Excitatory Amino Acid Receptors in the Central Nervous System

  • H. McLennan
Part of the Handbook of Psychopharmacology book series (HBKPS, volume 4)


Speculation on the possible role played by the physiologically occurring dicarboxylic amino acids L-aspartate and L-glutamate has continued from the time that Hayashi (1954) first described the marked excitatory action of the latter compound on the general electrical activity of the cerebral cortex. Thereafter, the potent effect of these substances on single neurons of the spinal cord was demonstrated (Curtis et al., 1960), and similar studies have now been made of cells in many other parts of the central nervous system (for references, see Johnson, 1972). Although an occasional apparently anomalous result has been reported (McLennan, 1971), it appears that all or almost all neurons of the central nervous system can be depolarized and excited by glutamate or aspartate introduced into their immediate extracellular environments.


Glutamate Uptake Acidic Amino Acid Spinal Neurone Excitatory Amino Acid Receptor Cuneate Nucleus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balcar, V. J., and Johnston, G. A. R., 1972a, Glutamate uptake by brain slices and its relation to the depolarization of neurones by acidic amino acids, J. Neurobiol. 3:295–301.PubMedCrossRefGoogle Scholar
  2. Balcar, V. J., and Johnston, G. A. R., 1972b, The structural specificity of the high affinity uptake of L-glutamate and L-aspartate by rat brain slices, J. Neurochem. 19:2657–2666.PubMedCrossRefGoogle Scholar
  3. Balcar, V. J., and Johnston, G. A. R., 1973, High affinity uptake of transmitters: Studies on the uptake of L-aspartate, GABA, L-glutamate and glycine in cat spinal cord, J. Neurochem. 20:529–539.PubMedCrossRefGoogle Scholar
  4. Barker, J. L., and Nicoll, R. A., 1973, The pharmacology and ionic dependency of amino acid responses in the frog spinal cord, J. Physiol. 228:259–277.PubMedGoogle Scholar
  5. Bennett, J. P., Logan, W. J., and Snyder, S. H., 1972, Amino acid neurotransmitter candidates: Sodium-dependent high-affinity uptake by unique synaptosomal fractions, Science 178:997–999.PubMedCrossRefGoogle Scholar
  6. Boakes, R. J., Bradley, P. B., Briggs, I., and Dray, A., 1970, Antagonism of 5-hydroxytryptamine by LSD 25 in the central nervous system: A possible neuronal basis for the actions of LSD 25, Brit. J. Pharmacol. 40:202–218.Google Scholar
  7. Bradford, H. F., and McIlwain, H., 1966, Ionic basis for the depolarization of cerebral tissues by excitatory acidic amino acids, J. Neurochem. 13:1163–1177.PubMedCrossRefGoogle Scholar
  8. Clarke, G., Hill, R. G., and Simmonds, M. A., 1973, Microiontophoretic release of drugs from micropipettes: Use of 24Na as a model, Brit. J. Pharmacol. 48:156–161.Google Scholar
  9. Crawford, J. M., 1970, The sensitivity of cortical neurones to acidic amino acids and acetylcholine, Brain Res. 17:287–296.PubMedCrossRefGoogle Scholar
  10. Crawford, J. M., and Curtis, D. R., 1964, The excitation and depression of mammalian cortical neurones by amino acids, Brit. J. Pharmacol. 23:313–329.PubMedGoogle Scholar
  11. Curran, P. F., Schultz, S. G., Chez, R. A., and Fuisz, R. E., 1967, Kinetic relations of the Na-amino acid interaction at the mucosal border of intestine, J. Gen. Physiol. 50:1261–1286.PubMedCrossRefGoogle Scholar
  12. Curtis, D. R., 1964, Microelectrophoresis, in: Physical Techniques in Biological Research, Vol. 5, Part A (W. L. Nastuk, ed.), pp. 144–190, Academic Press, New York.Google Scholar
  13. Curtis, D. R., 1965, The actions of amino acids upon mammalian neurones, in: Studies in Physiology (D. R. Curtis and A. K. Mclntyre, eds.), pp. 34–42, Springer, New York.CrossRefGoogle Scholar
  14. Curtis, D. R., and Phillis, J. W., 1960, The action of procaine and atropine on spinal neurones, J. Physiol. 153:17–34.PubMedGoogle Scholar
  15. Curtis, D. R., and Watkins, J. C., 1960, The excitation and depression of spinal neurones by structurally related amino acids, J. Neurochem. 6:117–141.PubMedCrossRefGoogle Scholar
  16. Curtis, D. R., and Watkins, J. C., 1963, Acidic amino acids with strong excitatory actions on mammalian neurones, J. Physiol. 166:1–14.PubMedGoogle Scholar
  17. Curtis, D. R., Phillis, J. W., and Watkins, J. C., 1960, The chemical excitation of spinal neurones by certain acidic amino acids, J. Physiol. 150:656–682.PubMedGoogle Scholar
  18. Curtis, D. R., Phillis, J. W., and Watkins, J. C., 1961, Actions of amino-acids on the isolated hemisected spinal cord of the toad, Brit J. Pharmacol. 16:262–283.PubMedGoogle Scholar
  19. Curtis, D. R., Hösli, L., and Johnston, G. A. R., 1968, A pharmacological study of the depression of spinal neurones by glycine and related amino acids, Exp. Brain Res. 6:1–18.PubMedCrossRefGoogle Scholar
  20. Curtis, D. R., Duggan, A. W., and Johnston, G. A. R., 1970, The inactivation of extracellularly administered amino acids in the feline spinal cord, Exp. Brain Res. 10:447–462.PubMedCrossRefGoogle Scholar
  21. Curtis, D. R., Duggan, A. W., and Johnston, G. A. R., 1971, The specificity of strychnine as a glycine antagonist in the mammalian spinal cord, Exp. Brain Res. 12:547–565.PubMedCrossRefGoogle Scholar
  22. Curtis, D. R., Duggan, A. W., Felix, D., Johnston, G. A. R., Tebecis, A. K., and Watkins, J. C., 1972, Excitation of mammalian central neurones by acidic amino acids, Brain Res. 41:283–301.PubMedCrossRefGoogle Scholar
  23. Curtis, D. R., Johnston, G. A. R., Game, C. J. A., and McCulloch, R. M., 1973, Antagonism of neuronal excitation by l-hydroxy-3-aminopyrrolidone-2, Brain Res. 49:467–470.PubMedCrossRefGoogle Scholar
  24. Davies, J., and Watkins, J. C., 1972, Is l-hydroxy-3-aminopyrrolidone-2 (HA-966) a selective excitatory amino acid antagonist? Nature New Biol. 238:61–63.PubMedCrossRefGoogle Scholar
  25. Davies, J., and Watkins, J. C., 1973, Microelectrophoretic studies on the depressant action of HA-966 on chemically and synaptically excited neurones in the cat cerebral cortex and cuneate nucleus, Brain Res. 59:311–322.PubMedCrossRefGoogle Scholar
  26. Dudar, J. D., 1972, Glutamic acid sensitivity of hippocampal pyramidal cell dendrites, Acta Physiol. Scand. 84:C6.Google Scholar
  27. Duggan, A. W., 1971, Amino acids as transmitters, Ph.D. thesis, Australian National University.Google Scholar
  28. Duggan, A. W., and Johnston, G. A. R., 1970a, Glutamate and related amino acids in cat spinal roots, dorsal root ganglia, and peripheral nerves, J. Neurochem. 17:1205–1208.PubMedCrossRefGoogle Scholar
  29. Duggan, A. W., and Johnston, G. A. R., 1970b, Glutamate and related amino acids in cat, dog, and rat spinal roots, Comp. Gen. Pharmacol. 1:127–132.PubMedCrossRefGoogle Scholar
  30. Eccles, J. C., 1964, The Physiology of Synapses, Springer, Berlin.CrossRefGoogle Scholar
  31. Galindo, A., 1969, Effects of procaine, pentobarbital and halothane on synaptic transmission in the central nervous system, J. Pharmacol. 169:185–195.Google Scholar
  32. Galindo, A., Krnjević, K., and Schwartz, S., 1967, Microiontophoretic studies on neurones in the cuneate nucleus, J. Physiol. 192:359–377.PubMedGoogle Scholar
  33. Gent, J. P., Morgan, R., and Wolstencroft, J. H., 1974, Determination of the relative potency of two amino acids, Neuropharmacology 13:441–447.PubMedCrossRefGoogle Scholar
  34. Graham, L. T., Shank, R. P., Werman, R., and Aprison, M. H., 1967, Distribution of some transmitter suspects in cat spinal cord: Glutamic acid, aspartic acid, γ-aminobutyric acid, glycine, and glutamine, J. Neurochem. 14:465–472.PubMedCrossRefGoogle Scholar
  35. Haldeman, S., and McLennan, H., 1972, The antagonistic action of glutamic acid diethylester towards amino acid-induced and synaptic excitations of central neurones, Brain Res. 45:393–400.PubMedCrossRefGoogle Scholar
  36. Haldeman, S., and McLennan, H., 1973, The action of two inhibitors of glutamic acid uptake upon amino acid-induced and synaptic excitations of thalamic neurones, Brain Res. 63:123–129.PubMedCrossRefGoogle Scholar
  37. Haldeman, S., Huffman, R. D., Marshall, K. C., and McLennan, H., 1972, The antagonism of the glutamate-induced and synaptic excitations of thalamic neurones, Brain Res. 39:419–425.PubMedCrossRefGoogle Scholar
  38. Harvey, J. A., and McIlwain, H., 1968, Excitatory acidic amino acids and the cation content and sodium ion flux of isolated tissues from the brain, Biochem. J. 108:269–274.PubMedGoogle Scholar
  39. Hayashi, T., 1954, Effects of sodium glutamate on the nervous system, Keio J. Med. 3:183–192.CrossRefGoogle Scholar
  40. Hayashi, T., 1959, Neurophysiology and Neurochemistry of Convulsion, Dainihon-Tosho, Tokyo.Google Scholar
  41. Herz, A., Zieglgänsberger, W., and Färber, G., 1969, Microelectrophoretic studies concerning the spread of glutamic acid and GABA in brain tissue, Exp. Brain Res. 9:221–235.PubMedCrossRefGoogle Scholar
  42. Hösli, L., and Tebëcis, A. K., 1970, Actions of amino acids and convulsants on bulbar reticular neurones, Exp. Brain Res. 11:111–127.PubMedCrossRefGoogle Scholar
  43. Jack, J. J. B., Miller, S., Porter, R., and Redman, S. J., 1970, in: Excitatory Synaptic Mechanisms (P. Andersen and J. K. S. Jansen, eds.), pp. 199–205, Universitetsforlaget, Oslo.Google Scholar
  44. Johnson, J. L., 1972, Glutamic acid as a synaptic transmitter in the nervous system: A review, Brain Res. 37:1–19.PubMedCrossRefGoogle Scholar
  45. Johnson, J. L., and Aprison, M. H., 1970, The distribution of glutamic acid, a transmitter candidate, and other amino acids in the dorsal sensory neuron of the cat, Brain Res. 24:285–292.PubMedCrossRefGoogle Scholar
  46. Krnjević, K., 1971, Microiontophoresis, in: Methods of Neurochemistry (R. Fried, ed.), pp. 129–172, Marcel Dekker, New York.Google Scholar
  47. Krnjević, K., and Phillis, J. W., 1963, Iontophoretic studies of neurones in the mammalian cerebral cortex, J. Physiol. 165:274–304.PubMedGoogle Scholar
  48. Krnjević, K., and Schwartz, S., 1967, Some properties of unresponsive cells in the cerebral cortex, Exp. Brain Res. 3:306–319.PubMedCrossRefGoogle Scholar
  49. Krnjević, K., Mitchell, J. F., and Szerb, J. C., 1963, Determination of iontophoretic release of acetylcholine from micropipettes, J. Physiol. 165:421–436.PubMedGoogle Scholar
  50. Krnjević, K., Pumain, R., and Renaud, L., 1971, The mechanism of excitation by acetylcholine in the cerebral cortex, J. Physiol. 215:247–268.PubMedGoogle Scholar
  51. Logan, W. J., and Snyder, S. H., 1972, High affinity uptake systems for glycine, glutamic and aspartic acids in synaptosomes of rat central nervous tissues, Brain Res. 42:413–431.PubMedCrossRefGoogle Scholar
  52. McLennan, H., 1971, The pharmacology of inhibition of mitral cells in the olfactory bulb, Brain Res. 29:177–184.PubMedCrossRefGoogle Scholar
  53. McLennan, H., and Haldeman, S., 1973, The actions of the dimethyl and diethyl esters of glutamic acid on glutamate uptake by brain tissue, J. Neurochem. 20:629–631.PubMedCrossRefGoogle Scholar
  54. McLennan, H., Huffman, R. D., and Marshall, K. C., 1968, Patterns of excitation of thalamic neurones by amino-acids and by acetylcholine, Nature 219:387–388.PubMedCrossRefGoogle Scholar
  55. Morgan, R., Vrbovä, G., and Wolstencroft, J. H., 1972, Correlation between the retinal input to lateral geniculate neurones and their relative response to glutamate and aspartate, J.Physiol. 224:41–42P.Google Scholar
  56. Rall, W., Burke, R. E., Smith, T. G., Nelson, P. G., and Frank, K., 1967, Dendritic location of synapses and possible mechanisms for the monosynaptic EPSP in motoneurons, J. Neurophysiol. 30:1169–1193.PubMedGoogle Scholar
  57. Stone, T. W., 1973, Cortical pyramidal tract interneurones and their sensitivity to L-glutamic acid, J. Physiol. 233:211–225.PubMedGoogle Scholar
  58. van Gelder, N. M., 1971, Molecular arrangement for physiological action of glutamic acid and γ-aminobutyric acid, Canad. J. Physiol. Pharmacol. 49:513–519.CrossRefGoogle Scholar
  59. Zieglgänsberger, W., and Puil, E. A., 1972, Tetrodotoxin interference of CNS excitation by glutamic acid, Nature New Biol. 239:204–205.PubMedGoogle Scholar
  60. Zieglgänsberger, W., and Puil, E. A., 1973, Actions of glutamic acid on spinal neurones, Exp. Brain Res. 17:35–49.PubMedCrossRefGoogle Scholar
  61. Zieglgänsberger, W., Herz, A., and Teschemacher, H., 1969, Electrophoretic release of tritium-labelled glutamic acid from micropipettes in vitro, Brain Res. 15:298–300.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • H. McLennan
    • 1
  1. 1.Department of PhysiologyUniversity of British ColumbiaVancouverCanada

Personalised recommendations