Biochemical Pharmacology of GABA in CNS

  • Ricardo Tapia
Part of the Handbook of Psychopharmacology book series (HBKPS, volume 4)


The numerous pharmacological studies of GABA in brain described in the literature have been carried out mainly with the purpose of investigating the possible role of this amino acid as an inhibitory synaptic transmitter in the CNS. The experimental approaches used have been essentially the following: (1) modifying the metabolism of GABA in the living animal by systemic, intracranial, or topical application of compounds and attempting to correlate the biochemical effects with a behavioral or electroencephalographic parameter, (2) applying substances to individual neurons by means of microiontophoresis and studying their effect on the inhibitory action of GABA also applied iontophoretically on the same neuron, (3) adding drugs to media containing slices, homogenates, or subcellular particles of nervous tissue and measuring their effect on the uptake and the release of GABA by these preparations, or (4) combinations of the former three approaches.


Free Amino Acid Aminobutyric Acid Gaba Level Presynaptic Inhibition Audiogenic Seizure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberici, M., Rodriguez de Lores Arnaiz, G., and de Robertis, E., 1969, Glutamic acid decarboxylase inhibition and ultrastructural changes by the convulsant drug allylglycine, Biochem. Pharmacol. 18:137–143.PubMedGoogle Scholar
  2. Alexander, G. J., Kopeloff, L. M., and Alexander, R. B., 1971, Anticonvulsive effect of p-chlorophenylalanine in audiosensitive mice, Life Sci. 10(I):877–882.Google Scholar
  3. Andén, N.-E., and Stock, G., 1973, Inhibitory effect of gammahydroxybutyric acid and gammaaminobutyric acid on the dopamine cells in the substantia nigra, Naunyn-Schmiedebergs Arch. Pharmakol. 279:89–92.Google Scholar
  4. Bak, I. J., Hassler, R., Kim, S. J., and Kataoba, K., 1972, Amantadine actions on acetylcholine and GABA in striatum and substantia nigra of rat in relation to behavioral changes, J. Neural Transmission 33:45–61.Google Scholar
  5. Balázs, R., Dahl, D., and Harwood, J. R., 1966, Subcellular distribution of enzvmes of glutamate metabolism in rat brain, J. Neurochem. 13:897–905.PubMedGoogle Scholar
  6. Balázs, R., Machiyama, Y., Hammond, B. J., Julian, T., and Richter, D., 1970, The operation of the γ-aminobutyrate bypath of the tricarboxylic acid cycle in brain tissue in vitro, Biochem. J. 116:445–460.PubMedGoogle Scholar
  7. Balcar, V. J., and Johnston, G. A. R., 1973, High affinity uptake of transmitters: Studies on the uptake of L-aspartate, GABA, L-glutamate and glycine in cat spinal cord, J. Neurochem. 20:529–539.PubMedGoogle Scholar
  8. Balzer, H., Holtz, P., and Palm, D., 1960, Untersuchungen über die biochemischen Grundlagen der konvulsiven Wirkung von Hydraziden, Arch. Exp. Pathol. Pharmakol. 239:520–552.Google Scholar
  9. Banna, N. R., and Jabbur, S. J., 1971, The effects of depleting GABA on cuneate presynaptic inhibition, Brain Res. 33:530–532.PubMedGoogle Scholar
  10. Barker, J. L., and Nicoll, R. A., 1972, Gamma-aminobutyric acid: Role in primary afferent depolarization, Science 176:1043–1045.PubMedGoogle Scholar
  11. Baxter, C. F., 1969, Changes in gamma-aminobutyric acid-shunt enzymes and substrates after administration of carbonyl reagents and vitamin B6 in vivo: An apparent discrepancy in assay techniques, Ann. N.Y. Acad. Sci. 166:267–280.PubMedGoogle Scholar
  12. Baxter, C. F., 1970, The nature of γ-aminobutyric acid, in: Handbook of Neurochemistry, Vol. 3 (A. Lajtha, ed.), pp. 289–353, Plenum Press, New York.Google Scholar
  13. Baxter, C. F., and Roberts, E., 1960a, Gamma-aminobutyric acid and cerebral metabolism, in: The Neurochemistry of Nucleotides and Amino Acids (R. O. Brady and D. B. Tower, eds.), pp. 127–145, Wiley, New York.Google Scholar
  14. Baxter, C. F., and Roberts, E., 1960b, Demonstration of thiosemicarbazide-induced convulsions in rats with elevated brain levels of γ-aminobutyric acid, Proc. Soc. Exp. Biol. Med. 104:426–427.PubMedGoogle Scholar
  15. Baxter, C. F., and Roberts, E., 1961, Elevation of γ-aminobutyric acid in brain: Selective inhibition of γ-aminobutyric-α-ketoglutaric acid transaminase, J. Biol. Chem. 236:3287–3294.PubMedGoogle Scholar
  16. Baxter, C. F., and Roberts, E., 1962, Effect of 4-methoxymethylpyridoxine and carbonyl-trapping agents on amino acid content of mammalian brain and other tissues, in: Amino Acid Pools (J. T. Holden, ed.), pp. 499–508, Elsevier, Amsterdam.Google Scholar
  17. Baxter, C. F., and Tewari, S., 1970, Regulation by amino acids of protein synthesis in a cell-free system from immature rat brain: Stimulatory effect of γ-aminobutyric acid and glycine, in: Protein Metabolism of the Nervous System (A. Lajtha, ed.), PP- 439–457, Plenum Press, New York.Google Scholar
  18. Baxter, C. F., Tewari, S., and Raeburn, S., 1972, The possible role of gamma-aminobutyric acid in the synthesis of protein, Advan. Biochem. Psychopharmacol. 4:195–216.Google Scholar
  19. Bayoumi, R. A., and Smith, W. R. D., 1972, Some effects of dietary vitamin B6 deficiency on γ-aminobutyric acid metabolism in developing rat brain, J. Neurochem. 19:1883–1897.PubMedGoogle Scholar
  20. Bayoumi, R. A., Kirwan, J. R., and Smith, W. R. D., 1972, Some effects of dietary vitamin B6 deficiency and 4-deoxypyridoxine on γ-aminobutyric acid metabolism in rat brain, J. Neurochem. 19:569–576.PubMedGoogle Scholar
  21. Beart, P. M., and Johnston, G. A. R., 1973, GABA uptake in rat brain slices: Inhibition by GABA analogues and by various drugs, J. Neurochem. 20:319–324.PubMedGoogle Scholar
  22. Beart, P. M., Curtis, D. R., and Johnston, G. A. R., 1971, 4-Aminotetrolic acid: A new conformationally-restricted analogue of γ-aminobutyric acid, Nature New Biol. 234:80–81.PubMedGoogle Scholar
  23. Beart, P. M., Uhr, M. L., and Johnston, G. A. R., 1972a, Inhibition of GABA transaminase activity by 4-aminotetrolic acid, J. Neurochem. 19:1849–1854.PubMedGoogle Scholar
  24. Beart, P. M., Johnston, G. A. R., and Uhr, M. L., 1972b, Competitive inhibition of GABA uptake in rat brain slices by some GABA analogues of restricted conformation, J. Neurochem. 19:1855–1861.PubMedGoogle Scholar
  25. Bell, J. A., and Anderson, E. G., 1972, The influence of semicarbazide-induced depletion of γ-aminobutyric acid on presynaptic inhibition, Brain Res. 43:161–169.PubMedGoogle Scholar
  26. Benoist, J. M., Besson, J. M., Conseiller, C., and Le Bars, D., 1972, Action of bicuculline on presynaptic inhibition of various origins in the cat’s spinal cord, Brain Res. 43:672–676.PubMedGoogle Scholar
  27. Berl, S., and Clarke, D. D., 1969, Compartmentation of amino acid metabolism, in: Handbook of Neurochemistry, Vol. 2 (A. Lajtha, ed.), pp. 447–472, Plenum Press, New York.Google Scholar
  28. Bhagarva, K. P., and Shivastava, R. K., 1964, Non specific depressant action of γ-aminobutyric acid on somatic reflexes, Brit. J. Pharmacol. 23:391–398.Google Scholar
  29. Bhagarva, K. P., Bhattacharya, S. S., and Srimal, R. C., 1964, Central cardiovascular actions of gamma-aminobutyric acid, Brit. J. Pharmacol. 23:383–390.Google Scholar
  30. Bird, E. D., Mackay, A. V. P., Rayner, C. N., and Iversen, L. L., 1973, Reduced glutamic acid decarboxylase activity of post-mortem brain in Huntington’s chorea, Lancet 1:1090–1092.PubMedGoogle Scholar
  31. Bisti, S., Iosif, G., Marchesi, G. F., and Strata, P., 1971, Pharmacological properties of inhibition in the cerebellar cortex, Exp. Brain Res. 14:24–37.PubMedGoogle Scholar
  32. Bloom, F. E., and Iversen, L. L., 1971, Localizing 3H-GABA in nerve terminals of rat cerebral cortex by electron microscopic autoradiography, Nature 229:628–630.PubMedGoogle Scholar
  33. Bonavita, V., Guarnieri, R., and Monaco, P., 1964, Neurophysiological and neurochemical studies with the isonicotinylhydrazone of pyridoxal 5-phosphate, J. Neurochem. 11:787–792.Google Scholar
  34. Bond, P. A., 1973, The uptake of γ-[3H]aminobutyric acid by slices from various regions of rat brain and the effect of lithium, J. Neurochem. 20:511–517.PubMedGoogle Scholar
  35. Brenells, A. B., 1973, An in vivo method for studying release of putative neurotransmitters from the rabbit olfactory bulbs, Brit. J. Pharmacol. 47:667–668P.Google Scholar
  36. Brown, R. W., and Watkins, J. C., 1973, Effect of GABA and 3-aminopropane sulphonic acid on the labelling of brain amino acids, from [U-14C]glucose in the conscious mice, Biochem. Pharmacol. 22:1682–1684.PubMedGoogle Scholar
  37. Buniatian, H. C., and Yessaian, N. H., 1968, The effect of amino-oxyacetic acid on brain catecholamines, J. Neurochem. 15:1007–1011.PubMedGoogle Scholar
  38. Campbell, M. K., Mahler, H.R., Moore, W. J., and Tewari, S., 1966, Proteinsynthesis systems from rat brain, Biochemistry 5:1174–1184.PubMedGoogle Scholar
  39. Carvajal, G., Russek, M., Tapia, R., and Massieu, G., 1964, Anticonvulsive action of substances designed as inhibitors of γ-aminobutyric-α-ketoglutaric transaminase, Biochem. Pharmacol. 13:1059–1069.PubMedGoogle Scholar
  40. Casey, R. E., and Wood, J. D., 1973, Isonicotinic acid hydrazide-induced changes in the metabolism of γ-aminobutyric acid in the brain of four species, Comp. Biochem. Physiol. 45B.741–748.Google Scholar
  41. Cheema, P. S., Padmanaban, G., and Sarma, P. S., 1970, Biochemical characterization of β-N-oxalyl-L-α,β-diaminopropionic acid, the Lathyrus sativus neurotoxin as an excitant amino acid, J. Neurochem 17:1295–1298.PubMedGoogle Scholar
  42. Chen, C. -H., Flory, W., and Koeppe, R. E., 1972, Variation of neurotoxicity of l- and D-2,4-diaminobutyric acid with route of administration, Toxicol. Appl. Pharmacol. 23:334–338.PubMedGoogle Scholar
  43. Clarke, G., and Hill, R. G., 1972, Effects of a focal penicillin lesion on responses of rabbit cortical neurones to putative neurotransmitters, Brit. J. Pharmacol. 44:435–441.Google Scholar
  44. Clifford, J. M., Taberner, P. V., Tunnicliff, G., Rick, J. T., and Kerkut, G. A., 1973, Biochemical and pharmacological actions of imidazoleacetic acid, Biochem. Pharmacol. 22:535–542.PubMedGoogle Scholar
  45. Cohen, H. P., Vasconetto, C., and Ayala, G.-F., 1972, The effect of topical application of diethyl-α-fluoroglutarate on the metabolism and electrical activity in vivo of cat cerebral cortex, J. Neurochem. 19:525–534.PubMedGoogle Scholar
  46. Collins, G. G. S., 1973a, Effect of aminooxyacetic acid, thiosemicarbazide and haloperidol on the metabolism and half-lives of glutamate and GABA in rat brain, Biochem. Pharmacol. 22:101–111.PubMedGoogle Scholar
  47. Collins, G. G. S., 1973b, Drug-induced changes in the electrically evoked release of 3H-γ-aminobutyric acid (3H-GABA) from spinal cord, Brit. J. Pharmacol. 47:641P.Google Scholar
  48. Coursin, D. B., 1969, Vitamin B6 and brain function in animals and man, Ann. N. Y. Acad. Sci. 166:7–15.PubMedGoogle Scholar
  49. Cravioto, R. O., Massieu, G., and Izquierdo, J. J., 1951, Free amino-acids in rat brain during insulin shock, Proc. Soc. Exp. Biol. Med. 78:856–858.PubMedGoogle Scholar
  50. Crawford, J. M., 1963, The effect upon mice of intraventricular injection of excitant and depressant amino acids, Biochem. Pharmacol. 12:1443–1444.PubMedGoogle Scholar
  51. Crnic, D. M., Hammerstad, J. P., and Cutler, R. W. P., 1973, Accelerated efflux of [14C] and [3H] amino acids from superfused slices of rat brain, J. Neurochem. 20:203–209.PubMedGoogle Scholar
  52. Curtis, D. R., and Felix, D., 1971a, GABA and prolonged spinal inhibition, Nature 231:187–188.Google Scholar
  53. Curtis, D. R., and Felix, D., 1971b, The effect of bicuculline upon synaptic inhibition in the cerebral and cerebellar cortices of the rat, Brain Res. 34:301–321.PubMedGoogle Scholar
  54. Curtis, D. R., and Johnston, G. A. R., 1970, Amino acid transmitters, in: Handbook of Neurochemistry, Vol. 4 (A. Lajtha, ed.), pp. 115–134, Plenum Press, New York.Google Scholar
  55. Curtis, D. R., and Watkins, J. C., 1965, The pharmacology of amino acids related to gamma-aminobutyric acid, Pharmacol. Rev. 17:347–391.PubMedGoogle Scholar
  56. Curtis, D. R., Hösli, L., and Johnston, G. A. R., 1968, A pharmacological study of the depression of spinal neurones by glycine and related amino acids, Exp. Brain Res, 6:1–18.PubMedGoogle Scholar
  57. Curtis, D. R., Duggan, A. W., and Johnston, G. A. R., 1969, Glycine, strychine, picrotoxin and spinal inhibition, Brain Res. 14:759–762.PubMedGoogle Scholar
  58. Curtis, D. R., Duggan, A. W., Felix, D., and Johnston, G. A. R., 1970a, GABA, bicuculline and central inhibition, Nature 226:1222–1224.PubMedGoogle Scholar
  59. Curtis, D. R., Duggan, A. W., Felix, D., and Johnston, G. A. R., 1970b, Bicuculline and central GABA receptors, Nature 228:676–677.PubMedGoogle Scholar
  60. Curtis, D. R., Duggan, A. W., and Johnston, G. A. R., 1970c, The inactivation of extracellu-larly administered amino acids in the feline spinal cord, Exp. Brain Res. 10:447–462.PubMedGoogle Scholar
  61. Curtis, D. R., Duggan, A. W., and Felix, D., 1970d, GABA and inhibition of Deiters’ neurones, Brain Res. 23:117–120.PubMedGoogle Scholar
  62. Curtis, D. R., Duggan, A. W., Felix, D., and Johnston, G. A. R., 1971a, Bicuculline, an antagonist of GABA and synaptic inhibition of the spinal cord of the cat, Brain Res. 32:69–96.PubMedGoogle Scholar
  63. Curtis, D. R., Duggan, A. W., Felix, D., Johnston, G. A. R., and McLennan, H., 1971b, Antagonism between bicuculline and GABA in the cat brain, Brain Res. 33:57–73.PubMedGoogle Scholar
  64. Curtis, D. R., Game, C. J. A., Johnston, G. A. R., McCulloch, R. M., and Maclachlan, R. M., 1972, Convulsive action of penicillin, Brain Res. 43:242–245.PubMedGoogle Scholar
  65. Cutler, R. W. P., Hammerstad, J. P., Cornick, L. R., and Murray, J. E., 1971, Efflux of amino acid neurotransmitters from rat spinal cord slices. I. Factors influencing the spontaneous efflux of [I4C] glycine and 3H-GABA, Brain Res. 35:337–355.PubMedGoogle Scholar
  66. Dann, O. T., and Carter, C. E., 1964, Cycloserine inhibition of gamma-aminobutyric-alpha-ketoglutaric transaminase, Biochem. Pharmacol. 13:677–684.PubMedGoogle Scholar
  67. Davidoff, R. A., 1972a, Gamma-aminobutyric acid antagonism and presynaptic inhibition in the frog spinal cord, Science 175:331–333.PubMedGoogle Scholar
  68. Davidoff, R. A., 1972b, The effects of bicuculline on the isolated spinal cord of the frog, Exp. Neurol. 35:179–193.PubMedGoogle Scholar
  69. Davidoff, R. A., 1972c, Penicillin and presynaptic inhibition in the amphibian spinal cord, Brain Res. 36:218–222. PubMedGoogle Scholar
  70. Davidoff, R. A., 1972d, Penicillin and synaptic inhibition in the cat spinal cord, Brain Res. 45:638–642.PubMedGoogle Scholar
  71. Davidoff, R. A., 1973, Alcohol and presynaptic inhibition in an isolated spinal cord preparation, Arch. Neurol. 28:60–63.PubMedGoogle Scholar
  72. Davidoff, R. A., Grayson, V., and Adair, R., 1973a, GABA-transaminase inhibitors and presynaptic inhibition in the amphibian spinal cord, Am. J. Physiol. 224:1230–1234.PubMedGoogle Scholar
  73. Davidoff, R. A., Silvey, G. E., Kobetz, S. A., and Spira, H. M., 1973b, N-Methyl bicuculline and primary afferent depolarization, Exp. Neurol. 38:525–528.PubMedGoogle Scholar
  74. de Belleroche, J. S., and Bradford, H. F., 1972, Metabolism of beds of mammalian cortical synaptosomes: Responses to depolarizing influences, J. Neurochem. 19:585–602.PubMedGoogle Scholar
  75. de Feudis, F. V., and Delgado, J. M. R., 1970, Effects of lithium on amino-acids in mouse brain in vivo, Nature 225:749–750.Google Scholar
  76. de Feudis, F. V., and Elliott, K. A. C., 1967, Delay or inhibition of convulsions by intraperitoneal injections of diverse substances, Canad. J. Physiol. Pharmacol. 45:857–865.Google Scholar
  77. de Groat, W. C., 1970, The effects of glycine, GABA and strychnine on sacral parasympathetic preganglionic neurones, Brain Res. 18:542–544.Google Scholar
  78. de Groat, W. C., 1972, GABA-depolarization of a sensory ganglion: Antagonism by picrotoxin and bicuculline, Brain Res. 38:429–432.PubMedGoogle Scholar
  79. de Groat, W. C., Lalley, P. M., and Saum, W. R., 1972, Depolarization of dorsal root ganglia in the cat by GABA and related amino acids: Antagonism by picrotoxin and bicuculline, Brain Res. 44:273–277.PubMedGoogle Scholar
  80. de Robertis, E., Sellinger, O. Z., Rodriguez de Lores Arnaiz, G., Alberici, M., and Zieher, L. M., 1967, Nerve endings in methionine sulphoximine convulsant rats, a neurochemical and ultrastructural study, J. Neurochem. 14:81–89.PubMedGoogle Scholar
  81. de Ropp, R. S., and Snedeker, E. H., 1961, Effect of drugs on amino acid levels in the rat brain: Hypoglycemic agents, J. Neurochem. 7:128–134.Google Scholar
  82. Dost, F. N., Reed, D. J., and Wang, C. H., 1971, Effects of various hydrazines upon the metabolism of gamma aminobutyric acid (GABA)-1–14C by rats, Biochem. Pharmacol. 20:1702–1707.Google Scholar
  83. Dravid, A. R., and Jílek, L., 1965, Influence of stagnant hypoxia (oligaemia) on some free amino acids in rat brain during ontogeny, J. Neurochem. 12:837–843.PubMedGoogle Scholar
  84. Dreifuss, J. J., and Matthews, E. K., 1972, Antagonism between strychnine and glycine, and bicuculline and GABA, in the ventromedial hypothalamus, Brain Res. 45:599–603.PubMedGoogle Scholar
  85. Dubnick, B., Leeson, G. A., and Scott, C. C., 1960, Effect of forms of vitamin B6 on acute toxicity of hydrazines, Toxicol. Appl. Pharmacol. 2:403–409.PubMedGoogle Scholar
  86. Duffy, T. E., Nelson, S. R., and Lowry, O. H., 1972, Cerebral carbohydrate metabolism during acute hypoxia and recovery, J. Neurochem. 19:959–977.PubMedGoogle Scholar
  87. du Ruisseau, J. P., Greenstein, J. P., Winitz, M., and Birnbaum, S. M., 1957, Studies on the metabolism of amino acids and related compounds in vivo. VI. Free amino acid levels in the tissues of rats protected against ammonia toxicity, Arch. Biochem. Biophys. 68:161–171.Google Scholar
  88. Ehinger, B., 1972, Cellular location of the uptake of some amino acids into the rabbit retina, Brain Res. 46:297–311.PubMedGoogle Scholar
  89. Eidelberg, E., Baxter, C. F., Roberts, E., and Saldias, C. A., 1960, Anticonvulsant properties of hydroxylamine and elevation of cerebral γ-aminobutyric acid, in: Inhibition in the Nervous System and Gamma-Aminobutyric Acid (E. Roberts, C. F. Baxter, A. van Harreveld, C. A. G. Wiersma, W. R. Adey, and K. F. Killam, eds.), pp. 365–370, Pergamon Press, Oxford.Google Scholar
  90. Eiseman, B., Osofsky, H., Roberts, E., and Jelinek, B., 1959, Cerebral free amino acids in dogs following infusion of ammonia, J. Appl. Physiol. 14:251–254.PubMedGoogle Scholar
  91. Elliott, K. A. C., and Hobbiger, F., 1959, Gamma-aminobutyric acid: Circulatory and respiratory effects in different species; re-investigation of the anti-strychnine action in mice, J. Physiol. 146:70–84.PubMedGoogle Scholar
  92. Engberg, I., and Thaller, A., 1970, On the interaction of picrotoxin with GABA and glycine in the spinal cord, Brain Res. 19:151–154.PubMedGoogle Scholar
  93. Fedinec, A. A., and Shank, R. P., 1971, Effect of tetanus toxin on the content of glycine, gamma-aminobutyric acid, glutamate, glutamine and aspartate in the rat spinal cord, J. Neurochem. 18:2229–2234.PubMedGoogle Scholar
  94. Ferrari, R. A., and Arnold, A., 1961, The effect of central nervous system agents on rat-brain γ-aminobutyric acid level, Biochim. Biophys. Acta 52:361–367.PubMedGoogle Scholar
  95. Fieschi, C., Nardini, M., Casacchia, M., Tedone, M. E., Reitano, M., and Robotti, E., 1970, Amantadine versus l-dopa and amantadine plus l-dopa, Lancet 2:154–155.PubMedGoogle Scholar
  96. Flock, E. V., Tyce, G. M., and Owen, C. A., Jr., 1969, Effect of ethanol on γ-aminobutyric acid (GABA) and other amino acids in rat brains, Proc. Soc. Exp. Biol. Med. 131:214–218.PubMedGoogle Scholar
  97. Fonnum, F., 1968, The distribution of glutamate decarboxylase and aspartate transaminase in subcellular fractions of rat and guinea pig brain, Biochem. J. 106:401–412.PubMedGoogle Scholar
  98. Fowler, L. J., 1973, Analysis of the major amino acids of rat brain after in vivo inhibition of GABA transaminase by ethanolamine O-sulphate, J. Neurochem. 21:437–440.PubMedGoogle Scholar
  99. Fowler, L. J., and John, R. A., 1972, Active-site-directed irreversible inhibition of rat brain 4-aminobutyrate aminotransferase by ethanolamine O-sulphate in vitro and in vivo, Biochem. J. 130:569–573.PubMedGoogle Scholar
  100. Galindo, A., 1969, GABA-picrotoxin interaction in the mammalian central nervous, system, Brain Res. 14:763–767.PubMedGoogle Scholar
  101. Gammon, G. D., Gumnit, R., Kamrin, R. P., and Kamrin, A., 1960, The effect of convulsant doses of analeptic agents upon the concentration of amino acids in brain tissue, in: Inhibition in the Nervous System and Gamma-Aminobutyric Acid (E. Roberts, C. F. Baxter, A. van Harreveld, C. A. G. Wiersma, W. R. Adey, and K. F. Killam, eds.), pp. 328–330, Pergamon Press, Oxford.Google Scholar
  102. Geake, C. L., Barth, M. L., and Cornish, H. H., 1966, Vitamin B6 and the toxicity of 1,1-dimethylhydrazine, Biochem. Pharmacol. 15:1614–1618.PubMedGoogle Scholar
  103. Gloor, P., 1969, Epileptogenic action of penicillin, Ann. N.Y. Acad. Sci. 166:350–360.PubMedGoogle Scholar
  104. Godfraind, J. M., Krnjevic, K., and Pumain, R., 1970, Doubtful value of bicuculline as a specific antagonist of GABA, Nature 228:675–676.PubMedGoogle Scholar
  105. Godin, Y., Heiner, L., Mark, J., and Mandel, P., 1969, Effects of di-n-propylacetate, an anticonvulsive compound, on GABA metabolism, J. Neurochem. 16:869–873.PubMedGoogle Scholar
  106. Godwin-Austen, R. B., Frears, C. C., Bergman, S., and Knill-Jones, R. P., 1970, Combined treatment of Parkinsonism with l-dopa and amantadine, Lancet 2:383–385.PubMedGoogle Scholar
  107. Goldberg, M. A., 1972, Inhibition of synaptosomal- protein synthesis by neurotransmitter substances, Brain Res. 39:171–179.PubMedGoogle Scholar
  108. Gordon, E. R., 1967, The effect of ethanol on the concentration of γ-aminobutyric acid in the rat brain, Canad. J. Physiol. Pharmacol. 45:915–918.Google Scholar
  109. Gottesfeld, Z., and Elliott, K. A. C., 1971, Factors that affect the binding and uptake of GABA by brain tissue, J. Neurochem. 18:683–690.PubMedGoogle Scholar
  110. Gottesfeld, Z., Ebstein, B. S., and Samuel, D., 1971, Effect of lithium on concentrations of glutamate and GABA levels in amygdala and hypothalamus of rat, Nature New Biol. 234:124–125.PubMedGoogle Scholar
  111. Gottesfeld, Z., Kelly, J. S., and Renaud, L. P., 1972, The in vivo neuropharmacology of amino-oxyacetic acid in the cerebral cortex of the cat, Brain Res. 43:319–335.Google Scholar
  112. Gründig, E., and Hanbauer, I., 1969, Veränderungen der Aminosäurekonzentrationen im Rattenhirn bei Verringerung der K+-Zufuhr in vivo, J. Neurochem. 16:1077–1089.PubMedGoogle Scholar
  113. Gründig, E., and Hanbauer, I., 1970, Gehirn-Aminosäuren beim Phenotiazin-Parkinsonoid: Das medikamentöse Parkinsonoid bei der Ratte als Modell für biochemische unter-suchungen des Parkinsonsyndroms, J. Neurochem. 17:215–220.PubMedGoogle Scholar
  114. Guerrero-Figueroa, R., de Balbain Verster, F., Barros, A., and Heath, R. G., 1964, Cholinergic mechanism in subcortical mirror focus and effects of topical application of γ-aminobutyric acid and acetylcholine, Epilepsia 5:140–155.PubMedGoogle Scholar
  115. Gulati, O. D., and Stanton, H. C., 1960, Some effects on the central nervous system of gamma-amino-n-butyric acid (GABA) and certain related amino acids administered systemically and intracerebrally to mice, J. Pharm. Pharmacol. 129:178–185.Google Scholar
  116. Haas, H. L., Anderson, E. G., and Hösli, L., 1973, Histamine and metabolites: Their effects and interactions with convulsants on brain stem neurones, Brain Res. 51:269–278.PubMedGoogle Scholar
  117. Haber, B., and Kuriyama, K., 1969, Effect of cations on the association of L-glutamic acid decarboxylase with some subcellular fractions of mouse brain, Brain Res. 14:767–771.PubMedGoogle Scholar
  118. Haber, B., Sze, P. Y., Kuriyama, K., and Roberts, E., 1970, GABA as a repressor of L-glutamic acid decarboxylase (GAD) in developing chick embryo optic lobes, Brain Res. 18:545–547.PubMedGoogle Scholar
  119. Häkkinen, H.-M., and Kulonen, E., 1961, The effect of ethanol on the amino acids of the rat brain with a reference to the administration of glutamine, Biochem. J. 78:588–593.PubMedGoogle Scholar
  120. Häkkinen, H.-M., and Kulonen, E., 1963, Comparison of various methods for the determination of γ-aminobutyric acid and other amino acids in rat brain with reference to ethanol intoxication, J. Neurochem. 10:489–494.Google Scholar
  121. Häkkinen, H.-M., and Kulonen, E., 1967, Amino acid metabolism in various fractions of rat-brain homogenates with special reference to the effect of ethanol, Biochem. J. 105:261–269.PubMedGoogle Scholar
  122. Häkkinen, H.-M., and Kulonen, E., 1968, On the interconversions of amino acids of brain in vitro, with reference to the effect of ethanol, Acta Physiol. Scand. 73:536–542.PubMedGoogle Scholar
  123. Häkkinen, H.-M., and Kulonen, E., 1972, Ethanol and the metabolic interrelations of carbohydrates and amino acids in brain preparations, Biochem. Pharmacol. 21:1171–1186.PubMedGoogle Scholar
  124. Häkkinen, H.-M., Kulonen, E., and Wallgren, H., 1963, The effect of ethanol and electrical stimulation on the amino acid metabolism of rat-brain-cortex slices in vitro, Biochem. J. 88:488–498.Google Scholar
  125. Hammerstad, J. P., and Cutler, R. W. P., 1972a, Sodium ion movements and the spontaneous and electrically stimulated release of [3H]GABA and [4C]glutamic acid from rat cortical slices, Brain Res. 47:401–413.Google Scholar
  126. Hammerstad, J. P., and Cutler, R. W. P., 1972b, Efflux of amino acid neurotransmitters from brain slices: Role of membrane transport, Europ. J. Pharmacol. 20:118–121.Google Scholar
  127. Hance, A. J., Winters, W. D., Bach-Y-Rita, P., and Killam, K. F., 1963, A neurophar-macological study of gamma-aminobutyrilcholine, gamma-aminobutyric acid, physostig-mine and atropine, J. Pharm. Pharmacol. 140:385–395.Google Scholar
  128. Hansen, S., Perry, T. L., Wada, J. A., and Sokol, M., 1973, Brain amino acids in baboons with light-induced epilepsy, Brain Res. 50:480–483.PubMedGoogle Scholar
  129. Hassler, C., Hassler, R., Okada, Y., and Bak, I. J., 1971, Pre-ictal and ictal changes of serotonin, GABA and glutamate contents in different regions of rabbit brain during methoxypyridoxine-induced seizures, Acta Neurol. Latinoamer. 17:595–611 (Suppl. 2).Google Scholar
  130. Hayashi, T., 1960, Comparison of inhibitory action of γ-aminobutyric acid and β-hydroxy-γ-aminobutyric acid on the motor system of higher animals, in: Inhibition in the Nervous System and Gamma-Aminobutyric Acid (E. Roberts, C. F. Baxter, A. van Harreveld, C. A. G. Wiersma, W. R. Adey, and K. F. Killam, eds.), pp. 515–522, Pergamon Press, Oxford.Google Scholar
  131. Henn, F. A., and Hamberger, A., 1971, Glial cell function: Uptake of transmitter substances, Proc. Natl Acad. Sci. 68:2686–2690.PubMedGoogle Scholar
  132. Higgins, E. S., 1962, The effect of ethanol on GABA content of rat brain, Biochem. Pharmacol. 11:394–395.PubMedGoogle Scholar
  133. Hill, R. G., and Simmonds, M. A., 1973, A method for comparing the potencies of γ-aminobutyric acid antagonists on single cortical neurones using micro-iontophoretic techniques, Brit. J. Pharmacol. 48:1–11.Google Scholar
  134. Hill, R. G., Simmonds, M. A., and Straughan, D. W., 1972a, Antagonism of GABA by Picrotoxin in the feline cerebral cortex, Brit. J. Pharmacol. 44:807–809.Google Scholar
  135. Hill, R. G., Simmonds, M. A., and Straughan, D. W., 1972b, Convulsive properties of d-tubocurarine and cortical inhibition, Nature 240:51–52.PubMedGoogle Scholar
  136. Hill, R. G., Simmonds, M. A., and Straughan, D. W., 1973a, Microiontophoretic study of depressant amino acids and the specificity of their antagonists, Brit. J. Pharmacol. 47:663–664P.Google Scholar
  137. Hill, R. G., Simmonds, M. A., and Straughan, D. W., 1973b, Amino acid antagonists and the depression of cuneate neurones by γ-aminobutyric acid (GABA) and glycine, Brit. J. Pharmacol. 47:642–643P.Google Scholar
  138. Himwich, W. A., and Davis, J. M., 1972, Brain amino acids as affected by acute and chronic administration of chlorpromazine, Biol. Psychiat. 5:89–98.PubMedGoogle Scholar
  139. Hof, D. G., Cline, W. H., Jr., Dexter, J. D., and Mengel, C. E., 1972, CNS epinephrine tone, a possible etiology for the threshold in susceptibility to oxygen toxicity seizures, Aerospace Med. 43:1194–1199.PubMedGoogle Scholar
  140. Hökfelt, T., and Ljungdahl, Å., 1972, Autoradiographic identification of cerebral and cerebellar cortical neurons accumulating labeled gamma-aminobutyric acid (3H-GABA), Exp. Brain Res. 14:354–362.PubMedGoogle Scholar
  141. Hokin, M. R., 1970, Effects of dopamine, gamma-aminobutyric acid and 5-hydroxytryptamine on incorporation of 32P into phosphatides in slices from the guinea pig brain, J. Neurochem. 17:357–364.PubMedGoogle Scholar
  142. Holtz, P., and Palm, D., 1964, Pharmacological aspects of vitamin B6, Pharmacol. Rev. 16:113–178.PubMedGoogle Scholar
  143. Hösli, L., and Tebēcis, A. K., 1970, Actions of amino acids and convulsants on bulbar reticular neurones, Exp. Brain Res. 11:111–127.PubMedGoogle Scholar
  144. Huffman, R. D., and McFadin, L. S., 1972a, Suppression of presynaptic inhibition and cerebellar disfacilitation by bicuculline, Life Sci. 11(I): 113–121.Google Scholar
  145. Huffman, R. D., and McFadin, L. S., 1972b, Effects of bicuculline and central inhibition, Neuropharmacology 11:789–799.PubMedGoogle Scholar
  146. Ito, N., 1969, Gamma-aminobutyric acid and running fits induced by gamma-mercaptobutyric acid, Biochem. Pharmacol. 18:2605–2614.PubMedGoogle Scholar
  147. Iversen, L. L., 1971, Role of transmitter uptake mechanisms in synaptic neurotransmission, Brit. J. Pharmacol. 41:571–591.Google Scholar
  148. Iversen, L. L., 1972, The uptake, storage, release and metabolism of GABA in inhibitory nerves, in: Perspectives in Neuropharmacology (S. H. Snyder, ed.), pp. 75–111, Oxford University Press, Oxford.Google Scholar
  149. Iversen, L. L., and Johnston, G. A. R., 1971, GABA uptake in rat central nervous system: Comparison of uptake in slices and homogenates and the effects of some inhibitors, J. Neurochem. 18:1939–1950.PubMedGoogle Scholar
  150. Iversen, L. L., and Kravitz, E. A., 1968, The metabolism of γ-aminobutyric acid (GABA) in the lobster nervous system—Uptake of GABA in nerve-muscle preparations, J. Neurochem. 15:609–620.PubMedGoogle Scholar
  151. Iversen, L. L., and Neal, M. J., 1968, The uptake of [3H]GABA by slices of rat cerebral cortex, J. Neurochem 15:1141–1149.PubMedGoogle Scholar
  152. Iversen, L. L., and Snyder, S. H., 1968, Synaptosomes: Different populations storing catecholamines and gamma-aminobutyric acid in homogenates of rat brain, Nature 220:796–798.PubMedGoogle Scholar
  153. Iversen, L. L., Mitchell, J. F., and Srinivasan, V., 1971, The release of γ-aminobutyric acid during inhibition in the cat visual cortex, J. Physiol. 212:519–534.PubMedGoogle Scholar
  154. Jobe, P. C., Picchioni, A. L., and Chin, L., 1973, Role of brain norepinephrine in audiogenic seizure in the rat, J. Pharmacol. Exp. Ther. 184:1–10.PubMedGoogle Scholar
  155. Johnston, G. A. R., and Mitchell, J. F., 1971, The effect of bicuculline, Metrazol, Picrotoxin and strychnine on the release of [3H]GABA from rat brain slices, J. Neurochem. 18:2441–2446.PubMedGoogle Scholar
  156. Johnston, G. A. R., de Groat, W. C., and Curtis, D. R., 1969, Tetanus toxin and amino acid levels in cat spinal cord, J. Neurochem. 16:797–800.PubMedGoogle Scholar
  157. Johnston, G. A. R., Beart, P. M., Curtis, D. R., Game, C. J. A., McCulloch, R. M., and Maclachlan, R. M., 1972, Bicuculline methochloride as a GABA antagonist, Nature New Biol. 240:219–220.PubMedGoogle Scholar
  158. Kamrin, R. P., and Kamrin, A. A., 1961, The effects of pyridoxine antagonists and other convulsive agents on amino acid concentrations of the mouse brain, J. Neurochem. 6:219–225.Google Scholar
  159. Kelly, J. S., and Renaud, L. P., 1971, Post-synaptic inhibition in the cuneate blocked by GABA antagonist, Nature New Biol. 232:25–26.PubMedGoogle Scholar
  160. Kelly, P. T., and Luttges, M. W., 1972, Drug effects on developing mouse brain protein synthesis in vitro, Neuropharmacology 11:889–893.PubMedGoogle Scholar
  161. Killam, K. F., 1957, Convulsant hydrazides. II. Comparison of electrical changes and enzyme inhibition induced by the administration of thiosemicarbazide, J. Pharmacol. Exp. Ther. 119:263–271.PubMedGoogle Scholar
  162. Killam, K. F., and Bain, J. A., 1957, Convulsant hydrazides. I. Invitro and in vivo inhibition of vitamin B6-enzymes by convulsant hydrazides, J. Pharmacol. Exp. Ther. 119:255–262.PubMedGoogle Scholar
  163. Killam, K. F., Dasgupta, S. R., and Killam, E. K., 1960, Studies of the action of convulsant hydrazides on vitamin B6 antagonists in the central nervous system, in: Inhibition in the Nervous System and Gamma-Aminobutyric Acid (E. Roberts, C. F. Baxter, A. van Harreveld, C. A. G. Wiersma, W. R. Adey, and K. F. Killam, eds.), pp. 302–316, Pergamon Press, Oxford.Google Scholar
  164. Kobrin, S., and Seifter, J., 1966, ω-Amino acids and various biogenic amines as antagonists to pentylenetetrazol, J. Pharmacol. Exp. Ther. 154:646–651.PubMedGoogle Scholar
  165. Kopeloff, L. M., and Chusid, J. G., 1963, Methoxy-pyridoxine convulsions in epileptic and non-epileptic mice: Protective action of pyridoxine, Proc. Soc. Exp. Biol. Med. 114:496–500.PubMedGoogle Scholar
  166. Kopeloff, L. M., and Chusid, J. G., 1965, Pyridoxine and GABA .as antagonists to drug-induced convulsions in monkeys, J. Appl. Physiol. 20:1337–1340.Google Scholar
  167. Kramer, S. Z., and Seifter, J., 1966, The effects of GABA and biogenic amines on behavior and brain electrical activity in chicks, Life Sci. 5:527–534.Google Scholar
  168. Kramer, S. Z., Sherman, P. A., and Seifter, J., 1967, Effects of gamma-aminobutyric acid (GABA) and sodium L-glutamate (glutamate) on the visual system and EEG of chicks, Int. J. Neuropharmacol. 6:463–472.PubMedGoogle Scholar
  169. Krnjevic, K., 1970, Glutamate and γ-aminobutyric acid in brain, Nature 228:119–124.PubMedGoogle Scholar
  170. Krnjevic, K., and Schwartz, S., 1967, The action of γ-aminobutyric acid on cortical neurones, Exp. Brain Res. 3:320–336.PubMedGoogle Scholar
  171. Krnjevic, K., Randic, M., and Straughan, D. W., 1966, Pharmacology of cortical inhibition, J. Physiol. 184:78–105.PubMedGoogle Scholar
  172. Kuhar, M. J., Green, A. I., Snyder, S. H., and Gfeller, E., 1970, Separation of synaptosomes storing catecholamines and gamma-aminobutyric acid in rat corpus striatum, Brain Res. 21:405–417PubMedGoogle Scholar
  173. Kuriyama, K., Roberts, E., and Rubinstein, M. K., 1966, Elevation of γ-aminobutyric acid in brain with amino-oxyacetic acid and susceptibility to convulsive seizures in mice: A quantitative re-evaluation, Biochem. Pharmacol. 15:221–236.PubMedGoogle Scholar
  174. Kuriyama, K., Roberts, E., and Vos, J., 1968, Some characteristics of binding of γ-aminobutyric acid and acetylcholine to a synaptic vesicle fraction from mouse brain, Brain Res. 9:231–252.PubMedGoogle Scholar
  175. Kuriyama, K., Weinstein, H., and Roberts, E., 1969, Uptake of γ-aminobutyric acid by mitochondrial and synaptosomal fractions from mouse brain, Brain Res. 16:479–492.PubMedGoogle Scholar
  176. Lamar, C., Jr., 1970, Mercaptopropionic acid: A convulsant that inhibits glutamate decarboxylase, J. Neurochem. 17:165–170.PubMedGoogle Scholar
  177. Lehman, A., 1967, Audiogenic seizures data in mice supporting new theories of biogenic amines mechanisms in the central nervous system, Life Sci. 6:1423–1431.Google Scholar
  178. Leslie, C. A., Gottesfeld, Z., and Elliott, K. A. C., 1971, Effect of ethanol on entry of some substances into the brains of rats, Canad. J. Physiol. Pharmacol. 49:833–840.Google Scholar
  179. Levi, G., 1972, Transport systems for GABA and for other amino acids in incubated chick brain tissue during development, Arch. Biochem. Biophys. 151:8–21.PubMedGoogle Scholar
  180. Levi, G., and Raiteri, M., 1973, GABA and glutamate uptake by subcellular fractions enriched in synaptosomes: Critical evaluation of some methodological aspects, Brain Res. 57:165–185.PubMedGoogle Scholar
  181. Levi, G., Amaldi, P., and Morisi, G., 1972, Gamma-aminobutyric acid (GABA) uptake by the developing mouse brain in vivo, Brain Res. 41:435–451.PubMedGoogle Scholar
  182. Levy, R. A., and Anderson, E. G., 1972, The effect of the GABA antagonists bicuculline and Picrotoxin on primary afferent terminal excitability, Brain Res. 43:171–180.PubMedGoogle Scholar
  183. Levy, R. A., Repkin, A. H., and Anderson, E. G., 1971, The effect of bicuculline on primary afferent terminal excitability, Brain Res. 32:261–265.PubMedGoogle Scholar
  184. Levy, W. B., Redburn, D. A., and Cotman, C. W., 1973, Stimulus-coupled secretion of γ-aminobutyric acid from rat brain synaptosomes, Science 181:676–678.PubMedGoogle Scholar
  185. Lloyd, K. G., and Hornykiewicz, O., 1973, L-Glutamic acid decarboxylase in Parkinson’s disease: Effect of L-dopa therapy, Nature 243:521–523.PubMedGoogle Scholar
  186. Loo, Y. H., 1967, Characterization of a new phenylalanine metabolite in phenylketonuria, J. Neurochem. 14:813–821.Google Scholar
  187. Loo, Y. H., and Whittaker, V. P., 1967, Pyridoxal kinase in brain and its inhibition by pyridoxylidene-β-phenylethylamine, J. Neurochem. 14:997–1011.PubMedGoogle Scholar
  188. Lovell, R. A., and Elliott, K. A. C., 1963, The γ-aminobutyric acid and factor I content of brain, J. Neurochem. 10:479–488.PubMedGoogle Scholar
  189. Macaione, S., Mattaliano, G., and Livrea, P., 1972, Azione in vitro della L-dopa (3–4 diidrossifenilalanina) sulla glutamicodecarbossilasi (GAD) e sulla γ-aminobutirrico trans-aminasi (GABA-T) cerebrale di ratto, Boll. Soc. Ital. Biol. Sper. 48:216–221.PubMedGoogle Scholar
  190. Massieu, G. H., Tuena, M., Ortega, B. G., and Pasantes, H., 1961, Efectodel tratamientocon Nialamida y dosis convulsivantes de estrienina sobre la concentration de algunos aminoácidos libres de cerebro de raton, An. Inst. Biol. (Univ. Méx.) 32:11–20.Google Scholar
  191. Massieu, G. H., Tapia, R., and Ortega, B. G., 1962a, Free amino acids in brain of mice treated with L-glutamic acid-γ-hydrazide, Biochem. Pharmacol. 11:976–979.PubMedGoogle Scholar
  192. Massieu, G. H., Ortega, B. G., Syrquin, A., and Tuena, M., 1962b, Free amino acids in brain and liver of deoxypyridoxine-treated mice subjected to insulin shock, J. Neurochem. 9:143–151.PubMedGoogle Scholar
  193. Massieu, G., Tapia, R., Pasantes, H., and Ortega, B. G., 1964, Convulsive action of L-glutamic acid-γ-hydrazide by simultaneous treatment with pyridoxal phosphate, Biochem. Pharmacol. 13:118–120.PubMedGoogle Scholar
  194. Matin, M. A., and Kar, P. P., 1973, Further studies on the role of γ-aminobutyric acid in paraoxon-induced convulsions, Europ. J. Pharmacol. 21:217–221.Google Scholar
  195. Maynert, E. W., and Kaji, H. K., 1962, On the relationship of brain γ-aminobutyric acid to convulsions, J. Pharmacol. Exp. Ther. 137:114–121.PubMedGoogle Scholar
  196. McCormick, D. B., Guirard, B. M., and Snell, E. E., 1960, Comparative inhibition of pyridoxal kinase and glutamic acid decarboxylase by carbonyl reagents, Proc. Soc. Exp. Biol. Med. 104:554–557.Google Scholar
  197. McGeer, P. L., and McGeer, E. G., 1973, Glutamic-acid decarboxylase and choline acetylase in Huntington’s chorea and Parkinson’s disease, Lancet 2:623–624.Google Scholar
  198. McGeer, E. G., Fibiger, H. C., and McGeer, P. L., 1972, Brain enzymes in amantadine-treated rats, Biochem. Med. 6:189–191.PubMedGoogle Scholar
  199. McGeer, P. L., McGeer, E. G., Wada, J. A., and Jung, E., 1971, Effects of globus pallidus lesions and Parkinson’s disease on brain glutamic acid decarboxylase, Brain Res. 32:425–431.PubMedGoogle Scholar
  200. McLennan, H., 1957, A comparison of some physiological properties of an inhibitory factor from brain (factor I) and of γ-aminobutyric acid and related compounds, J. Physiol. 139:79–86.PubMedGoogle Scholar
  201. McLennan, H., 1970, Bicuculline and inhibition of crayfish stretch receptor neurones, Nature 228:674–675.PubMedGoogle Scholar
  202. Medina, M. A., 1963, The in vivo effects of hydrazines and vitamin B6 on the metabolism of gamma-aminobutyric acid, J. Pharmacol. Exp. Ther. 140:133–137.PubMedGoogle Scholar
  203. Meldrum, B. S., and Horton, R. W., 1971, Convulsive effects of 4-deoxypyridoxine and of bicuculline in photosensitive baboons (Papiopapio) and in rhesus monkeys (Macaca mulatto), Brain Res. 35:419–436.PubMedGoogle Scholar
  204. Meldrum, B. S., Balzano, E., Gadea, M., and Naquet, R., 1970, Photic and drug-induced epilepsy in the baboon (Papio papio): The effects of isoniazid, thiosemicarbazide, pyridox-ine and amino-oxyacetic acid, Electroenceph. Clin. Neurophysiol. 29:333–347.PubMedGoogle Scholar
  205. Mennear, J. H., 1969, Enhancement of the convulsant action of thiosemicarbazide in mice, J. Pharm. Pharmacol. 21:63–64.PubMedGoogle Scholar
  206. Minard, F. N., 1967, Relationships among pyridoxal phosphate, vitamin B6-deficiency, and convulsions induced by 1,1-dimethylhydrazine, J. Neurochem. 14:681–692.PubMedGoogle Scholar
  207. Minard, F. N., and Mushahwar, I. K., 1966, The effect of periodic convulsions induced by 1,1-dimethylhydrazine on the synthesis of rat brain metabolites from [2-,4C]glucose, J. Neurochem. 13:1–11.PubMedGoogle Scholar
  208. Mison-Crighel, N., Luca, N., and Crighel, E., 1964, The effect of an epileptogenic focus, induced by topical application of mescaline, on glutamic acid, glutamine and GABA in the neocortex of the cat, J. Neurochem. 11:333–340.PubMedGoogle Scholar
  209. Murakami, Y., Murakami, K., and Makino, K., 1972, On the convulsive action of castrix, Biochem. Pharmacol. 21:277–280.PubMedGoogle Scholar
  210. Mussini, E., and Marcucci, F., 1962, Free amino acids in brain after treatment with psychotropic drugs, in: Amino Acid Pools (J. T. Holden, ed.), pp. 486–492, Elsevier, Amsterdam.Google Scholar
  211. Nahorski, S. R., Roberts, J. D., and Stewart, G. G., 1970, Some neurochemical aspects of pentamethylenetetrazol convulsive activity in rat brain, J. Neurochem. 17:621–631.PubMedGoogle Scholar
  212. Neal, M. J., and Starr, M. S., 1973, Effects of inhibitors of γ-aminobutyrate aminotransferase on the accumulation of 3H-γ-aminobutyric acid by the retina, Brit J. Pharmacol. 47:543–555.Google Scholar
  213. Nicoll, R. A., 1971, Pharmacological evidence for GABA as the transmitter in granule cell inhibition in the olfactory bulb, Brain Res. 35:137–149.PubMedGoogle Scholar
  214. Nishizawa, Y., Kodama, T., and Tsujino, G., 1968, Effect of γ-aminobutyric acid derivatives, especially homopantothenic acid, on excitability of the brain, J. Vitaminol. 14:331–344.Google Scholar
  215. Obata, K., and Highstein, S. M., 1970, Blocking by picrotoxin of both vestibular and GABA action on rabbit oculomotor neurones, Brain Res. 18:538–541.PubMedGoogle Scholar
  216. Obata, K., Ito, M., Ochi, R., and Sato, N., 1967, Pharmacological properties of the postsynaptic inhibition by Purkinje cell axons and the action of γ-aminobutyric acid on Deiters’ neurones, Exp. Brain Res. 4:43–57.PubMedGoogle Scholar
  217. Oehme, P., Glaesmer, R., Kalusa, W., and Heine, U., 1970, Zur Pharmacologie von Hydrazinokarbonsäuren, Hydrazinopeptiden and anderen Hydrazinderivaten, Acta Biol. Med. Ger. 24:141–153.PubMedGoogle Scholar
  218. Okamoto, Y., 1973, Neurochemical studies of experimental epilepsy: On the mechanism of convulsive seizure onset based on the changes of the free amino acid metabolism in the rabbit cerebral cortex by methionine sulfoximine, Sapporo Med. J. 42:37–53 (in Japanese).Google Scholar
  219. Orkand, P. M., and Kravitz, E. A., 1971, Localization of the sites of γ-aminobutyric acid (GABA) uptake in lobster nerve-muscle preparations, J. Cell Biol. 49:75–89.PubMedGoogle Scholar
  220. Osborne, R. H., Bradford, H. F., and Jones, O. G., 1973, Patterns of amino acid release from nerve-endings isolated from spinal cord and medulla, J. Neurochem. 21:407–419.PubMedGoogle Scholar
  221. Osuide, G., 1972, Pharmacological properties of amino-oxyacetic acid in the chicken, Brit. J. Pharmacol. 44:31–44.Google Scholar
  222. Pasquini, J. M., Salomone, J. R., and Gomez, C. J., 1968, Amino acid changes in the mouse brain during audiogenic seizures and recovery, Exp. Neurol. 21:245–256.PubMedGoogle Scholar
  223. Patel, A., and Koenig, H., 1971, Some neurochemical aspects of fluorocitrate intoxication, J. Neurochem. 18:621–628.PubMedGoogle Scholar
  224. Patel, A. J., Balázs, R., and Richter, D., 1970, Contribution of the GABA bypath to glucose oxidation, and the development of compartmentation in the brain, Nature 226:1160–1161.PubMedGoogle Scholar
  225. Peck, E. J., Jr., Schaeffer, J. M., and Clark, J. H., 1973, γ-Aminobutyric acid, bicuculline, and post-synaptic binding sites, Biochem. Biophys. Res. Commun. 52:394–400.PubMedGoogle Scholar
  226. Pérez de la Mora, M., and Tapia, R., 1973, Anticonvulsant effect of 5-ethyl-5-phenyl-2-pyrrolidinone and its possible relationship to γ-aminobutyric acid-dependent inhibitory mechanisms, Biochem. Pharmacol. 22:2635–2639.Google Scholar
  227. Pérez de la Mora, M., Feria-Velasco, A., and Tapia, R., 1973, Pyridoxal phosphate and glutamate decarboxylase in subcellular particles of mouse brain and their relationship to convulsions, J. Neurochem. 20:1575–1587.Google Scholar
  228. Perry, T. L., Hansen, S., and Kloster, M., 1973, Huntington’s chorea: Deficiency of γ-aminobutyric acid in brain, New Engl. J. Med. 288:337–342.PubMedGoogle Scholar
  229. Pettigrew, J. D., and Daniels, J. D., 1973, Gamma-aminobutyric acid antagonism in visual cortex: Different effects on simple, complex, and hypercomplex neurons, Science 182:81–83.PubMedGoogle Scholar
  230. Philippu, A., Przuntek, H., and Roensberg, W., 1973, Superfusion of the hypothalamus with gamma-aminobutyric acid: Effect on release of noradrenaline and blood pressure, Naunyn-Schmiedebergs Arch. Pharmakol. 276:103–118.Google Scholar
  231. Pierau, F.-K., and Zimmermann, P., 1973, Action of a GABA-derivative on postsynaptic potentials and membrane properties of cats’ spinal motoneurones, Brain Res. 54:376–380.PubMedGoogle Scholar
  232. Pong, S. F., and Graham, L. T., Jr., 1972, N-Methyl bicuculline, a convulsant more potent than bicuculline, Brain Res. 42:486–490.PubMedGoogle Scholar
  233. Popov, N., and Matthies, H., 1969, Some effects of monoamine oxidase inhibitors on the metabolism of γ-aminobutyric acid in rat brain, J. Neurochem. 16:899–907.PubMedGoogle Scholar
  234. Prosky, L., and O’Dell, R. G., 1971, Effect of dietary monosodium L-glutamate on some brain and liver metabolites in rats, Proc. Soc. Exp. Biol. Med. 138:517–522.PubMedGoogle Scholar
  235. Purpura, D. P., Berl, S., González-Monteagudo, O., and Wyatt, A., 1960, Brain amino acid changes during methoxypyridoxine-induced seizures (cat), in: Inhibition in the Nervous System and Gamma-Aminobutyric Acid (E. Roberts, C. F. Baxter, A. van Harreveld, C. A. G. Wiersma, W. R. Adey, and K. F. Killam, eds.), pp. 331–335, Pergamon Press, Oxford.Google Scholar
  236. Radomski, M. W., and Watson, W. J., 1973, Effect of lithium on acute oxygen toxicity and associated changes in brain gamma-aminobutyric acid, Aerospace Med. 44:387–392.PubMedGoogle Scholar
  237. Raiteri, M., and Levi, G., 1973a, Antisynaptosome antibodies affect synaptosomal permeability to neurotransmitters, Nature New Biol. 245:89–91.PubMedGoogle Scholar
  238. Raiteri, M., and Levi, G., 1973b, Depletion of synaptosomal neurotransmitter pool by sudden cooling, Nature New Biol. 243:180–182.PubMedGoogle Scholar
  239. Rees, J. R., 1972, Lithium and γ-aminobutyric acid, Life Sci. 11(II):925–928.Google Scholar
  240. Reynolds, A. P., and Watkins, J. C., 1972, The effect of strychnine and of electrical stimulation on the labelling of γ-aminobutyric acid and other free amino acids from [U-14C]glucose in the spinal cord of the nembutalized rat, Brain Res. 36:343–351.PubMedGoogle Scholar
  241. Rindi, G., and Ferrari, G., 1959, The γ-aminobutyric acid and glutamic acid content of brains of rats treated with toxopyrimidine, Nature 183:608–609.PubMedGoogle Scholar
  242. Rindi, G., Perri, V., and Ventura, U., 1959, Effect of toxopyrimidine on glutamic-decarboxylase and glutamic-oxalacetic transaminase of rat brain, Nature 183:1126–1127.PubMedGoogle Scholar
  243. Roa, P. D., Tews, J. K., and Stone, W. E., 1964, A neurochemical study of thiosemicarbazide seizures and their inhibition by aminooxy-acetic acid, Biochem. Pharmacol. 13:477–487.PubMedGoogle Scholar
  244. Roach, M. K., and Reese, W. N., Jr., 1971, Effect of ethanol on glucose and amino acid metabolism in brain, Biochem. Pharmacol. 20:2805–2812.PubMedGoogle Scholar
  245. Roberts, E., 1972, An hypothesis suggesting that there is a defect in the GABA system in schizophrenia, Neurosci. Res. Prog. Bull. 10:468–482.Google Scholar
  246. Roberts, E., and Frankel, S., 1951a, Glutamic acid decarboxylase in brain, J. Biol. Chem. 188:789–795.PubMedGoogle Scholar
  247. Roberts, E., and Frankel, S., 1951b, Further studies of glutamic acid decarboxylase in brain, J. Biol. Chem. 190:505–512.PubMedGoogle Scholar
  248. Roberts, E., and Kuriyama, K., 1968, Biochemical-physiological correlations in studies of the γ-aminobutyric acid system, Brain Res. 8:1–35.PubMedGoogle Scholar
  249. Roberts, E., and Matthysse, S., 1970, Neurochemistry: At the crossroads of neurobiology, Ann. Rev. Biochem. 39:777–820.PubMedGoogle Scholar
  250. Roberts, E., and Simonsen, D. G., 1963, Some properties of L-glutamic decarboxylase in mouse brain, Biochem. Pharmacol. 12:113–134.PubMedGoogle Scholar
  251. Roberts, E., and Simonsen, D. G., 1966, A hypnotic and possible analgesic effect of imidazoleacetic acid in mice, Biochem. Pharmacol. 15:1875–1877.Google Scholar
  252. Roberts, E., Wein, J., and Simonsen, D. G., 1964, γ-Aminobutyric acid (yABA), vitamin B6, and neuronal function—A speculative synthesis, in: Vitamins and Hormones, Vol. 22 (R. S. Harris, I. G. Wool, and J. A. Loraine, eds.), pp. 503–559, Academic Press, New York.Google Scholar
  253. Rodriguez de Lores Arnaiz, G., Alberici de Canal, M., and de Robertis, E., 1971, 2-Amine-4-pentenoic acid (allylglycine): A proposed tool for the study of GABA mediated systems, Int. J. Neurosci. 2:137–144.Google Scholar
  254. Rodriguez de Lores Arnaiz, G., Alberici de Canal, M., and de Robertis, E., 1972, Alteration of GABA system and Purkinje cells in rat cerebellum by the convulsant 3-mercaptopropionic acid, J. Neurochem. 19:1379–1385.Google Scholar
  255. Rodriguez de Lores Arnaiz, G., Alberici de Canal, M., Robiolo, B., and Mistrorigo de Pacheco, M., 1973, The effect of the convulsant 3-mercaptopropionic acid on enzymes of the rat cerebral cortex, J. Neurochem. 21:615–623.Google Scholar
  256. Saito, S., and Tokunaga, Y., 1967, Some correlations between picrotoxin-induced seizures and γ-aminobutyric acid in animal brain, J. Pharmacol. Exp. Ther. 157:546–554.PubMedGoogle Scholar
  257. Salganicoff, L., and de Robertis, E., 1965, Subcellular distribution of the enzymes of the glutamic acid, glutamine and γ-aminobutyric acid cycles in rat brain, J. Neurochem. 12:287–309.PubMedGoogle Scholar
  258. Sanders, A. P., Currie, W. D., and Woodhall, B., 1969, Protection of brain metabolism with glutathione, glutamate, γ-aminobutyrate and succinate, Proc. Soc. Exp. Biol. Med. 130:1021–1027.PubMedGoogle Scholar
  259. Sano, K., and Roberts, E., 1963, Binding of γ-aminobutyric acid by mouse brain preparations, Biochem. Pharmacol. 12:489–502.PubMedGoogle Scholar
  260. Schlesinger, K., and Schreiber, R. A., 1969, Interaction of drugs and pyridoxine deficiency on central nervous system excitability, Ann. N.Y. Acad. Sci. 166:281–287.PubMedGoogle Scholar
  261. Schlesinger, K., Stavnes, K. L., and Boggan, W. O., 1969, Modification of audiogenic and pentylenetetrazol seizures with gamma-aminobutyric acid, norepinephrine and serotonin, Psychopharmacologia 15:226–231.PubMedGoogle Scholar
  262. Scholes, N. W., 1965, Effects of parenterally administered gamma-aminobutyric acid on the general behavior of the young chick, Life Sci. 4:1945–1949.PubMedGoogle Scholar
  263. Scholes, N. W., and Roberts, E., 1964, Pharmacological studies of the optic system of the chick: Effect of γ-aminobutyric acid and pentobarbital, Biochem. Pharmacol. 13:1319–1329.PubMedGoogle Scholar
  264. Schwab, R. S., England, A. C., Jr., Poskanzer, D. C., and Young, R. Y., 1969, Amantadine in the treatment of Parkinson’s disease, J. Am. Med. Assoc. 208:1168–1170.Google Scholar
  265. Scotto, P., Monaco, P., Scardi, V., and Bonavita, V., 1963, Neurochemical studies with L-cycloserine, a central depressant agent, J. Neurochem. 10:831–839.PubMedGoogle Scholar
  266. Segal, M., Sims, K., Maggiora, L., and Smissman, E., 1973, Analogues of gamma-aminobutyrate on rat hippocampal neurones, Nature New Biol. 245:88–89.PubMedGoogle Scholar
  267. Sgaragli, G., and Pavan, F., 1972, Effects of amino acid compounds injected into cerebrospinal fluid spaces, on colonic temperature, arterial blood pressure and behaviour of the rat, Neuropharmacology 11:45–56.PubMedGoogle Scholar
  268. Simon, J. R., and Martin, D. L., 1973, The effects of L-2,4-diaminobutyric acid on the uptake of gamma-aminobutyric acid by a synaptosomal fraction from rat brain, Arch. Biochem. Biophys. 157:348–355.PubMedGoogle Scholar
  269. Singh, S. I., and Malhotra, C. L., 1967, Amino acid content of monkey brain. IV. Effects of chlorpromazine on some amino acids of certain regions of monkey brain, J. Neurochem. 14:135–140.PubMedGoogle Scholar
  270. Small, N. A., Holton, J. B., and Ancill, R. J., 1970, In vitro inhibition of serotonin and γ-aminobutyric acid synthesis in rat brain by histidine metabolites, Brain Res. 21:55–62.PubMedGoogle Scholar
  271. Snell, E. E., 1964, Summary of session I and some notes on the metabolism of vitamin B6, in: Vitamins and Hormones, Vol. 22 (R. S. Harris, I. G. Wool, and J. A. Loraine, eds.), pp. 485–494, Academic Press, New York.Google Scholar
  272. Snodgrass, S. R., 1973, Studies on GABA and protein synthesis, Brain Res. 59:339–348.PubMedGoogle Scholar
  273. Snodgrass, S. R., and Iversen, L. L., 1973, Effects of amino-oxyacetic acid on [3H]GABA uptake by rat brain slices, J. Neurochem. 20:431–439.PubMedGoogle Scholar
  274. Snodgrass, S. R., and Lorenzo, A. V., 1973, Transport of GABA from the perfused ventricular system of the cat, J. Neurochem. 20:761–769.PubMedGoogle Scholar
  275. Snodgrass, S. R., Hedleγ-Whyte, E. T., and Lorenzo, A. V., 1973, GABA transport by nerve ending fractions of cat brain, J. Neurochem. 20:771–782.PubMedGoogle Scholar
  276. Snyder, S. H., Axelrod, J., and Bauer, H., 1964, The fate of 14C-histamine in animal tissues, J. Pharmacol. Exp. Ther. 144:373–379.Google Scholar
  277. Srinivasan, V., Neal, M. J., and Mitchell, J. F., 1969, The effect of electrical stimulation and high potassium concentrations on the efflux of [3H]γ-aminobutyric acid from brain slices, J. Neurochem. 16:1235–1244.PubMedGoogle Scholar
  278. Stanton, H. C., and Woodhouse, F. H., 1960, The effect of gamma-amino-n-butyric acid and some related compounds on the cardiovascular system of anesthetized dog, J Pharmacol. Exp. Ther. 128:233–242.PubMedGoogle Scholar
  279. Steiner, F. A., and Ruf, K., 1966, Interactions of L-glutamic acid, thiosemicarbazide and pyridoxal-5’-phosphate at single unit level in rat brain, Brain Res. 3:214–216.PubMedGoogle Scholar
  280. Strasberg, P., Krnjevic, K., Schwartz, S., and Elliott, K. A. C., 1967, Penetration of blood-brain barrier by γ-aminobutyric acid at sites of freezing. J. Neurochem. 14:755–760.PubMedGoogle Scholar
  281. Straughan, D. W., Neal, M. J., Simmonds, M. A., Collins, G. G. S., and Hill, R. G., 1971, Evaluation of bicuculline as a GABA antagonist, Nature 233:352–354.PubMedGoogle Scholar
  282. Sutton, I., and Simmonds, M. A., 1973, Effects of acute and chronic ethanol on the γ-aminobutyric acid system in rat brain, Biochem. Pharmacol. 22:1685–1692.PubMedGoogle Scholar
  283. Swagel, M. W., Ikeda, K., and Roberts, E., 1973, Effects of GABA and bicuculline on conductance of crayfish abdominal stretch receptor, Nature New Biol. 244:180–181.PubMedGoogle Scholar
  284. Sytinsky, I. A., and Thinh, N. T., 1964, The distribution of γ-aminobutyric acid in the monkey brain during picrotoxin-induced seizures, J. Neurochem. 11:551–556.PubMedGoogle Scholar
  285. Sze, P. Y., 1970, Possible repression of L-glutamic acid decarboxylase by gamma-aminobutyric acid in developing mouse brain, Brain Res. 19:322–325.PubMedGoogle Scholar
  286. Sze, P. Y., and Lovell, R. A., 1970, Reduction of level of L-glutamic acid decarboxylase by γ-aminobutyric acid in mouse brain, J. Neurochem. 17:1657–1664.PubMedGoogle Scholar
  287. Sze, P. Y., Kuriyama, K., and Roberts, E., 1971a, Thiosemicarbazide and γ-aminobutyric acid metabolism, Brain Res. 25:387–396.PubMedGoogle Scholar
  288. Sze, P. Y., Kuriyama, K., Haber, B., and Roberts, E., 1971b, Effects of GABA on L-glutamic acid decarboxylase activities in chick embryo brain, Brain Res. 26:121–130.Google Scholar
  289. Takahashi, H., Tiba, M., Yamazaki, T., and Noguchi, F., 1958, On the site of action of γ-aminobutyric acid on blood pressure, Japan. J. Physiol. 8:378–390.Google Scholar
  290. Takahashi, H., Koshino, C., and Ikeda, O., 1962, Relationships between the hypotensive activity and chemical structure of γ-aminobutyric acid in the rabbit, Japan. J. Physiol. 12:97–105.Google Scholar
  291. Takeuchi, A., and Onodera, K., 1972, Effect of bicuculline on the GABA receptor of the crayfish neuromuscular junction, Nature New Biol. 236:55–56.PubMedGoogle Scholar
  292. Takeuchi, A., and Takeuchi, N., 1969, A study of the action of picrotoxin on the inhibitory neuromuscular junction of the crayfish, J. Physiol. 205:377–391.PubMedGoogle Scholar
  293. Tallan, H. H., 1962, Free amino acids in brain after administration of imipramine, chlor-promazine and other psychotropic drugs, in: Amino Acid Pools (J. T. Holden, ed.), pp. 465–470, Elsevier, Amsterdam.Google Scholar
  294. Tapia, R., 1974, The role of γ-aminobutyric acid metabolism in the regulation of cerebral excitability, in: Neurohumoral Coding of Brain Function (R. D. Myers and R. R. Drucker-Colin, eds.), pp. 3–26, Plenum Press, New York.Google Scholar
  295. Tapia, R., and Awapara, J., 1967, Formation of γ-aminobutyric acid (GABA) in brain of mice treated with L-glutamic acid-γ-hydrazide and pyridoxal phosphate-γ-glutamyl hydrazone, Proc. Soc. Exp. Biol. Med. 126:218–221.PubMedGoogle Scholar
  296. Tapia, R., and Awapara, J., 1969, Effects of various substituted hydrazones and hydrazines of pyridoxal-5’-phosphate on brain glutamate decarboxylase, Biochem. Pharmacol. 18:145–152.PubMedGoogle Scholar
  297. Tapia, R., and Pasantes, H., 1971, Relationships between pyridoxal phosphate availability, activity of vitamin B6-dependent enzymes and convulsions, Brain Res. 29:111–122.PubMedGoogle Scholar
  298. Tapia, R., and Sandoval, M. E., 1971, Study on the inhibition of brain glutamate decarboxylase by pyridoxal phosphate oxime-O-acetic acid, J. Neurochem. 18:2051–2059.PubMedGoogle Scholar
  299. Tapia, R., and Sandoval, M. E., 1974, Possible participation of γ-aminobutyric acid in the regulation of protein synthesis in brain, in vivo, Brain Res. 69:255–263.PubMedGoogle Scholar
  300. Tapia, R., Pasantes, H., Pérez de la Mora, M., Ortega, B. G., and Massieu, G., 1965, Efecto protector de la 5-etil, 5-fenil, 2-pirrolidinona y de la 3,5,5,-trimetiloxazolidina, 2,4-diona contra dos convulsivantes: Tiosemicarbazida y la administration simultânea de fosfato de piridoxal y γ-hidrazida del âcido glutámico, An. Inst. Biol. (Univ. Méx.) 36:9–19.Google Scholar
  301. Tapia, R., Pasantes, H., Ortega, B. G., and Massieu, G., 1966, Effects in vitro and in vivo of L-glutamic acid-γ-hydrazide on metabolism of some free amino acids in brain and liver, Biochem. Pharmacol. 15:1831–1845.Google Scholar
  302. Tapia, R., Pasantes, H., Pérez de la Mora, M., Ortega, B. G., and Massieu, G., 1967a, Free amino acids and glutamate decarboxylase activity in brain of mice during drug-induced convulsions, Biochem. Pharmacol. 16:483–496.PubMedGoogle Scholar
  303. Tapia, R., Pérez de la Mora, M., and Massieu, G., 1967b, Modifications of brain glutamate decarboxylase activity by pyridoxal phosphate-γ-glutamyl hydrazone, Biochem. Pharmacol. 16:1211–1218.PubMedGoogle Scholar
  304. Tapia, R., Pérez de la Mora, M., and Massieu, G., 1969, Correlative changes of pyridoxal kinase, pyridoxal-5’-phosphate and glutamate decarboxylase in brain, during drug-induced convulsions, Ann. N. Y. Acad. Sci. 166:257–266.PubMedGoogle Scholar
  305. Tapia, R., Pasantes-Morales, H., Taborda, E., and Pérez de la Mora, M., 1975a, Seizure susceptibility in the developing mouse and its relationship to glutamate decarboxylase and pyridoxal phosphate in brain, J. Neurobiol., in press.Google Scholar
  306. Tapia, R., Sandoval, M. E., and Contreras, P., 1975b, Evidence for a role of glutamate decarboxylase activity as a regulatory mechanism of cerebral excitability, J. Neurochem., in press.Google Scholar
  307. Tarkowski, S., and Cremer, J. E., 1972, Metabolism of glucose and free amino acids in brain, studied with 14C-labelled glucose and butyrate in rats intoxicated with carbon disulphide, J. Neurochem. 19:2631–2640.PubMedGoogle Scholar
  308. Tashian, R. E., 1961, Inhibition of brain glutamic acid decarboxylase by phenylalanine, valine and leucine derivatives: A suggestion concerning the aetiology of the neurological defect in phenylketonuria, Metabolism 10:393–402.PubMedGoogle Scholar
  309. ten Bruggencate, G., and Engberg, I., 1971, Iontophoretic studies in Deiters’ nucleus of the inhibitory actions of GABA and related amino acids and the interactions of strychnine and Picrotoxin, Brain Res. 25:431–448.PubMedGoogle Scholar
  310. ten Bruggencate, G., and Sonnhof, U., 1972, Effects of glycine and GABA, and blocking actions of strychnine and picrotoxin in the hypoglossus nucleus, Pfluegers Arch. Ges. Physiol. 334:240–252.Google Scholar
  311. Tewari, S., and Baxter, C. F., 1969, Stimulatory effect of γ-aminobutyric acid upon amino acid incorporation into protein by a ribosomal system from immature rat brain, J. Neurochem. 16:171–180.PubMedGoogle Scholar
  312. Tews, J. K., and Stone, W. E., 1964, Effect of methionine sulfoximine on levels of free amino acids and related substances in brain, Biochem. Pharmacol. 13:543–545.PubMedGoogle Scholar
  313. Tews, J. K., Carter, S. H., Roa, P. D., and Stone, W. E., 1963, Free amino acids and related compounds in dog brain: Post-mortem and anoxic changes, effect of ammonium chloride infusion, and levels during seizures induced by picrotoxin and by pentylenetetrazol, J. Neurochem 10:641–653.PubMedGoogle Scholar
  314. Tews, J. K., Carter, S. H., and Stone, W. E., 1965, Chemical changes in the brain during insulin hypoglycaemia and recovery, J. Neurochem. 12:679–693.PubMedGoogle Scholar
  315. Tower, D. B., 1960, The administration of gamma-aminobutyric acid to man: systemic effects and anticonvulsant action, in: Inhibition in the Nervous System and Gamma-Aminobutyric Acid (E. Roberts, C. F. Baxter, A. van Harreveld, C. A. G. Wiersma, W. R. Adey, and K. F. Killam, eds.), pp. 562–578, Pergamon Press, Oxford.Google Scholar
  316. Tower, D. B., 1969, Neurochemical mechanisms, in: Basic Mechanisms of the Epilepsies (H. H. Jasper, A. A. Ward, and A. Pope, eds.), pp. 611–638, Little, Brown, Boston.Google Scholar
  317. Tuena, M., Massieu, G. H., Ortega, B. G., and Pasantes, H., 1961, Observaciones prelimi-nares acerca del efecto de la nialamida sobre la actividad de algunas enzimas que dependen de fosfatode piridoxal, An. Inst. Biol. (Univ. Méx.) 32:21–27.Google Scholar
  318. Tursky, T., 1972, Inhibition of brain pyridoxal kinase by gamma-aminobutyric acid, Biologia (Bratislava) 27:187–191.Google Scholar
  319. Unkeless, J. C., and Goldman, P., 1970, Fluorinated γ-aminobutyric acid. Enzymatic synthesis and biological activity of a potentially useful analogue, Mol. Pharmacol. 6:46–53.PubMedGoogle Scholar
  320. Utley, J. D., 1963, The effects of anthranilic hydroxamic acid on rat behaviour and rat brain γ-aminobutyric acid, norepinephrine and 5-hydroxytryptamine concentrations, J. Neurochem. 10:423–432.PubMedGoogle Scholar
  321. Valcana, T., Hudson, D., and Timiras, P. S., 1972, Effects of X-irradiation on the content of amino acids in the developing rat cerebellum, J. Neurochem. 19:2229–2232.PubMedGoogle Scholar
  322. van Balgooy J. N. A., Marshall, F. D., and Roberts, E., 1972, Metabolism of intracerebrally administered histidine, histamine and imidazoleacetic acid in mice and frogs, J. Neurochem. 19:2341–2353.PubMedGoogle Scholar
  323. van Gelder, N. M., 1968, Hydrazinopropionic acid: A new inhibitor of aminobutyrate transaminase and glutamate decarboxylase, J. Neurochem. 15:747–757.PubMedGoogle Scholar
  324. van Gelder, N. M., 1969, The action in vivo of a structural analogue of GABA: Hydrazinopropionic acid, J. Neurochem. 16:1355–1360.PubMedGoogle Scholar
  325. van Gelder, N. M., 1971, Brain weight and growth of mice fed gamma-aminobutyric acid, glycine or L-glutamic acid diet, Brain Res. 33:571–577.PubMedGoogle Scholar
  326. van Gelder, N. M., and Courtois, A., 1972, Close correlation between changing content of specific amino acids in epileptogenic cortex of cats, and severity of epilepsy, Brain Res. 43:477–484.PubMedGoogle Scholar
  327. van Gelder, N. M., and Elliott, K. A. C., 1958, Disposition of γ-aminobutyric acid administered to mammals, J. Neurochem. 3:139–143.Google Scholar
  328. van Gelder, N. M., Sherwin, A. L., and Rasmussen, T., 1972, Amino acid content of epileptogenic human brain: Focal versus surrounding regions, Brain Res. 40:385–393.PubMedGoogle Scholar
  329. van Kempen, G. M. J., van den Berg, C. J., van der Helm, H. J., and Veldstra, H., 1965, Intracellular localization of glutamate decarboxylase, γ-aminobutyrate transaminase and some other enzymes in brain tissue, J. Neurochem. 12:581–588.PubMedGoogle Scholar
  330. Vernadakis, A., and Woodbury, D. M., 1960, Effects of diphenylhydantoin and adrenocortical steroids on free glutamic acid, glutamine, and gamma-aminobutyric acid concentrations of rat cerebral cortex, in: Inhibition in the Nervous System and Gamma-Aminobutyric Acid(E. Roberts, C. F. Baxter, A. van Harreveld, C. A. G. Wiersma, W. R. Adey, and K. F. Killam, eds.), pp. 242–248, Pergamon Press, Oxford.Google Scholar
  331. Vivanco, F., Ramos, F., and Jiménez-Díaz, C., 1966, Determination of γ-aminobutyric acid and other free amino acids in whole brains of rats poisoned with β,β’-iminodipropionitrile and α-γ -diaminobutyric acid with, or without, administration of thyroxine, J. Neurochem. 13:1461–1467.PubMedGoogle Scholar
  332. Voaden, M. J., and Starr, M. S., 1972, The efflux of radioactive GAB A from rat retina in vitro, Vision Res. 12:559–566.PubMedGoogle Scholar
  333. Wada, J. A., Terao, A., Scholtmeyer, H., and Trapp, W. G., 1971, Susceptibility to audiogenic stimuli induced by hyperbaric oxygenation and various neuroactive agents, Exp. Neurol. 33:123–129.PubMedGoogle Scholar
  334. Wallach, D. P., 1961, Studies on the GABA pathway. I. The inhibition of γ-aminobutyric-α-ketoglutaric acid transaminase in vitro and in vivo by U-7524 (amino-oxyacetic acid), Biochem. Pharmacol. 5:323–331.PubMedGoogle Scholar
  335. Watkins, J. C., 1971a, The effects of excitatory and inhibitory amino acids on the metabolism of endogenous brain amino acids in the nembutalized mouse, Brain Res. 29:293–313.PubMedGoogle Scholar
  336. Watkins, J. C., 1971b, The influence of intraventricular injected amino acid excitants on the labelling of endogenous brain amino acids from [U-I4C] acetate in nembutalized mice, J. Neurochem. 18:1733–1739.PubMedGoogle Scholar
  337. Weinstein, H., Roberts, E., and Kakefuda, T., 1963, Studies of sub-cellular distribution of γ-aminobutyric acid and glutamic decarboxylase in mouse brain, Biochem. Pharmacol. 12:503–509.PubMedGoogle Scholar
  338. Weinstein, H., Varon, S., and Roberts, E., 1971, Effects of imipramine on the Na+-dependent exchange and retention of γ-aminobutyric acid by mouse brain subcellular particles, Biochem. Pharmacol. 20:103–117.PubMedGoogle Scholar
  339. Welch, A. D., and Henderson, V. E., 1934, A comparative study of hydrastine, bicuculline and adlumine, J. Pharmacol. Exp. Ther. 51:482–491.Google Scholar
  340. Wiechert, P., and Göllnitz, G., 1968, Stoffwechseluntersuchungen des cerebralen Anfallsgeschehens: Die Aktivität der Glutamatdecarboxylase vor und während experimentell ausgelöster Krampfanfälle, J. Neurochem. 15:1265–1270.PubMedGoogle Scholar
  341. Wiechert, P., and Göllnitz, G., 1969a, Stoffwechseluntersuchungen des cerebralen Anfallsgeschehens: Die Aktivität der Glutaminase, der Glutaminsynthetase und der Ammoniakstoffwechsel vor und während cerebraler Anfälle, J. Neurochem. 16:317–322.PubMedGoogle Scholar
  342. Wiechert, P., and Göllnitz, G., 1969b, Stoffwechseluntersuchungen des cerebralen Anfallsgeschehens: Die Konzentration der freien Aminosäuren im Hirngewebe vor und während experimentell ausgelöster cerebraler Anfälle, J. Neurochem. 16:1007–1016.PubMedGoogle Scholar
  343. Wiechert, P., and Göllnitz, G., 1970, Stoffwechseluntersuchungen des cerebralen Anfallsgeschehens: Untersuchungen des Glutamatstoffwechseis in Verschiedenen Hirnarealen des Hundes im präkonvulsiven Zustand, J. Neurochem. 17:137–147.PubMedGoogle Scholar
  344. Wiechert, P., and Herbst, A., 1966, Provocation of cerebral seizures by derangement of the natural balance between glutamic acid and γ-aminobutyric acid, J. Neurochem. 13:59–64.PubMedGoogle Scholar
  345. Wood, J. D., 1970, Seizures induced by hyperbaric oxygen and cerebral γ-aminobutyric acid in chicks during development, J. Neurochem. 17:573–579.PubMedGoogle Scholar
  346. Wood, J. D., and Abrahams, D. E., 1971, The comparative effects of various hydrazides on γ-aminobutyric acid and its metabolism, J. Neurochem. 18:1017–1025.PubMedGoogle Scholar
  347. Wood, J. D., and Peesker, S. J., 1971, The effect of hypoxia on isonicotinic acid hydrazide-induced seizures in chicks during ontogenesis, J. Pharm. Pharmacol. 23:637–638.PubMedGoogle Scholar
  348. Wood, J. D., and Peesker, S. J., 1972a, The effect on GABA metabolism in brain of isonicotinic acid hydrazide and pyridoxine as a function of time after administration, J. Neurochem. 19:1527–1537.PubMedGoogle Scholar
  349. Wood, J. D., and Peesker, S. J., 1972b, A correlation between changes in GABA metabolism and isonicotinic acid hydrazide-induced seizures, Brain Res. 45:489–498.PubMedGoogle Scholar
  350. Wood, J. D., and Peesker, S. J., 1973, The role of GABA metabolism in the convulsant and anticonvulsant actions of aminooxyacetic acid, J. Neurochem. 20:379–387.PubMedGoogle Scholar
  351. Wood, J. D., and Watson, W. J., 1968, Theeffect of intraperitoneal injections of hyperosmotic solutions on convulsions induced by drugs and hyperbaric oxygen, Canad. J. Physiol. Pharmacol. 46:649–652.Google Scholar
  352. Wood, J. D., Watson, W. J., and Stacey, N. E., 1966, A comparative study of hyperbaric oxygen-induced and drug-induced convulsions with particular reference to γ-aminobutyric acid metabolism, J. Neurochem. 13:361–370.Google Scholar
  353. Wood, J. D., Watson, W- J., and Ducker, A. J., 1967, Oxygen poisoning in various mammalian species and the possible role of gamma-aminobutyric acid metabolism, J. Neurochem. 14:1067–1074.PubMedGoogle Scholar
  354. Wood, J. D., Watson, W. J., and Ducker, A. J., 1968, The effect of hypoxia on brain γ-aminobutyric acid levels, J. Neurochem. 15:603–608.PubMedGoogle Scholar
  355. Woodward, D.J., Hoffer, B. J., Siggins, G. R., and Oliver, A. P., 1971, Inhibition of Purkinje cells in the frog cerebellum. 11. Evidence for GAB A as the inhibitory transmitter, Brain Res. 33:91–100.PubMedGoogle Scholar
  356. Yessaian, N. H., Armenian, A. R., and Buniatian, H. C., 1969, Effect of γ-aminobutyric acid on brain serotonin and catecholamines, J. Neurochem. 16:1425–1433.PubMedGoogle Scholar
  357. Yessaian, N. H., Armenian, A. R., Kazarova, E. K., and Buniatian, H. C., 1971, On the involvement of inorganic ions in the effect of γ-aminobutyric acid on brain serotonin and norepinephrine, J. Neurochem. 18:307–321.PubMedGoogle Scholar
  358. Yoshino, Y., and Elliott, K. A. C., 1970, Incorporation of carbon atoms from glucose into free amino acids in brain under normal and altered conditions, Canad. J. Biochem. 48:228–235.Google Scholar
  359. Zuckermann, E. C., and Glaser, G. H., 1968, Hippocampal epileptic activity induced by localized ventricular perfusion with high-potassium cerebrospinal fluid, Exp. Neurol. 20:87–110.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Ricardo Tapia
    • 1
  1. 1.Departamento de Biologìa Experimental, Instituto de BiologìaUniversidad Nacional Autònoma de MèxicoMèxico CityMexico

Personalised recommendations