataoka, K., and Inouye, A., 1969, Perfusion of frog’s spinal cord as a convenient method for neuropharmacological studies, Eur. J. Pharmacol. 6:12–16.Google Scholar
  128. Meier, A. H., and Martin, D. D., 1971, Temporal synergism of corticosteroids and prolactin controlling fat storage in the white-throated sparrow, Zonotrichia albicollis, Gen. Comp. Endocrinol. 17:311–318.Google Scholar
  129. Meier, A. H., Burns, J. T., and Dusseau, J. W., 1969, Seasonal variations in the diurnal rhythm of pituitary prolactin content in the white-throated sparrow, Zonotrichia albicollis, Gen. Comp. Endocrinol. 12:282–289.Google Scholar
  130. Miller, N. E., 1965, Chemical coding of behavior in the brain, Science 148:328–338.PubMedGoogle Scholar
  131. Minnich, J. L., Ganten, D., Barbeau, A., and Genest, J., 1972, Subcellular localization of cerebral renin-like activity, in: Hypertension (J. Genest and E. Koiw, eds.), pp. 432–435, Springer-Verlag, Berlin.Google Scholar
  132. Monnier, M., and Hösli, L., 1964, Dialysis of sleep and waking factors in blood of the rabbit, Science 146:796–798.PubMedGoogle Scholar
  133. Monnier, M., and Hösli, L., 1965, Humoral transmission of sleep and wakefulness. II. Hemodialysis of a sleep-inducing humour during stimulation of the thalamic somnogenic area, Pflügers Arch. Ges. Physiol. 282:60–75.Google Scholar
  134. Monnier, M., and Schoenberger, G. A., 1972, Some physical-chemical properties of the rabbit’s “sleep hemodialysate,” Experientia 28:32–33.PubMedGoogle Scholar
  135. Monnier, M., Hatt, A. M., Cueni, L. B., and Schoenberger, G. A., 1972, Humoral transmission of sleep. VI. Purification and assessment of a hypnogenic fraction of “sleep dialysate” (factor delta), Pflügers Arch. Ges. Physiol. 331:257–265.Google Scholar
  136. Morrison, J. F. B., and Pickford, M., 1971, Effects of angiotensin and noradrenaline on discharges in fibres of cervical sympathetic nerve in cats and dogs, Brit. J. Pharmacol. 41:674–682.Google Scholar
  137. Moss, R. L., and McCann, S. M., 1973, Induction of mating behavior in rats by luteinizing hormone-releasing factor, Science 181:177–179.PubMedGoogle Scholar
  138. Moss, R. L., Dyball, R. E. J., and Cross, B. A., 1972, Excitation of antidromically identified neurosecretory cells of the paraventricular nucleus by oxytocin applied iontophoretically Exp. Neurol. 34:95–102.PubMedGoogle Scholar
  139. Mouw, D., Bonjour, J.-P., Malvin, R. L., and Vander, A., 1971, Central action of angiotensin in stimulating ADH release, Am. J. Physiol. 220:239–242.PubMedGoogle Scholar
  140. Nashold, B. S., Mannarino, E., and Wunderlich, M., 1962, Pressor-depressor blood pressure responses in cat after intraventricular injection of drugs, Nature 193:1297–1298.PubMedGoogle Scholar
  141. Negoro, H., and Holland, R. C., 1972, Inhibition of unit activity in the hypothalamic paraventricular nucleus following antidromic activation, Brain Res. 42:385–402.PubMedGoogle Scholar
  142. Negoro, H., Visessuwan, S., and Holland, R. C., 1973, Inhibition and excitation of units in paraventricular nucleus after stimulation of the septum, amygdala and neurohypophysis, Brain Res. 57:479–483.PubMedGoogle Scholar
  143. Nicoll, R. A., and Barker, J. L., 1971a, Excitation of supraoptic neurosecretory cells by angiotensin II, Nature New Biol. 233:172–174.PubMedGoogle Scholar
  144. Nicoll, R. A., and Barker, J. L., 1971b, The pharmacology of recurrent inhibition in the supraoptic neurosecretory system, Brain Res. 35:501–511.PubMedGoogle Scholar
  145. Otsuka, M., Konishi, S., and Takahashi, T., 1972a, The presence of a motoneuron-depolarizing peptide in bovine dorsal roots of spinal nerves, Proc. Jap. Acad. 48:342–346.Google Scholar
  146. Otsuka, M., Konishi, S., and Takahashi, T., 1972b, A further study of the motoneuron-depolarizing peptide extracted from dorsal roots of bovine spinal nerves, Proc. Jap. Acad. 48:747–752.Google Scholar
  147. Page, I. H., and Bumpus, F. M., 1961, Angiotensin, Physiol. Rev. 41:331–390.PubMedGoogle Scholar
  148. Palaic, D., and Khairallah, P. A., 1967a, Inhibition of norepinephrine uptake by angiotensin, J. Pharm. Pharmacol. 19:396–397.PubMedGoogle Scholar
  149. Palaic, D., and Khairallah, P. A., 1967b, Effect of angiotensin on uptake and release of norepinephrine by brain, Biochem. Pharmacol. 16:2291–2298.PubMedGoogle Scholar
  150. Palaic, D., and Khairallah, P. A., 1968, Inhibition of norepinephrine re-uptake by angiotensin in brain, J. Neurochem. 15:1195–1202.PubMedGoogle Scholar
  151. Panisset, J. C., 1967, Effect of angiotensin on the release of acetylcholine from preganglionic and postganglionic nerve endings, Canad. J. Physiol Pharmacol. 45:313–317.Google Scholar
  152. Panisset, J. C., Biron, P., and Beaulnes, A., 1966, Effects of angiotensin on the superior cervical ganglion of the cat, Experientia 22:394–395.PubMedGoogle Scholar
  153. Pappenheimer, J. R., Miller, T. B., and Goodrich, C. A., 1967, Sleep-promoting effects of cerebrospinal fluid from sleep-deprived goats. Proc. Natl. Acad. Sci. 58:513–517.PubMedGoogle Scholar
  154. Pavel, S., and Coculescu, M., 1972, Arginine vasotocin-like activity of cerebrospinal fluid induced by injection of hypertonic saline into the third cerebral ventricle of cats, Endocrinology 91:825–827.Google Scholar
  155. Pavel, S., Dorcescu, M., Petrescu-Holban, R., and Ghinea, E., 1973, Biosynthesis of a vasotocin-like peptide in cell cultures from pineal glands of human fetuses, Science 181:1252–1253.PubMedGoogle Scholar
  156. Peck, J. W., and Epstein, A. N., 1971, Antidiuresis following intracranial injections of angiotensin II into rats, Fed. Proc. 30:113.Google Scholar
  157. Pernow, B., 1951, Substance P distribution in the digestive tract, Acta Physiol. Scand. 24:97–102.PubMedGoogle Scholar
  158. Pfaff, D. W., 1973, Luteinizing hormone-releasing factor potentiates lordosis behavior in hypophysectomized ovariectomized female rats, Science 182:1148–1149.PubMedGoogle Scholar
  159. Phillis, J. W., and Limacher, J. J., 1974, Substance P excitation of cerebral cortical Betz cells, Brain Res. 69:158–163.PubMedGoogle Scholar
  160. Piéron, H., 1913, Le Problème Physiologique du Sommeil, Masson, Paris.Google Scholar
  161. Plotnikoff, N. P., Kastin, A. J., Anderson, M. S., and Schally, A. V., 1971, DOPA potentiation; by a hypothalamic factor, MSH release-inhibiting hormone (MIF), Life Sci. 10:1279–1283.Google Scholar
  162. Plotnikoff, N. P., Kastin, A. J., Anderson, M. S., and Schally, A. V., 1972, Oxotremorine antagonism by a hypothalamic hormone, MSH release-inhibiting factor (MIF), Proc. Soc. Exp. Biol. Med. 140:811.PubMedGoogle Scholar
  163. Powell, D., Leeman, S., Tregear, G. W., Niall, H. D., and Potts, J. T., 1973, Radioimmunoassay for substance P, Nature New Biol. 241:252–254.PubMedGoogle Scholar
  164. Ramwell, P. W., and Shaw, J. E., 1963a, The nature of non-cholinergic substances released from the cerebral cortex of cats on direct and indirect stimulation. J. Physiol. 169:51P– 52P.Google Scholar
  165. Ramwell, P. W., and Shaw, J. E., 1963b, The spontaneous and evoked release of noncholiner-gic substances from the cerebral cortex of cats, Life Sci. 6:419–426.PubMedGoogle Scholar
  166. Ramwell, P. W., Shaw, J. E., and Jessup, R., 1966, Spontaneous and evoked release of prostaglandins from frog spinal cord, Am. J. Physiol. 211:993–1004.Google Scholar
  167. Reit, E., 1972, Actions of angiotensin on the adrenal medulla and autonomic ganglia, Fed. Proc. 31:1338–1343.PubMedGoogle Scholar
  168. Ribeiro, S. A., and Rochae Silva, M., 1973, Antinociceptive action of bradykinin and related kinins of larger molecular weights by the intraventricular route, Brit. J. Pharmacol. 47:517–528.Google Scholar
  169. Ribeiro, S. A., Graeff, F. G., and Corrado, A. P., 1971, Antinociceptive action of intraventricular bradykinin, Neuropharmacology 10:725–731.PubMedGoogle Scholar
  170. Richardson, J. B., and Beaulnes, A., 1971, The cellular site of action of angiotensin, J. Cell. Biol. 51:419–432.PubMedGoogle Scholar
  171. Roth, M., Weitzman, A. F., and Piquilloud, Y., 1969, Converting enzyme content of different tissues of the rat, Experientia 25:1247.PubMedGoogle Scholar
  172. Roth, R. H., 1972, Action of angiotensin on adrenergic nerve endings: Enhancement of norepinephrine biosynthesis, Fed. Proc. 31:1358–1364.PubMedGoogle Scholar
  173. Ruffener, C., and Dreifuss, J. J., 1970, Selective zinc iodide-osmium tetroxide impregnation of synaptoid vesicles in rat neurohypophysis, Brain Res. 22:402–405.Google Scholar
  174. Ryall, R. W., 1964, The subcellular distributions of acetylcholine, substance P, 5-hydroxytryptamine, γ-aminobutyric acid and glutamic acid in brain homogenates, J. Neurochem. 11:131–145.PubMedGoogle Scholar
  175. Sandman, C. A., Kastin, A. J., and Schally, A. V., 1969, Melanocyte-stimulating hormone and learned appetitive behavior, Experientia 25:1001–1002.PubMedGoogle Scholar
  176. Sandman, C. A., Kastin, A. J., and Schally, A. V., 1971, Behavioral inhibition as modified by melanocyte-stimulating hormone (MSH) and light-dark conditions, Physiol. Behau. 6:45–48.Google Scholar
  177. Schally, A. V., Arimura, A., and Kastin, A. J., 1973, Hypothalamic regulatory hormones, Science 179:341–350.PubMedGoogle Scholar
  178. Schmitt, H., and Schmitt, H., 1968, Increased activity in sympathetic nerves induced by angiotensin, Rev. Canad. Biol. 27:255–257.PubMedGoogle Scholar
  179. Schnedorf, J. G., and Ivy, A. C., 1939, An examination of the hypnotoxin theory of sleep, Am. J. Physiol. 125:491–505.Google Scholar
  180. Schneiderman, N., Monnier, M., and Hösli, L., 1966, Humoral transmission of sleep. IV. Cerebral and visceral effects of sleep dialysate, Pßügers Arch. Ges. Physiol. 288:65–80.Google Scholar
  181. Schoenenberger, G. A., Cueni, L. B., Monnier, M., and Hatt, A. M., 1972, Humoral transmission of sleep. VII. Isolation and physical chemical characterization of the “sleep inducing factor delta,” Pflügers Arch. Ges. Physiol. 338:1–17.Google Scholar
  182. Scroop, G. C., and Lowe, R. D., 1968, Central pressor effect of angiotensin mediated by the parasympathetic nervous system, Nature 220:1331–1332.PubMedGoogle Scholar
  183. Severs, W. B., and Buckley, J. P., 1970, Spontaneous activity of the superior cervical nerve following central administration of angiotensin II, Pharmacology 3:187–190.Google Scholar
  184. Severs, W. B., and Daniels-Severs, A. E., 1973, Effects of angiotensin on the central nervous system, Pharmacol. Rev. 25:415–449.PubMedGoogle Scholar
  185. Severs, W. B., Daniels, A. E., Smookler, H. H., Kinnard, W. J., and Buckley, J. P., 1966, Interrelationship between angiotensin II and the sympathetic nervous system, J. Pharmacol. Exp. Ther. 153:503–537.Google Scholar
  186. Severs, W. B., Daniels, A. E., and Buckley, J. P., 1967, On the central hypertensive effect of angiotensin II, Neuropharmacology 6:199–205.Google Scholar
  187. Severs, W. B., Summy-Long, J., Taylor, J. S., and Connor, J. D., 1970, A central effect of angiotensin: Release of pituitary pressor material, J. Pharmacol. Exp. Ther. 174:27–34.PubMedGoogle Scholar
  188. Severs, W. B., Summy-Long, J., Daniels-Severs, A., and Connor, J. D., 1971, Influence of adrenergic blocking drugs on central angiotensin effects, Pharmacology 5:205–214.PubMedGoogle Scholar
  189. Severs, W. B., Summy-Long, J., and Daniels-Severs, A., 1973, Effect of a converting enzyme inhibitor (SQ20,881) on angiotensin-induced drinking, Proc. Soc. Exp. Biol. Med. 142:203–204.PubMedGoogle Scholar
  190. Shaw, J. E., and Ramwell, P. W., 1968, Release of a substance P polypeptide from the cerebral cortex, Am. J. Physiol. 215:262–267.PubMedGoogle Scholar
  191. Simpson, J. B., and Routtenberg, A., 1973, Subfornical organ: Site of drinking elicitation by angiotensin II, Science 181:1172–1175.PubMedGoogle Scholar
  192. Smookler, H. H., Severs, W. B., Kinnard, W. J., and Buckley, J. P., 1966, Centrally mediated cardiovascular effects of angiotensin II, J. Pharmacol. Exp. Ther. 153:485–494.PubMedGoogle Scholar
  193. Sterba, G., 1966, Zur cerebrospinalen Neurokrinie der Wirbeltiere, Zool. Am. Suppl. 29:393–340.Google Scholar
  194. Stern, P., and Hadžović, 1973, Pharmacological analysis of central actions of synthetic substance P, Arch. Int. Pharmacodyn. Ther. 202:259–262.PubMedGoogle Scholar
  195. Stern, P., and Hukovic, S., 1956, Substanz P und Tetanustoxin, Naturwissenschaften 23:538.Google Scholar
  196. Stern, P., and Hukovic, S., 1960, Relation between central and peripheral actions of substance P, Med. Exp. 2:1–7.Google Scholar
  197. Sutin, J., and Clemente, C. D., 1957, Localized response in the posterior hypothalamus following intravenous administration of pitressin, Am. J. Physiol. 188:199–204.PubMedGoogle Scholar
  198. Swanson, L. W., and Sharpe, L. G., 1973, Centrally induced drinking: Comparison of angiotensin II- and carbachol-sensitive sites in rats, Am. J. Physiol. 225:566–573.PubMedGoogle Scholar
  199. Swanson, L. W., Marshall, G. R., Needleman, P., and Sharpe, L. G., 1973, Characterization of central angiotensin II receptors invoked in the elicitation of drinking in the rat, Brain Res. 49:441–446.PubMedGoogle Scholar
  200. Sweet, C. S., Ferrario, C. M., Khosla, M. C., and Bumpus, F. M., 1973, Antagonism of peripheral and central effects of angiotensin II by (1 sarcosine, 8-isoleucine) angiotensin II, J. Pharmacol. Exp. Ther. 185:35–41.PubMedGoogle Scholar
  201. Toman, J. E. P., 1963, Some aspects of central nervous pharmacology, Ann. Rev. Pharmacol. 3:153–184.Google Scholar
  202. Tregear, G. W., Niall, H. D., Potts, J. T., Leeman, S. E., and Chang, M. M., 1971, Synthesis of substance P, Nature New Biol. 232:87–88.PubMedGoogle Scholar
  203. Ueda, H., Katayama, S., and Kato, R., 1972, Area postrema angiotensin-sensitive site in brain, Advan. Exp. Biol. Med. 17:109–116.Google Scholar
  204. Vincent, J. D., Arnauld, E., and Nicolesen-Catargi, A., 1972, Osmoreceptors and neurosecretory cells in the supraoptic complex of the unanesthetized monkey, Brain Res. 45:278–281.PubMedGoogle Scholar
  205. Volicer, L., and Loew, C. G., 1971, Penetration of angiotensin II into the brain, Neuropharmacology 10:631–636.PubMedGoogle Scholar
  206. von Euler, U. S., 1936, Untersuchungen über Substanz P, die atropinfeste, darmarregende und gefässerweiternde Substanz aus Darm und Gehirn, Arch. Exp. Pathol. Pharmakol. 181:181–197.Google Scholar
  207. von Euler, U. S., and Gaddum, J. H., 1931, An unidentified depressor substance in certain tissue extracts, J. Physiol. 72:74–87.Google Scholar
  208. von Euler, U. S., and Pernow, B., 1954, Effects of intraventricular administration of substance P, Nature 174:184.Google Scholar
  209. von Euler, U. S., and Pernow, B., 1956, Neurotropic effects of substance P, Acta Physiol. Scand. 36:265–275.Google Scholar
  210. Vorherr, H., Bradburg, M. W. B., Hoghoughi, M., and Kleeman, C. R., 1968, Antidiuretic hormone in cerebrospinal fluid during endogenous and exogenous changes in its blood level, Endrocrinology 83:246–250.Google Scholar
  211. White, C. S., Levitt, R. A., and Boyer, S., 1972, Drinking elicited by CNS injection of angiotensin in the rat, Psychon. Sci. 26:283–284.Google Scholar
  212. Yang, H.-Y., and Neff, N. H., 1972, Distribution and properties of angiotensin converting enzyme of rat brain, J. Neurochem. 19:2443–2450.PubMedGoogle Scholar
  213. Yang, H.-Y., and Neff, N. H., 1973, Differential distribution of angiotensin converting enzyme in the anterior and posterior lobe of the rat pituitary, J. Neurochem. 21:1035–1036.PubMedGoogle Scholar
  214. Yu, R., and Dickinson, C. J., 1965, Neurogenic effects of angiotensin, Lancet 2:1276–1277.PubMedGoogle Scholar
  215. Zetler, G., 1956a, Substanz P, ein Polypeptid aus Darm und Gehirn mit depressiven, hyperalgetischen und Morphin-antagonistischen Wirkungen auf das Zentralnervensystem, Arch. Exp. Pathol. Pharmakol. 228:513–538.Google Scholar
  216. Zetler, G., 1956b, Wirkungsunterschiede zwischen den Polypeptiden Bradykinin und Substanz P an Zentralnervensystem, Arch. Exp. Pathol. Pharmakol. 229:148–151.Google Scholar
  217. Zetler, G., 1970a, Distribution of peptidergic neurons in mammalian brain, in: Aspects of Neuroendocrinology (W. Bargmann and B. Scharrer, eds.), pp. 287–295, Springer-Verlag, New York.Google Scholar
  218. Zetler, G., 1970b, Biologically active peptides (substance P), in: Handbook of Neurochemistry, Vol. 4 (A. Lajtha, ed.), Plenum Press, New York.Google Scholar
  219. Zimmerman, B. G., 1967, Evaluation of peripheral and central components of action of angiotensin on the sympathetic nervous system, J. Pharmacol. Exp. Ther. 158:1–10.PubMedGoogle Scholar
  220. Zimmerman, B. G., Gomer, S. K., and Liao, J. C., 1972, Action of angiotensin on vascular adrenergic nerve endings: Facilitation of norepinephrine release, Fed. Proc. 31:1344–1350.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Roger A. Nicoll
    • 1
  1. 1.Department of Physiology, School of MedicineState University of New York at BuffaloBuffaloUSA

Personalised recommendations