Amino Acid Receptors in CNS. I. GABA and Glycine in Spinal Cord

  • Ronald W. Ryall
Part of the Handbook of Psychopharmacology book series (HBKPS, volume 4)


Attempts to prove the identity of amino acid inhibitory transmitters in the mammalian central nervous system received fresh impetus when Florey (1954) extracted an inhibitory substance, factor I, from mammalian brain and subsequently (Bazemore et al., 1957) showed that it contained γ-aminobutyric acid (GABA). However, some active preparations of factor I do not contain GABA (McLennan, 1958). In some of the earliest studies (Honour and McLennan, 1960; McLennan, 1957) it was found that a topical application of GABA to the exposed spinal cord did not reduce spinal monosynaptic reflexes even though effects were observed with factor I. This seemed to dampen enthusiasm for GABA as a central transmitter somewhat, but it was later found by other workers that higher concentrations were effective.


Spinal Cord Dorsal Root Ganglion Dorsal Root Spinal Neuron Ventral Root 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, P. R., and Brown, D. A., 1973, Action of γ-aminobutyric acid (GABA) on rat sympathetic ganglion cells, Brit. J. Pharmacol. 47:639–640P.Google Scholar
  2. Aprison, M. H., 1970, Evidence of the release of [14C]glycine from hemisectioned toad spinal cord with dorsal root stimulation, Pharmacologist 12:222P.Google Scholar
  3. Aprison, M. H., and Werman, R., 1965, The distribution of glycine in cat spinal cord and roots, Life Sci. 4:2075–2083.PubMedGoogle Scholar
  4. Aprison, M. H., Shank, R. P., and Davrdoff, R. A., 1969, A comparison of the concentration of glycine, a transmitter suspect, in different areas of the brain and spinal cord in seven different vertebrates, Comp. Biochem. Physiol. 28:1345–1355.PubMedGoogle Scholar
  5. Araki, T., 1965, The effects of strychnine on the postsynaptic inhibitory action, in: Lectures and Symposia, XXIII Int. Congr. Physiol. Sci., pp. 96–97.Google Scholar
  6. Banna, N. R., and Hazbun, J., 1969, Analysis of the convulsant action of pentylenetetrazol, Experientia 25:382–383.PubMedGoogle Scholar
  7. Banna, N. R., and Jabbur, S. J., 1969, Pharmacological studies on inhibition in the cuneate nucleus of the cat, Int. J. Neuropharmacol. 8:299–308.PubMedGoogle Scholar
  8. Barker, J. L., and Nicoll, R. A., 1972, Gamma-aminobutyric acid: Role in primary afferent depolarization, Science 176:1043–1045.PubMedGoogle Scholar
  9. Barker, J. L., and Nicoll, R. A., 1973, The pharmacology and ionic dependency of amino acid responses in the frog spinal cord, J. Physiol. 228:259–277.PubMedGoogle Scholar
  10. Bazemore, A. W., Elliott, K. A., and Florey, E., 1957, Isolation of factor I, J. Neurochem. 1:334–339.Google Scholar
  11. Beart, P. M., Curtis, D. R., and Johnston, G. A. R., 1971, 4-Aminotetrolic acid: A new conformationally-restricted analogue of γ-aminobutyric acid, Nature New Biol. 234:80–81.PubMedGoogle Scholar
  12. Benoist, J. M., Besson, J. M., Conseiller, C.and Le Bars, D., 1972, Action of bicuculline on presynaptic inhibition of various origins in the cat’s spinal cord, Brain Res. 43:672–676.PubMedGoogle Scholar
  13. Besson, J. M., and Abdelmoumène, M., 1970, Modifications of dorsal root potentials during cortical seizures, Electroenceph. Clin. Neurophysiol. 29:166–172.PubMedGoogle Scholar
  14. Besson, J. M., Rivot, J. P., and Aléonard, P., 1971, Action of picrotoxin on presynaptic inhibition of various origins in the cat’s spinal cord, Brain Res. 26:212–216.Google Scholar
  15. Bhargava, K. P., and Srivastava, R. K., 1964, Non-specific depressant action of y-aminobutyric acid on somatic reflexes, Brit. J. Pharmacol. 23:391–398.PubMedGoogle Scholar
  16. Bisti, S., Iosif, G., and Strata, P., 1971, Suppression of inhibition in the cerebellar cortex by picrotoxin and bicuculline, Brain Res. 28:591–593.PubMedGoogle Scholar
  17. Bradley, K., Easton, D. M., and Eccles, J. C., 1953, An investigation of primary or direct inhibition, J. Physiol. 122:474–488.PubMedGoogle Scholar
  18. Collins, G. G. S., 1973, Drug-induced changes in the electrically evoked release of 3H-γ-aminobutyric acid (3H-GABA) from spinal cord, Brit. J. Pharmacol. 47:641P.Google Scholar
  19. Collins, G. G. S., 1974, The spontaneous and electrically evoked release of [3H]-GABA from the isolated, hemisected frog spinal cord, Brain Res. 66:121–137.Google Scholar
  20. Curtis, D. R., 1969, The pharmacology of spinal postsynaptic inhibition, Prog. Brain Res. 31:171–189.Google Scholar
  21. Curtis, D. R., and de Groat, W. C., 1968, Tetanus toxin and spinal inhibition, Brain Res. 10:208–212.PubMedGoogle Scholar
  22. Curtis, D. R., and Duggan, A. W., 1969, The depression of spinal inhibition by morphine, Agents and Actions 1:14–19.PubMedGoogle Scholar
  23. Curtis, D. R., and Eccles, R. M., 1958a, The excitation of Renshaw cells by pharmacological agents applied electrophoretically, J. Physiol 141:435–445.Google Scholar
  24. Curtis, D. R., and Eccles, R. M., 1958b, The effect of diffusional barriers upon the pharmacology of cells within the central nervous system, J. Physiol. 141:446–463.Google Scholar
  25. Curtis, D. R., and Felix, D., 1971a, GABA and prolonged spinal inhibition, Nature New Biol. 231:187–188.Google Scholar
  26. Curtis, D. R., and Felix, D., 1971b, The effect of bicuculline upon synaptic inhibition in the cerebral and cerebellar cortices of the cat, Brain Res. 34:301–321.Google Scholar
  27. Curtis, D. R., and Johnston, G. A. R., 1970, Strychnine, glycine and vertebrate postsynaptic inhibition, Nature 225:1258–1259.PubMedGoogle Scholar
  28. Curtis, D. R., and Ryall, R. W., 1966a, Pharmacological studies upon spinal presynaptic fibres, Exp. Brain Res. 1:195–204.Google Scholar
  29. Curtis, D. R., and Ryall, R. W., 1966b, The synaptic excitation of Renshaw cells, Exp. Brain Res. 2:81–96.Google Scholar
  30. Curtis, D. R., and Watkins, J. C., 1960, The excitation and depression of spinal neurones by structurally related amino acids, J. Neurochem. 6:117–141.PubMedGoogle Scholar
  31. Curtis, D. R., and Watkins, J. C., 1965, The pharmacology of amino acids related to gamma-aminobutyric acid, Pharm. Rev. 17:347–391.PubMedGoogle Scholar
  32. Curtis, D. R., Phillis, J. W., and Watkins, J. C., 1959, The depression of spinal neurones by γ-amino-n-butyric acid and β-alanine, J. Physiol. 146:185–203.PubMedGoogle Scholar
  33. Curtis, D. R., Phillis, J. W., and Watkins, J. C., 1961, Actions of amino acids on the isolated hemisected spinal cord of the toad, Brit. J. Pharmacol. 16:262–283.PubMedGoogle Scholar
  34. Curtis, D. R., Hösli, L., Johnston, G. A. R., and Johnston, I. H., 1967, Glycine and spinal inhibition, Brain Res. 5:112–114.Google Scholar
  35. Curtis, D. R., Hösli, L., and Johnston, G. A. R., 1968a, A pharmacological study of the depression of spinal neurones by glycine and related amino acids, Exp. Brain Res. 6:1–18.Google Scholar
  36. Curtis, D. R., Hösli, L., Johnston, G. A. R., and Johnston, I. H., 1968b, The hyperpolariza-tion of spinal motoneurones by glycine and related amino acids, Exp. Brain Res. 5:235–258.Google Scholar
  37. Curtis, D. R., Duggan, A. W., and Johnston, G. A. R., 1970, The inactivation of extracellularly administered amino acids in the feline spinal cord, Exp. Brain Res. 10:447–462.PubMedGoogle Scholar
  38. Curtis, D. R., Duggan, A. W., and Johnston, G. A. R., 1971a, The specificity of strychnine in the mammalian spinal cord, Exp. Brain Res. 12:547–565.Google Scholar
  39. Curtis, D. R., Duggan, A. W., Felix , D., and Johnston, G. A. R., 1971b, Bicuculline, an antagonist of GABA and synaptic inhibition in the spinal cord of the cat, Brain Res. 32:69–96.Google Scholar
  40. Curtis, D. R., Duggan, A. W., Felix, D., Johnston, G. A. R., and McLennan, H., 1971c, Antagonism between bicuculline and GABA in the cat brain, Brain Res. 33:57–73.Google Scholar
  41. Curtis, D. R., Felix, D., Game, C. J. A. and McCulloch, R. M., 1973, Tetanus toxin and the synaptic release of GABA, Brain Res. 51:358–362.PubMedGoogle Scholar
  42. Curtis, D. R., Game, C. J. A., Johnston, G. A. R., McCulloch, R. M., and Maclachlan, R. M., 1972, Convulsive action of penicillin, Brain Res. 43:242–245.PubMedGoogle Scholar
  43. Curtis, D. R., Game, C. J. A., Johnston, G. A. R., and McCulloch, R. M., 1974, Central effects of β-(p-chlorophenyl)-γ-aminobutyric acid, Brain Res. 70:493–499.PubMedGoogle Scholar
  44. Davidoff, R. A., and Aprison, M. H., 1969, Picrotoxin antagonism of the inhibition of interneurones by glycine, Life Sci. 8:107–112.PubMedGoogle Scholar
  45. Davidoff, R. A., Graham, L. T., Shank, R. P., Werman, R., and Aprison, M. H., 1967, Changes in amino acid concentrations associated with loss of spinal interneurones, J. Neurochem. 14:1025–1031.PubMedGoogle Scholar
  46. Davidoff, R. A., Aprison, M. H., and Werman, R., 1969, The effects of strychnine on the inhibition of interneurons by glycine and γ-aminobutyric acid, Int. J. Neuropharmac. 8:191–194.Google Scholar
  47. Davidson, N., and Southwick, C. A., 1971, Amino acids and presynaptic inhibition in the rat cuneate nucleus, J. Physiol. 219:689–708.PubMedGoogle Scholar
  48. de Groat, W. C., 1969, The actions of gamma-aminobutyric acid and related amino acids on mammalian autonomic ganglia, J. Pharmacol. Exp. Ther. 172:384–396.Google Scholar
  49. de Groat, W. C., 1970, The effects of glycine, GAB A and strychnine on sacral parasympathetic preganglionic neurones, Brain Res. 18:542–544.Google Scholar
  50. de Groat, W. C., 1972, GABA-depolarization of a sensory ganglion: Antagonism by Picrotoxin and bicuculline, Brain Res. 38:429–432.PubMedGoogle Scholar
  51. de Groat, W. C., and Ryall, R. W., 1967, An excitatory action of 5-hydroxytryptamine on sympathetic preganglionic neurones, Exp. Br. Res. 3:299–305.Google Scholar
  52. de Groat, W. C., Lalley, P. M., and Block, M., 1971, The effects of bicuculline and GABA on the superior cervical ganglion of the cat, Brain Res. 25:665–668.Google Scholar
  53. de Groat, W. C., Lalley, P. M., and Saum, W. R., 1972, Depolarization of dorsal root ganglia by GABA and related amino acids: Antagonism by picrotoxin and bicuculline, Brain Res. 44:273–277.PubMedGoogle Scholar
  54. del Castillo, J.and Katz, B, 1955, On the localization of acetylcholine receptors, J. Physiol. 128:396–411.Google Scholar
  55. Devanandan, M. S., Eccles, R. M., and Yokota, T., 1965, Depolarization of afferent terminals evoked by muscle stretch, J. Physiol. 179:417–429.PubMedGoogle Scholar
  56. Devanandan, M. S., Eccles, R. M., and Stenhouse, D., 1966, Presynaptic inhibition evoked by muscle contraction, J. Physiol. 185:471–485.PubMedGoogle Scholar
  57. Dostrovsky, J., and Pomeranz, B., 1973, Morphine blockade of amino acid putative transmitters on cat spinal cord sensory interneurones, Nature New Biol. 246:222–224.PubMedGoogle Scholar
  58. Duggan, A. W., and Johnston, G. A. R., 1970, Glutamate and related amino acids in cat spinal roots, dorsal root ganglia and peripheral nerves, J. Neurochem. 17:1205–1208.PubMedGoogle Scholar
  59. Duggan, A. W., and McLennan, H., 1971, Bicuculline and inhibition in the thalamus, Brain Res. 25:188–191.PubMedGoogle Scholar
  60. Eccles, J. C., Fatt, P., and Koketsu, K., 1954, Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones, J. Physiol. 126:524–562.PubMedGoogle Scholar
  61. Eccles, J. C., Schmidt, R. F., and Willis, W. D., 1963, Pharmacological studies on presynaptic inhibition, J. Physiol. 168:500–530.PubMedGoogle Scholar
  62. Elliott, K. A. C., and van Gelder, N. M., 1960, The state of factor I in rat brain: The effects of metabolic conditions and drugs, J. Physiol. 153:423–432.PubMedGoogle Scholar
  63. Engberg, I., and Thaller, A., 1970, On the interaction of picrotoxin with GABA and glycine in the spinal cord, Brain Res. 19:151–154.PubMedGoogle Scholar
  64. Fedinec, A. A., and Shank, R. P., 1971, Effect of tetanus toxin on the content of glycine, gamma-aminobutyric acid, glutamate, glutamine and aspartate in the rat spinal cord, J. Neurochem. 18:2229–2234.PubMedGoogle Scholar
  65. Felix, D., and McLennan, H., 1971, The effect of bicuculline on the inhibition of mitral cells of the olfactory bulb, Brain Res. 25:661–664.PubMedGoogle Scholar
  66. Florey, E., 1954, An inhibitory and excitatory factor of mammalian central nervous system, and their action on a single sensory neurone, Arch. Int. Physiol. 62:33–53.PubMedGoogle Scholar
  67. Florey, E., and McLennan, H., 1955, Effects of an inhibitory factor (factor I) from brain on central synaptic transmission, J. Physiol. 130:446–455.PubMedGoogle Scholar
  68. Frank, K., 1959, Basic mechanisms of synaptic transmission in the central nervous system, I.R.E. Trans. Med. Electronics ME-6:85–88.Google Scholar
  69. Galindo, A., 1969, GABA-picrotoxin interaction in the mammalian central nervous system, Brain Res. 14:763–767.PubMedGoogle Scholar
  70. Gasser, H. S., and Graham, H. T., 1933, Potentials produced in the spinal cord by stimulation of the dorsal roots, Am. J. Physiol. 103:303–320.Google Scholar
  71. Godfraind, J. M., Krnjević, K., and Pumain, R., 1970, Doubtful value of bicuculline as a specific antagonist of GABA, Nature 228:675–676.PubMedGoogle Scholar
  72. Gottesfeld, Z., Kelly, J. S., and Schon, F., 1973, Uptake of γ-aminobutyric acid (GABA) by sensory root ganglia, Brit. J. Pharmacol. 47:640P.Google Scholar
  73. Graham, L. T., Jr., Shank, R.P., Werman, R., and Aprison, M. H., 1967, Distribution of some synaptic transmitter suspects in cat spinal cord: Glutamic acid, aspartic acid, γ-aminobutyric acid, glycine and glutamine, J. Neurochem. 14:464–472.Google Scholar
  74. Haas, H. L., and Hösli, L., 1973, The depression of brain stem neurones by taurine and its interaction with strychnine and bicuculline, Brain Res. 52:399–402.PubMedGoogle Scholar
  75. Hill, R. G., Simmonds, M. A., and Straughan, D. W., 1973, A comparative study of some convulsant substances as γ-aminobutyric acid antagonists in the feline cerebral cortex, Brit. J. Pharmacol. 49:37–51.Google Scholar
  76. Hongo, T., and Ryall, R. W., 1966, Electrophysiological and microelectrophoretic studies on sympathetic preganglionic neurones in the spinal cord, Acta Physiol. Scand. 68:96–104.Google Scholar
  77. Honour, A. J., and McLennan, H., 1960, The effects of γ-aminobutyric acid and other compounds on structures of the mammalian central nervous system which are inhibited by factor I, J. Physiol. 150:306–318.PubMedGoogle Scholar
  78. Hopkin, J. M., and Neal, M. J., 1970, The release of [14C]glycine from electrically stimulated rat spinal cord slices, Brit. J. Pharmacol. 40:136–138P.Google Scholar
  79. Hösli, L., and Tebecis, A. K., 1970, Actions of amino acids and convulsants on bulbar reticular neurones, Exp. Brain Res. 11:111–127.PubMedGoogle Scholar
  80. Hösli, L., Andres, P. F., and Hösli, E., 1971, Effects of glycine on spinal neurones grown in tissue culture, Brain Res. 34:399–402.PubMedGoogle Scholar
  81. Hösli, E., Ljungdahl, A., Hokefelt, T., and Hösli, L., 1972, Spinal cord tissue cultures—A model for autoradiographic studies on uptake of putative neurotransmitters such as glycine and GABA, Experientia 28:1342–1344.PubMedGoogle Scholar
  82. Hösli, L., Hösli, E., and Andres, P. F., 1973, Nervous tissue culture—a model to study action and uptake of putative neurotransmitters such as amino acids, Brain Res. 62:597–602.PubMedGoogle Scholar
  83. Huffman, R. D., and McFadin, L. S., 1972, Suppression of presynaptic inhibition and cerebellar disfacilitation by bicuculline, Life Sci. 11:113–121.Google Scholar
  84. Iversen, L. L., and Bloom, F. E., 1972, Studies of the uptake of 3H-GABA and [3H]-glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography, Brain Res. 41:131–143.PubMedGoogle Scholar
  85. Johnston, G. A. R., 1968, The intraspinal distribution of some depressant amino acids, J. Neurochem. 15:1013–1018.PubMedGoogle Scholar
  86. Johnston, G. A. R., de Groat, W. C., and Curtis, D. R., 1969, Tetanus toxin and amino acid levels in cat spinal cord, J. Neurochem. 16:797–800.PubMedGoogle Scholar
  87. Kehoe, J., 1972, Ionic mechanisms of a two component cholinergic inhibition in Aplysia neurones, J. Physiol. 225:85–114.PubMedGoogle Scholar
  88. Kellerth, J. O., 1968, Aspects of the relative significance of pre- and postsynaptic inhibition in the spinal cord, in: Structure and Function of Inhibitory Neuronal Mechanisms (C. Von Euler, S. Skoglund, and U. Soderberg, eds.), pp. 197–212, Pergamon Press, Oxford.Google Scholar
  89. Kellerth, J. O., and Szumski, A. J., 1966, Two types of stretch-activated postsynaptic inhibitions in motoneurones as differentiated by strychnine, Acta Physiol. Scand. 66:133–145.PubMedGoogle Scholar
  90. Kelly, J. S., and Renaud, L. P., 1973, On the pharmacology of the γ-aminobutyric acid receptors on the cuneo-thalamic relay cells of the cat, Brit. J. Pharmacol. 48:369–386.Google Scholar
  91. Krnjević, K., and Morris, M. E., 1972, Extracellular K+ activity and slow potential changes in spinal cord and medulla, Canad. J. Physiol. Pharmacol. 50:1214–1217.Google Scholar
  92. Kuno, M., 1961, Site of action of systemic gamma-aminobutyric acid in the spinal cord, Jap. J. Physiol. 11:304–318.Google Scholar
  93. Kuno, M., and Muneoka, A., 1962, Further studies on site of action of systemic omega amino acids in the spinal cord, Jap. J. Physiol. 12:397–410.Google Scholar
  94. Larson, M. D., 1969, An analysis of the action of strychnine on the recurrent IPSP and amino acid induced inhibitions in the cat spinal cord, Brain Res. 15:185–200.PubMedGoogle Scholar
  95. Levy, R. A., 1973, The independence of tonic afferent terminal depolarization from GABA-mediated transmission, Fed. Proc. 32:495.Google Scholar
  96. Levy, R. A., Repkin, A. H., and Anderson, E. G., 1971, The effects of bicuculline on primary afferent terminal excitability, Brain Res. 32:261–265.PubMedGoogle Scholar
  97. Lieble, L., Lux, H. D., and ten Bruggencate, G., 1973, Potassium concentration changes during DRP, Deutsch. Physiol. Gesell 27:R72.Google Scholar
  98. Logan, W. J., and Snyder, S. H., 1971, Unique high affinity uptake systems for glycine, glutamic and aspartic acids in central nervous tissue of the rat, Nature 234:297–299.PubMedGoogle Scholar
  99. Mangan, J. L., and Whittaker, V. P., 1966, The distributions of free amino acids in subcellular fractions of guinea-pig brain, Biochem. J. 98:128–137.PubMedGoogle Scholar
  100. McLennan, H., 1957, A comparison of some physiological properties of an inhibitory factor from brain (factor I) and of γ-aminobutyric acid and related compounds, J. Physiol. 139:79–86.PubMedGoogle Scholar
  101. McLennan, H., 1958, Absence of γ-aminobutyric acid from brain extracts containing factor I, Nature 181:1807.PubMedGoogle Scholar
  102. McLennan, H., 1959, The identification of one active component from brain extracts containing factor I, J. Physiol. 146:358–368.PubMedGoogle Scholar
  103. McLennan, H., 1961, The effect of some catecholamines upon a monosynaptic reflex pathway in the spinal cord, J. Physiol. 158:411–425.PubMedGoogle Scholar
  104. Morris, M. E., and Krnjević, K., 1973, Effect of excess K+ on synaptic transmission through the cuneate nucleus, in: Soc. Neurosci. 3rd Ann. Meeting, Program and Abstracts, 260.Google Scholar
  105. Muneoka, A., 1961, Depression and facilitation of spinal reflexes by systemic omega amino acids, Jap. J. Physiol. 11:555–563.Google Scholar
  106. Nastuk, W. L., 1953, Membrane potential changes at a single muscle endplate produced by transitory application of acetylcholine with an electrically controlled microjet, Fed. Proc. 12:102.Google Scholar
  107. Neal, M. J., 1969, Uptake of [14C]glycine by rat spinal cord, Brit. J. Pharmacol. 36:205–206P.Google Scholar
  108. Neal, M. J., 1971, The uptake of [14C]glycine by slices of mammalian spinal cord, J. Physiol. 215:103–117.PubMedGoogle Scholar
  109. Neal, M. J., and Iversen, L. L., 1969, Subcellular distribution of endogenous and [3H]-γ-aminobutyric acid in rat cerebral cortex, J. Neurochem. 16:1245–1252.PubMedGoogle Scholar
  110. Nicoll, R. A., and Barker, J. L., 1973, Effect of strychnine on dorsal root potentials and amino acid responses in frog spinal cord, Nature New Biol. 246:224–225.PubMedGoogle Scholar
  111. Obata, K., 1972, Acetylcholine and gamma-aminobutyric acid action on tissue-cultured cells from sympathetic ganglion, dorsal root ganglion and diaphragm muscle, Fed. Proc. 31:231.Google Scholar
  112. Phillis, J. W., 1970, The Pharmacology of Synapses, Pergamon Press, Oxford.Google Scholar
  113. Piepho, R. W., and Friedman, A. H., 1971, Twenty-four hour rhythms in the glycine content of rat hindbrain and spinal cord, Life Sci. 10:1355–1362.Google Scholar
  114. Pierau, K. K., and Zimmerman, P., 1973, Actions of a GABA derivative on postsynaptic potentials and membrane properties of cat’s spinal motoneurones, Brain Res. 54:376–380.PubMedGoogle Scholar
  115. Piercey, M. F., Goldfarb, J., and Ryall, R. W., 1973, Effects of picrotoxin and bicuculline on the excitation and inhibition of Renshaw cells, Neuropharmacology 12:975–982.PubMedGoogle Scholar
  116. Pixner, D. B., 1973, Bicuculline and frog spinal neurones, Brit. J. Pharmacol. 47:637–638P.Google Scholar
  117. Pollen, D. A., and Lux, H. D., 1966, Conductance changes during inhibitory postsynaptic potentials in normal and strychninized cortical neurons, J. Neurophysiol. 29:369–381.PubMedGoogle Scholar
  118. Repkin, A. H., and Anderson, E. G., 1973, Bicuculline-sensitive and bicuculline-resistant primary afferent depolarization (PAD), Pharmacologist 15:162.Google Scholar
  119. Roberts, P. J., and Mitchell, J. F., 1972, The release of amino acids from the hemisected spinal cord during stimulation, J. Neurochem. 19:2473–2481.PubMedGoogle Scholar
  120. Roper, S., and Diamond, J., 1970, Strychnine antagonism and glycine: A reply, Nature 225:1259.PubMedGoogle Scholar
  121. Roper, S., Diamond, J., and Yasargil, G. M., 1969, Does strychnine block inhibition post-synaptically? Nature 223:1168–1169.PubMedGoogle Scholar
  122. Ryall, R. W., 1964, The subcellular distributions of acetylcholine, substance P, 5-hydroxytryptamine, γ-aminobutyric acid and glutamic acid in brain homogenates, J. Neurochem. 11:131–145.PubMedGoogle Scholar
  123. Ryall, R. W., 1967, Effect of monoamines upon sympathetic preganglionic neurones, Circ. Res. Suppl. 20/21:83–87.Google Scholar
  124. Ryall, R. W., and de Groat, W. C., 1972, The microelectrophoretic administration of noradrenaline, 5-hydroxytryptamine, acetylcholine and glycine to sacral parasympathetic preganglionic neurones, Brain Res. 37:345–347.PubMedGoogle Scholar
  125. Ryall, R. W., Piercey, M. F., and Polosa, C., 1972, Strychnine-resistant mutual inhibition of Renshaw cells, Brain Res. 41:119–129.PubMedGoogle Scholar
  126. Schlosser, W., Zavatsky, E., Kappel, B., and Sigg, E. B., 1973, Antagonism of bicuculline and Ro-5–3663 by diazepam, Pharmacologist 15:162.Google Scholar
  127. Schmidt, R. F., 1963, Pharmacological studies on the primary afferent depolarization of the toad spinal cord, Pflügeis Arch. 277:325–346.Google Scholar
  128. Schmidt, R. F., 1971, Presynaptic inhibition in the vertebrate central nervous system, Ergebn. Physiol. 63:20–101.PubMedGoogle Scholar
  129. Sherrington, C. S., 1905, On reciprocal innervation of antagonistic muscles, Proc. Roy. Soc. Lond. Ser. B 76:269–297.Google Scholar
  130. Singer, W., and Lux, H. D., 1973, Presynaptic depolarization and extracellular potassium in the cat lateral geniculate nucleus, Brain Res. 64:17–33.PubMedGoogle Scholar
  131. Steward, E. G., Player, R., Quilliam, J. P., Brown, D. A., and Pringle, M.J., 1971, Molecular conformation of GABA, Nature New Biol. 233:87–88.PubMedGoogle Scholar
  132. Straughan, D. W., Neal, M. J., Simmonds, M. A., Collins, G. G. S., and Hill, R. G., 1971, Evaluation of bicuculline as a GABA antagonist, Nature 233:352–354.PubMedGoogle Scholar
  133. Takahashi, H., Yamazaki, T., Matsuzaki, H., and Murai, T., 1959, Pharmacological action of GABA on the brain stem activities, Jap. J. Physiol. 9:468–472.Google Scholar
  134. Tebēcis, A. K., and di Maria, A., 1972, Strychnine-sensitive inhibition in the medullary reticular formation: Evidence for glycine as an inhibitory transmitter, Brain Res. 40:373–383.PubMedGoogle Scholar
  135. Tebēcis, A. K., and Phillis, J. W., 1969, The use of convulsants in studying possible functions of amino acids in the toad spinal cord, Comp. Biochem. Physiol. 28:1303–1315.PubMedGoogle Scholar
  136. Tebēcis, A. K., Hösli, L., and Haas, H. L., 1971, Bicuculline and the depression of medullary reticular neurones by GABA and glycine, Experientia 27:248.Google Scholar
  137. ten Bruggencate, G., and Engberg, I., 1968, Analysis of glycine actions on spinal inter-neurones by intracellular recording, Brain Res. 11:446–450.PubMedGoogle Scholar
  138. Wall, P. D., 1958, Excitability changes in afferent fibre terminations and their relation to slow potentials, J. Physiol. 142:1–21.PubMedGoogle Scholar
  139. Warner, D., Player, R. B., and Steward, E. G., 1973, Molecular flexibility and drug action, in: International Union of Crystallography, First European Meeting, B4.Google Scholar
  140. Weinstein, H., Roberts, E., and Kakefuda, T., 1963, Studies of sub-cellular distribution of γ-aminobutyric acid and glutamic decarboxylase in mouse brain, Biochem. Pharmacol. 12:503–509.PubMedGoogle Scholar
  141. Werman, R., and Aprison, M. H., 1968, Glycine: The search for a spinal cord inhibitory transmitter, in: Structure and Function of Inhibitory Neuronal Mechanisms (C. Von Euler, S. Skoglund, and U. Soderberg, eds.), pp. 473–486, Pergamon Press, Oxford.Google Scholar
  142. Werman, R., Davidoff, R. A., and Aprison, M. H., 1968, Inhibitory actions of glycine on spinal neurons in the cat, J. Neurophysiol. 31:81–95.PubMedGoogle Scholar
  143. Vyklicky, L., Syková, E., Kříž, N., and Ujec, E., 1972, Post-stimulation changes in extracellular potassium concentration in the spinal cord of the rat, Brain Res. 45:608–611.PubMedGoogle Scholar
  144. Young, J. A. C., Brown, D. A., Kelly, J. S., and Schon, F., 1973, Autoradiographic localization of [3H]γ-aminobutyric acid accumulation in peripheral autonomic ganglia, Brain Res. 63:479–486.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Ronald W. Ryall
    • 1
  1. 1.Department of PharmacologyUniversity of CambridgeCambridgeEngland

Personalised recommendations