Advertisement

Biochemistry of Cholinergic Neurons

  • R. M. Marchbanks
Part of the Handbook of Psychopharmacology book series (HBKPS, volume 3)

Abstract

The cholinergic system has not evoked the interest of psychopharmacologists to the same extent as the adrenergic or indoleaminergic systems of neurotransmission. It is not surprising that lay interest in hallucinogenesis has not included cholinergic agents such as the muscarinic drugs, because severe physiological reactions overlie their psychedelic effects. However, this should not have deterred a more systematic investigation by neurobiologists of the psychological effects of the naturally occurring and synthetic cholinergic agents. This deficit is balanced, to a certain extent, by the intensity with which the mechanism of synaptic transmission in the cholinergic system has been studied.

Keywords

Synaptic Vesicle Cholinergic Neuron Cholinergic System Superior Cervical Ganglion Choline Acetyltransferase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Latif, A. A., and Smith, J. P., 1972, Studies on choline transport and metabolism in rat brain synaptosomes, Biochem. Pharmacol., 21: 3005–3021.Google Scholar
  2. Abood, L. G., Ostfeld, A. M., and Biel, J., 1959, A new group of psychotomimetic agents, Proc. Soc. Exp. Biol. Med. 97: 483–486.Google Scholar
  3. Adami£, S., 1970, Accumulation of acetylcholine by the rat diaphragm, Biochem. Pharmacol. 19: 2445–2451.Google Scholar
  4. Adams, D. H., 1949, The specificity of the human erythrocyte cholinesterase, Biochim. Biophys. Acta 3: 1–14.Google Scholar
  5. Akert, K., and Sandri, C., 1968, An electron-microscopic study of zinc iodide-osmium impregnation of neurons. I. Staining of synaptic vesicles at cholinergic junctions, Brain Res. 7: 286–295.PubMedGoogle Scholar
  6. Akhvledani, K. S., and Lomouri, I. D., 1970, New mode of acetylcholine biosynthesis in brain tissue, Soobshch. Akad. Nauk Gruz. SSR 57:457–460. (In Russian.) Chem Abst. 73. 33100t.Google Scholar
  7. Aldridge, W. N., 1953, The inhibition of erythrocyte cholinesterase by tri-esters of phosphoric acid. 3. The nature of the inhibitory process, Biochem. J. 54: 442–448.Google Scholar
  8. Amano, T., Richelson, E., and Nirenberg, M., 1972, Neurotransmitter synthesis by neuro-blastoma clones, Proc. Natl. Acad. Sci. 69: 258–263.PubMedGoogle Scholar
  9. Ansell, G. B., and Spanner, S., 1971, Studies on the origin of choline in the brain of the rat in vivo, Biochem. J., 122: 741–750.PubMedGoogle Scholar
  10. Aquilonius, S.-M., Flentge, F., Schubert, J., Sparf, B., and Sundwall, A., 1973, Synthesis of acetylcholine in different compartments of brain nerve terminals in vivo as studied by the incorporation of choline from plasma and the effect of pentobarbital on this process, J. Neurochem. 20: 1509–1521.PubMedGoogle Scholar
  11. Augustinsson, K.-B., 1957, Assay methods for cholinesterases, in: Methods of Biochemical Analysis ( D. Glick, ed.), Vol. V, pp. 1–63, Interscience, New York.Google Scholar
  12. Augustinsson, K.-B., 1971, Determination of activity of cholinesterases, in: Analysis of Biogenic Amines and Their Related Enzymes ( D. Glick, ed.), pp. 275–296, Interscience, New York.Google Scholar
  13. Babel-Guerin, E., 1974, Metabolisme du calcium et liberation de I’acetylcho Jine dans l’organe electrique de la torpille, J. Neurochem. 23: 525–532.PubMedGoogle Scholar
  14. Baker, P. F., 1972, Transport and metabolism of calcium ions in nerve, Prog. Biophys. Mol. Biol. 24: 177–223.Google Scholar
  15. Banister, J., Whittaker, V. P., and Wijesundera, S., 1953, The occurrence of homologues of acetylcholine in ox spleen, J. Physiol 121: 55–71.PubMedGoogle Scholar
  16. Barker, L. A., Dowdall, M. J., and Whittaker, V. P., 1972, Choline metabolism in the cerebral cortex of guinea pigs, Biochem J. 130: 1063–1080.PubMedGoogle Scholar
  17. Barlow, R. B., 1964, Introduction to Chemical Pharmacology, Methuen, London.Google Scholar
  18. Bass, L., and Moore, W. J., 1966, Elecktrokinetic mechanisms of miniature postsynaptic potentials, Proc. Natl. Acad. Sci. 55: 214–217.Google Scholar
  19. Beani, L., Bianchi, C., Megazzini, P., Balotti, L., and Bernardi, G., 1969, Drug induced changes in free, labile and stable acetylcholine of guinea-pig brain, Biochem. Pharmacol. 18: 1315–1324.Google Scholar
  20. Beleslin, D., and Polak, R. L., 1965, Depression by morphine and chloralose of acetylcholine release from the cat’s brain, J. Physiol. 177: 411–419.PubMedGoogle Scholar
  21. Bennett, M. V. L., Pappas, G. D., Gimenez, M., and Nakajima, Y., 1967, Physiology and ultrastructure of electrotonic junctions. IV. Medullary electromotor nuclei in gymnotid fish, J. Neurophysiol. 30: 236–301.PubMedGoogle Scholar
  22. Bentley, R., and Rittenberg, D., 1954, Enzyme-catalysed exchange of oxygen atoms between water and carboxylate ion, J. Am. Chem. Soc. 76: 4883–4886.Google Scholar
  23. Berman, J. D., and Young, M., 1971, Rapid and complete purification of acetylcholinesterases of electric eel and erythrocyte by affinity chromatography, Proc. Natl. Acad. Sci. 68: 395–398.PubMedGoogle Scholar
  24. Berry, J. F., and Whittaker, V. P., 1959, The acyl-group specificity of choline acetylase, Biochem. J. 73: 447–458.PubMedGoogle Scholar
  25. Bhatnagar, S. P., and Macintosh, F. C., 1967, Effects of quaternary bases and inorganic cations on acetylcholine synthesis in nervous tissue, Canad. J. Physiol. Pharmacol. 45: 249–267.Google Scholar
  26. Birks, R., 1971, Effects of stimulation on synaptic vesicles in sympathetic ganglia as shown by fixation in the presence of Mg2+, J. Physiol. 216: 26–28 P.Google Scholar
  27. Birks, R. I., 1974, The relationship of transmitter release and storage to»fine structure in a sympathetic ganglion, J. Neurocytol. 3: 133–160.PubMedGoogle Scholar
  28. Birks, R. I., and Fitch, S. J. G., 1974, Storage and release of acetylcholine in a sympathetic ganglion, J. Physiol. 240: 125–134.PubMedGoogle Scholar
  29. Birks, R., and Macintosh, F. C., 1961, Acetylcholine metabolism of a sympathetic ganglion, Canad. J. Biochem. Physiol. 39: 788–827.Google Scholar
  30. Biscoe, T. J., and Straughan, D. W., 1966, Micro-electrophoretic studies of neurons in the cat hippocampus, J. Physiol 183: 341–359.PubMedGoogle Scholar
  31. Bligh, J., 1952, The level of free choline in plasma, J. Physiol. 117: 234–240.PubMedGoogle Scholar
  32. Bourdois, P., and Szerb, J. C., 1972, The absence of “surplus” acetylcholine formation in prisms prepared from rat cerebral cortex, J. Neurochem. 19: 1189–1193.PubMedGoogle Scholar
  33. Bowers, M. B., 1967, Factors influencing maintenance and release of acetylcholine in rat cortical brain slices, Int. J. Neuropharmacol. 6: 399–403.PubMedGoogle Scholar
  34. Bradford, H. F., 1969, Respiration in vitro of synaptosomes from mammalian cerebralGoogle Scholar
  35. Bradley, P. B., and Dray, A., 1973, Modification of the responses of brain stem neurons to cortex, J. Neurochem. 16:675–684. Transmitter substances by anaesthetic agents, Brit. J. Pharmacol. 48: 212–224.Google Scholar
  36. Browning, E. T., 1972, Fluorometric enzyme assay for choline and acetylcholine, Anal. Biochem. 46: 624–638.Google Scholar
  37. Browning, E. T., and Schulman, M. P., 1968, (,4C)Acetylcholine synthesis by cortex slices of rat brain, J. Neurochem 15: 1391–1405.Google Scholar
  38. Buckley, G. A., and Nowell, P. T., 1966, Microcolorimetric determination of cholinesterase activity of motor end plates in the rat diaphragm, J. Pharm. Pharmacol. Suppl. 18: 146–150.Google Scholar
  39. Bull, G., and Oderfeld-Nowak, N., 1971, Standardization of a radiochemical assay of choline acetyltransferase and a study of the activation of the enzyme in rabbit brain, J. Neurochem. 18: 935–941.PubMedGoogle Scholar
  40. Bull, G., Feinstein, A., and Morris, D., 1964, Sedimentation behaviour and molecular weight of choline acetyltransferase, Nature 201: 1326.PubMedGoogle Scholar
  41. Bull, G., Hebb, C., and Morris, D., 1969, Synthesis of acetylcholine in the electric organ of Torpedo, Comp. Biochem. Physiol. 28: 11–28.Google Scholar
  42. Burgen, A. S. V., and Chipman, L. M., 1951, Cholinesterase and succinic dehydrogenase in the central nervous system of the dog, J. Physiol. 114: 296–305.PubMedGoogle Scholar
  43. Burgen, A. S. V., Dickens, F., and’ Zatman, L. J., 1949, The action of botulinum toxin on the neuromuscular junction, J. Physiol. 109: 10–24.Google Scholar
  44. Burt, A. M., 1970, A histochemical procedure for the localization of choline acetyltransferase activity, J. Histochem. Cytochem. 18: 408–415.PubMedGoogle Scholar
  45. Burton, R. M., Howard, R. E., Baer, S., and Balfour, Y. M., 1964, Gangliosides and acetylcholine of the central nervous system, Biochim. Biophys. Acta 84: 441–447.Google Scholar
  46. Butterworth, J., Eley, D. D., and Stone, G. S., 1953, Acetylcholine. 1. Hydrolysis by hydrogen and hydroxyl ion, Biochem. J. 53: 30–34.Google Scholar
  47. Canepa, F. G., 1964, Acetylcholine quanta, Nature 201: 184–185.PubMedGoogle Scholar
  48. Canepa, F. G., Pauling, P., and Sorum, H., 1966, Structure of acetylcholine and other substrates of cholinergic systems, Nature 210: 907–909.PubMedGoogle Scholar
  49. Ceccarelli, B., Hurlbut, W. P., and Mauro, A., 1973, Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction, J. Cell Biol. 57: 499–524.PubMedGoogle Scholar
  50. Chakrin, L. W., Marchbanks, R. M., Mitchell, J. F., and Whittaker, V. P., 1972, The origin of the acetylcholine released from the surface of the cortex, J. Neurochem. 19:2727– 2736.Google Scholar
  51. Chan, S. L., Shirachi, D. Y., Bhargava, H. N., Gardner, E., and Trevor, A. J., 1972, Purification and properties of multiple forms of brain acetylcholinesterase (E.C. 3.1.1.7), J. Neurochem. 19: 2747–2758.PubMedGoogle Scholar
  52. Chao, L.-P., and Wolfgram, F., 1972, Spectrophotometric assay for choline acetyltransferase, Anal. Biochem. 46: 114–118.Google Scholar
  53. Chao, L.-P., and Wolfgram, F., 1973, Purification and some properties of choline acetyltrans- ferase (E.G. 2.3.1.6) from bovine brain, J. Neurochem. 20: 1075–1081.PubMedGoogle Scholar
  54. Chase, J. F. A., and Tubbs, P. K., 1966, Specific inhibitors of carnitine acetyl transferase and other acyl transferases, Biochem. J. 100: 47–48 P.Google Scholar
  55. Cheney, D. L., Gubler, C. J., and Jaussi, A. W., 1969, Production of acetylcholine in rat brain following thiamine deprivation and treatment with thiamine antogonists, J. Neurochem. 16: 1283–1291.PubMedGoogle Scholar
  56. Cheng, S.-C., and Nakamura, R., 1970, A study of the tricarboxylic acid cycle and the synthesis of acetylcholine in the lobster nerve, Biochem. J. 118: 451–455.PubMedGoogle Scholar
  57. Clark, A. W., Hurlbut, W. P., and Mauro, A., 1972, Changes in the fine structure of the neuromuscular junction of the frog caused by black widow spider venom,]. Cell. Biol. 52: 1–14.Google Scholar
  58. Clouet, D. H., and Williams, N., 1974, The effect of narcotic analgesic drugs on the uptake and release of neurotransmitters in isolated synaptosomes, J. Pharmacol. Exp. Ther. 188: 419–428.PubMedGoogle Scholar
  59. Cohen, J. A., and Oosterbaan, R. A., 1963, The active site of acetylcholinesterase and related esterases and its reactivity towards substrates and inhibitors, in: Handbuch der Experimentel- len Pharmakologie Erganzungswerk, Vol. XV ( G. B. Koelle, ed.), pp. 299–377, Springer, Berlin.Google Scholar
  60. Collier, B., 1969, The preferential release of newly synthesized transmitter by a sympathetic ganglion, J. Physiol. 205: 341–352.PubMedGoogle Scholar
  61. Collier, B., and Katz, H., 1971, The synthesis, turnover and release of surplus acetylcholine in a sympathetic ganglion, J. Physiol. 214: 537–552.PubMedGoogle Scholar
  62. Collier, B., and Lang, C., 1969, The metabolism of choline by a sympathetic ganglion, Canad. J. Physiol. Pharmacol. 47: 119–126.Google Scholar
  63. Collier, B., and Macintosh, F. C., 1969, The source of choline for acetylcholine synthesis in a sympathetic ganglion, Canad. J. Physiol. Pharmacol. 47: 127–135.Google Scholar
  64. Collier, B., Poon, P., and Salehmoghaddam, S., 1972, The formation of choline and of acetylcholine by brain in vitro, J. Neurochem. 19: 51–60.PubMedGoogle Scholar
  65. Cooper, J. R., 1964, The fluorometric determination of acetylcholine, Biochem. Pharmacol. 13: 795–797.Google Scholar
  66. Crank, J., 1956, The Mathematics of Diffusion, Oxford University Press, Oxford.Google Scholar
  67. Crossland, J., and Slater, P., 1968, The effect of some drugs on the “free” and “bound” acetylcholine content of rat brain, Brit. J. Pharmacol. Chemother. 33: 42–47.Google Scholar
  68. Curtis, D. R.,and Eccles,J.C., 1960, Synaptic action during and after repetitive stimulation, J. Physiol. 150: 374–398.Google Scholar
  69. Dale, H. H., 1914, The action of certain esters and ethers of choline and their relation to muscarine, J. Pharmacol. Exp. Ther. 6: 147–190.Google Scholar
  70. Dale, H. H., 1934, Chemical transmission of the effects of nerve impulses, Brit. Med. J. 1: 834–841.Google Scholar
  71. Dale, H. H., and Dudley, H. W., 1929, The presence of histamine and acetylcholine in the spleen of the ox and horse, J. Physiol. 68: 97–123.PubMedGoogle Scholar
  72. Dale, H. H., Feldberg, W., and Vogt, M., 1936, Release of acetylcholine at voluntary motor nerve endings, J. Physiol. 86: 353–380.PubMedGoogle Scholar
  73. Das, P. K., and Liddell, J., 1970, Purification and properties of human serum cholinesterase, Biochem. J. 116: 875–881.PubMedGoogle Scholar
  74. Datta, K., and Wajda, I. J., 1972, Morphine–induced kinetic alterations of choline acetyltrans- ferase of the rat caudate nucleus, Brit. J. Pharmacol. 44: 732–741.Google Scholar
  75. Datta, K., Thal, J., and Wajda, I. J., 1971. Effects of morphine on choline acetyltransferase levels in the caudate nucleus of the rat, Brit. J. Pharmacol. 41: 84–93.Google Scholar
  76. Davies, D. R., Holland, P., and Rumens, M. J., 1960, The relationship between the chemical structure and neurotoxicity of alkyl organophosphorus compounds, Brit.]. Pharmacol. 15: 271–278.Google Scholar
  77. Dawson, R. M. C., Elliot, D. C., Elliot, W. H., and Jones, K. M., 1969, Data for Biochemical Research, 2nd éd., Oxford University Press, Oxford.Google Scholar
  78. de Belleroche, J. S., and Bradford, H. F., 1972, Stimulus-induced release of acetylcholine from synaptosome beds and its calcium dependence, J. Neurochem. 19: 1817–1819.PubMedGoogle Scholar
  79. de Boor, W., 1956, Pharmakopsychologie und Psychopathologie, Springer, Berlin. de Iraldi, A. P., and Gueudet, R., 1968, Action of reserpine on the osmium tetroxide zinc iodide reactive site of synaptic vesicles in the pineal nerves of the rat, Z. Zellforsch. Mikrosk. Anat. 91: 178–186.Google Scholar
  80. Del Castillo, J., and Katz, B., 1954, Quantal components of the end plate potential, J. Physiol. 124: 560–573.Google Scholar
  81. Del Castillo, J., and Katz, B., 1955, Local activity at a depolarized nerve-muscle junction, J. Physiol. 128: 396–411.Google Scholar
  82. Del Castillo, J., and Katz, B., 1957, La base “quantale” de la transmission neuromusculaire, in: Microphysiologie Comparée des Éléments Excitables Coll. Int. C.N.R.S. 67:245– 258.Google Scholar
  83. Dennis, M., and Miledi, R., 1971, Lack of correspondence between the amplitudes of spontaneous potentials and unit potentials evoked by nerve impulses at regenerating neuromuscular junction, Nature New Biol. 232: 126–128.PubMedGoogle Scholar
  84. de Robertis, E., 1967, Ultra structure and cytochemistry of the synaptic region, Science 156: 907–914.PubMedGoogle Scholar
  85. de Robertis, E. D. P., and Bennett, H. S., 1955, Some features of the submicroscopic morphology of synapses in frog and earthworm, J. Biophys. Biochem. Cytol. 1: 47–58Google Scholar
  86. de Robertis, E., de Iraldi, A. P., Rodriguez, G.,and Gomez, J., 1961, On the isolation of nerve endings and synaptic vesicles,]. Biophys. Biochem. Cytol. 9:229–235.Google Scholar
  87. de Robertis, E., de Iraldi, A. P., Arnaiz, G. R. de L., and Salganicoff, L., 1962, Cholinergic and noncholinergic nerve endings in rat brain. 1. Isolation and subcellular distribution of acetylcholine and acetyl cholinesterase, J. Neurochem. 9: 23–35.Google Scholar
  88. de Robertis, E., Arnaiz, G. R. de L., Salganicoff, L., de Iraldi, A. P., and Zieher, L. M., 1963, Isolation of synaptic vesicles and structural organisation of the acetylcholine system within brain nerve endings, J. Neurochem. 10: 225–235.Google Scholar
  89. Deutsch, J. A., 1971, The cholinergic synapse and the site of memory, Science 174: 788–794.PubMedGoogle Scholar
  90. Diamond, I., and Kennedy, E. P., 1969, Carrier-mediated transport of choline into synaptic nerve endings. J. Biol. Chem. 244: 3258–3263.PubMedGoogle Scholar
  91. Domino, E. F., Yamamoto, K., and Dren, A. T., 1968, Role of cholinergic mechanisms in states of wakefulness and sleep, in: Progress in Brain Research: Anticholinergic Drugs (P. B. Bradley and M. Fink, Eds.), Vol. 28, pp. 113–133,Google Scholar
  92. Elsevier, Amsterdam. Douglas, W. W., and Poisner, A. M., 1966, On the relation between ATP splitting and secretion in the adrenal chromaffin cell: Extrusion of ATP (unhydrolysed) during release of catecholamines, J. Physiol. 183: 249–256.Google Scholar
  93. Dowdall, M. J., and Simon, E. J., 1973. Comparative studies on synaptosomes: Uptake of (N-Me-3H) choline by synaptosomes from squid optic lobes, J. Neurochem. 21: 969–982.PubMedGoogle Scholar
  94. Dowdall, M. J., and Whittaker, V. P., 1973, Comparative studies in synaptosome formation: The preparation of synaptosomes from the head ganglion of the squid, Loligo pealii, J. Neurochem. 20: 921–935.PubMedGoogle Scholar
  95. Dowdall, M. J., and Zimmermann, H., 1974, Evidence for heterogeneous pools of acetylcholine in isolated cholinergic synaptic vesicles, Brain Res. 71: 160–166.PubMedGoogle Scholar
  96. Dowdall, M. J., Barker, L. A., and Whittaker, V..P., 1972, Choline metabolism in the cerebral cortex of guinea pigs, Biochem. J. 130: 1081–1094.PubMedGoogle Scholar
  97. Dowdall, M. J., Boyne, A. F., and Whittaker, V. P., 1974, Adenosine triphosphate a constituent of cholinergic synaptic vesicles, Biochem. J. 140: 1–12.PubMedGoogle Scholar
  98. Duchen, L. W., 1970, Changes in motor innervation and cholinesterase localization induced by botulinum toxin in skeletal muscle of the mouse: Differences between fast and slow muscles, J. Neurol. Neurosurg Psychiat. 33: 40–54.PubMedGoogle Scholar
  99. Duchen. L, W., and Tonge, D. A., 1973, The effects of tetanus toxin on neuromuscular transmission and on the morphology of motor end-plates in slow and fast skeletal muscle of the mouse, J. Physiol. 228: 157–172.Google Scholar
  100. Dunant, Y., Gautron, J., Israël, M., Lesbat, B., and Manaranche, R., 1972, Les comparti-ments d’acetylcholine de l’organe electrique de la torpille et leurs modifications par la stimulation, J. Neurochem. 19: 1987–2002.PubMedGoogle Scholar
  101. Dunant, Y., Gautron, J. Israël, M., Lesbats, B., and Manaranche, R., 1974, Evolution de la déchargé de l’organe electrique de la torpille et variation simultanées de l’acetylcholine au cours de la stimulation, J. Neurochem. 23: 635–645.Google Scholar
  102. Durrell, J., and Sodd, M. A., 1966, Studies on the acetylcholine-stimulated incorporation of radioactive inorganic orthophosphate into the phospholipid of brain particulate prepara-tion. II. Subcellular distribution of enzymic activity, J. Neurochem. 13: 487–491.Google Scholar
  103. Durrell, J., Garland, J. T., and Friedel, O., 1969, Acetylcholine action: Biochemical effects, Science 165: 862–866.Google Scholar
  104. Eccles, J. C., 1964, The Physiology of Synapses, Springer, Berlin.Google Scholar
  105. Eccles, J. C., and Jaeger, J. C., 1958, The relationship between the mode of operation and the dimensions of junctional regions at synapses and motor end organs, Proc. Roy. Soc. Lond. Ser. B 148: 38–56.Google Scholar
  106. Eichberg, J., Whittaker, V. P., and Dawson, R. M. C., 1964, Distribution of lipids in subcellular particles of guinea-pig brain, Biochem. J. 92: 91–100.PubMedGoogle Scholar
  107. Elliott, T. R., 1904, On the action of adrenalin, J. Physiol. 31: Proc. XX-XXI.Google Scholar
  108. Ellman, G. L., Courtney, K. D., Andres, V., Jr., and Featherstone, R. M., 1961, A new and rapid colourimetric determination of acetylcholinesterase activity, Biochem. Pharmacol. 7: 88–95.Google Scholar
  109. Elmquist, D., and Quastel, D. M. J., 1965a, Presynaptic action of hemicholinium at the neuromuscular junction, J. Physiol. 177: 463–482.Google Scholar
  110. Elmquist, D., and Quastel, D. M. J., 19656, A quantitative study of end plate potentials in isolated human muscle, J. Physiol. 178: 505–529.Google Scholar
  111. Elmquist, D., Hofmann, W. W., Kugelberg, J., and Quastel, D. M. J., 1964, An elec-trophysiological investigation of neuromuscular transmission in myasthenia gravis, J. Physiol. 174: 417–434.Google Scholar
  112. Englehart, E., and Loewi, O., 1930, Fermentative Azetylcholinspaltung im Blut und Ihre Hemmung durch Physostigmin, Arch. Experiment. Pathol. Pharmakol Naunyn-Schmiedeberg 150: 1–13.Google Scholar
  113. Erspamer, V., and Dordoni, F., 1947, Chemical and pharmacological researches on extracts of the hypobronchial gland of Murex trunculus, M. Brandaris and Tritonalia erinecea. III. Presence in the extracts of a new derivative of choline or of a choline homologue: Murexine, Arch. Int. Pharmacodyn. 74: 263–285. (In Italian.)Google Scholar
  114. Evans, F. T., Gray, P. W. S., Lehmann, H., and Silk, E., 1952, Sensitivity to succinyl-choline in relation to serum cholinesterases, Lancet 1: 1229–1230.PubMedGoogle Scholar
  115. Ewins, A. J., 1914. Acetylcholine, a new active principle of ergot, Biochem. J. 8: 44–49.PubMedGoogle Scholar
  116. Fatt, P., and Katz, B., 1952, Spontaneous subthreshold activity at motor nerve endings, J. Physiol. 117: 109–128.PubMedGoogle Scholar
  117. Feigenson, M. E., and Saelens, J. K., 1969, An enzyme assay for acetylcholine, Biochem. Pharmacol. 18: 1479–1486.Google Scholar
  118. Feldberg, W., 1945, Present views on the mode of action of acetylcholine in the central nervous system, Physiol. Rev. 25: 596–642.Google Scholar
  119. Feldberg, W., and Gaddum, J. H., 1934, The chemical transmitter at synapses in a sympathetic ganglion, J. Physiol. 81: 305–319.PubMedGoogle Scholar
  120. Feldberg, W., Fessard, A., and Nachmansohn, D., 1940, The cholinergic nature of the nervous supply to the electrical organ of the torpedo ( Torpedo marmorata),]. Physiol. 97: 3p.Google Scholar
  121. Fellman, J. H., 1969, A chemical method for the determination of acetylcholine: Its application in a study of pre-synaptic release and a choline acetyltransferase assay, J. Neurochem. 16: 135–143.PubMedGoogle Scholar
  122. Ferrendelli, J. A., Steiner, A. L., McDougall, D. B., and Kipnis, D. M., 1970, The effect of oxotremorine and atropine on cGMP and cAMP levels in mouse cerebral cortex and cerebellum, Biochem. Biophys. Res. Commun. 41: 1061–1067.Google Scholar
  123. Florey, E., and Winesdorfer, J., 1968, Cholinergic endings in octopus brain, J. Neurochem. 15: 169–177.PubMedGoogle Scholar
  124. Fonnum, F., 1966, A radiochemical method for the estimation of choline acetyltransferase, Biochem. J. 100: 479–484.PubMedGoogle Scholar
  125. Fonnum, F., 1967, The “compartmentation” of choline acetyltransferase within the synapto- some, Biochem. J. 103: 262–270.PubMedGoogle Scholar
  126. Fonnum, F., 1968, Choline acetyltransferase binding to and release from membranes, Biochem. J. 109: 389–397.PubMedGoogle Scholar
  127. Fonnum, F., 1969a, Isolation of choline esters from aqueous solutions by extraction with sodium tetraphenyl boron in organic solvents, Biochem. J. 113: 291–298.PubMedGoogle Scholar
  128. Fonnum, F., 19696, Radiochemical micro assays for the determination of choline acetyltransferase and acetylcholinesterase activities, Biochem. J. 115: 465–472.Google Scholar
  129. Fonnum, F., and Guttormsen, D. M., 1969, Changes in acetylcholine content of rat brain by toxic doses of di-isopropylphosphorofluoridate, Experientia 25: 505–506.PubMedGoogle Scholar
  130. Fonnum, F., and Malthe-Sorenssen, D., 1973, Membrane affinities and subcellular distribu-tion of the different molecular forms of choline acetyltransferase from rat, J. Neurochem. 20: 1351–1359.PubMedGoogle Scholar
  131. Fonnum, F., Frizell, M., and Sjostrand, S., 1973, Transport, turnover and distribution of choline acetyltransferase and acetylcholinesterase in the vagus and hypoglossal nerves of the rabbit, J. Neurochem. 21: 1109–1120.PubMedGoogle Scholar
  132. Friesen, A. J. D., Ling, G. M., and Nagal, M., 1967, Choline and phospholipid-choline in a sympathetic ganglion and their relationship to acetylcholine synthesis, Nature 214: 722–724.PubMedGoogle Scholar
  133. Frizell, M., Hasselgren, P. O., and Sjostrand, J., 1970, Axoplasmic transport of acetyl–cholinesterase and choline acetyltransferase in the vagus and hypoglossal nerve of the rabbit, Exp. Brain. Res. 10: 526–531.Google Scholar
  134. Giacobini, E., 1959, The distribution and localization of cholinesterases in nerve cells, Acta Physiol. Scand. 45:1–45 (Suppl. 156 ).Google Scholar
  135. Giacobini, E., 1968, Chemical studies on individual neurons, in: Neurosciences Research ( S. Ehrenpreis and O. C. Solnitzky, eds.), Vol. 1, pp. 1–66, Academic Press, New York.Google Scholar
  136. Giacobini, E., Hokfelt, T., Kerpel-Fronius, S., Koslow, S. H., Mitchard, M., and Nore, B., 1971, A microscale procedure for the preparation of subcellular fractions from individual autonomic ganglia, J. Neurochem. 18: 223–231.PubMedGoogle Scholar
  137. Giarman, N. J., and Pepeu, G., 1962, Drug induced changes in brain acetylcholine, Brit. J. Pharmacol. 19: 226–234.Google Scholar
  138. Giarman, N. J., and Pepeu, G., 1964, The influence of centrally acting cholinolytic drugs on brain acetylcholine levels, Brit. J. Pharmacol. 23: 123–130.Google Scholar
  139. Girvin, G. T., and Stevenson, J. W., 1954, Cell free choline acetylase from Lactobacillus plantarum, Canad. J. Biochem. Physiol. 32: 131–146.PubMedGoogle Scholar
  140. Glover, V. A. S., and Potter, L. T., 1971, Purification and properties of choline acetyltransferase from ox brain striate nuclei, J. Neurochem. 18: 571–580.PubMedGoogle Scholar
  141. Goldberg, A. M., and McCaman, R. E., 1973, The determination of picomole amounts of acetylcholine in mammalian brain, J. Neurochem. 20: 1–9.PubMedGoogle Scholar
  142. Goldberg, M. E., Satama, A. I., and Blum, S. W., 1971, Inhibition of choline acetyltransferase and hexobarbitone-metabolizing enzymes by naphthyl vinyl pyridine analogues, J. Pharm. Pharmacol. 23: 384–385.PubMedGoogle Scholar
  143. Goodkin, P., and Howard, B. D., 1974, Studies on acetylcholinesterase of rat brain synap-tosomal plasma membranes, J. Neurochem. 22: 129–136.PubMedGoogle Scholar
  144. Gradijan, J. R., and Bergner, P.-E. E., 1972, A mathematical model of the acetylcholine compartments in synaptosomes, Biochem. J. 130: 1075–1080.PubMedGoogle Scholar
  145. Gray, E. G., and Whittaker, V. P., 1962, The isolation of nerve endings from brain: An electron microscopic study of the cell fragments derived by homogenization and centrifug- ation, J. Anat. 96: 79–88.PubMedGoogle Scholar
  146. Grynszpan-Winograd, O., 1971, Morphological aspects of exocytosis in the adrenal medulla, Phil. Trans. Roy. Soc. Lond. Ser. B 261: 291–292.Google Scholar
  147. Guth, P. S., 1969, Acetylcholine binding by isolated synaptic vesicles In vitro, Nature, 224: 384–385.PubMedGoogle Scholar
  148. Haga, T., 1971, Synthesis and release of (i4C)acetylchoIine in synaptosomes, J. Neurochem. 18: 781–798.PubMedGoogle Scholar
  149. Haga, T., and Noda, H., 1973, Choline uptake systems of rat brain synaptosomes, Biochim. Biophys. Acta 291: 564–575.Google Scholar
  150. Haggendal, C. J., Saunders, N. R., and Dahlstrom, A. B., 1971, Rapid accumulation of acetylcholine in nerve above a crush, J. Pharm. Pharmacol. 23: 552–555.PubMedGoogle Scholar
  151. Haggendal, C. J., Dahlstrom, A. B., and Saunders, N. R., 1973, Axonal transport and acetylcholine in rat preganglionic neurones, Brain Res. 58: 494–499.PubMedGoogle Scholar
  152. Hammar, C.-G., Hanin, I., Holmstedt, B., Kitz, R. J., Jenden, R. J., and Karlen, B., 1968, Identification of acetylcholine in fresh rat brain by combined gas chromatography-mass spectrometry, Nature 220: 915–917.PubMedGoogle Scholar
  153. Hanin, I., 1969, A specific gas chromatographic method for assaying tissue acetylcholine: present status, in: Advances in Biochemical Psychopharmacology ( E. Costa and P. Greengard, eds.), pp. 111–130, Raven Press, New York.Google Scholar
  154. Harris, A. J., and Miledi, R., 1971, The effect of type D botulinum toxin on frog neuromuscular junctions, J. Physiol. 217: 497–515.PubMedGoogle Scholar
  155. Harvey, A. M., and Macintosh, F. C., 1940, Calcium and synaptic transmission in a sympathetic ganglion, J. Physiol., 97: 408–416.PubMedGoogle Scholar
  156. Hebb, C. O., 1962, Acetylcholine content of the rabbit plantaris muscle after denervation, J. Physiol. 163: 294–306.PubMedGoogle Scholar
  157. Hebb, C. O., 1972, Biosynthesis of acetylcholine in nervous tissue, Physiol. Rev. 52: 918–957.Google Scholar
  158. Hebb, C. O., and Krnjevic, K., 1962, The physiological significance of acetylcholine, in: Neurochemistry (K. A. C. Elliott, I. H. Page, and J. H. Quastel, Eds.), pp. 452–521, C. C. Thomas, Springfield, 111.Google Scholar
  159. Hebb, C. O., and Ratkovic C., 1962, Choline acetylase in the placenta of man and other species, J. Physiol. 163: 307–313.PubMedGoogle Scholar
  160. Hebb, C. O., and Silver, A., 1956, Choline acetylase in the central nervous system of man and some other mammals, J. Physiol. 134: 718–728.PubMedGoogle Scholar
  161. Hebb, C. O., and Smallman, B. N., 1956, Intracellular distribution of choline acetylase, J. Physiol. 134: 385–392.PubMedGoogle Scholar
  162. Hebb, C. O., and Whittaker, V. P., 1958, Intracellular distributions of acetylcholine and choline acetylase, J. Physiol. 142: 187–196.PubMedGoogle Scholar
  163. Hebb, C. O., Krnjevic, K., and Silver, A., 1964, Acetylcholine and choline acetyltransferase in the diaphragm of the rat, J. physiol. 171: 504–513.PubMedGoogle Scholar
  164. Heilbronn, E., 1969, The effect of phospholipases on the uptake of atropine and acetylcholine by slices of mouse brain cortex, J. Neurochem. 16: 627–635.PubMedGoogle Scholar
  165. Heilbronn, E., 1972, Action of phospholipase A on synaptic vesicles: A model for transmitter release? in: Progress in Brain Research ( P. B. Bradley and R. W. Brimblecombe, eds.), pp. 29–40, Elsevier, Amsterdam.Google Scholar
  166. Heilbronn, E., and Carlsson, B., 1960, Qualitative separation of choline esters by means of high voltage paper electrophoresis, J. Chromatog. 4: 254–257.Google Scholar
  167. Hemsworth, B. A., and Bosmann, H. B., 1971, The incorporation of triethylcholine into isolated guinea pig cerebral cortex synaptosomal and synaptic vesicle fraction, Europ. J. Pharmacol. 16: 164–170.Google Scholar
  168. Hemsworth, B. A., and Mitchell, J. F., 1969, The characteristics of acetylcholine release mechanisms in the auditory cortex, Brit. J. Pharmacol. 36: 161–170.Google Scholar
  169. Hemsworth, B. A., and Morris, D., 1964, A comparison of the N-alkyl group specificity of choline acetyltransferase from different species, J. Neurochem. 11: 793–803.PubMedGoogle Scholar
  170. Hestrin, S., 1949a, The reaction of acetylcholine and other carboxylic acids with hydrox- ylamine and its analytical applications, J. Biol. Chem. 180: 249–261.PubMedGoogle Scholar
  171. Hestrin, S., 19496, Acylation reactions mediated by purified acetylcholine esterase, J. Biol. Chem. 180: 879–881.Google Scholar
  172. Heuser, J. E., 1974, A possible origin of the “giant” spontaneous potentials that occur after prolonged transmitter release at frog neuromuscular junctions, J. Physiol. 239: 106 - 108 P.Google Scholar
  173. Heuser, J., and Lennon, A., 1973, Morphological evidence for exocytosis of acetylcholine during formation of synaptosomes from Torpedo electric organ, J. Physiol. 233: 39–41.Google Scholar
  174. Heuser, J. E., and Reese, T. S., 1973, Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction, J. Cell. Biol. 57: 315–344.PubMedGoogle Scholar
  175. Hodgkin, A. L., and Martin, K., 1965, Choline uptake by giant axons of Loligo, J. Physiol. 179: 26–27 p.Google Scholar
  176. Hokin, L. E., 1966, Effects of acetylcholine on the incorporation of 32P into various phos-pholipids in slices of normal and denervated superior cervical ganglia of the cat, J. Neurochem. 13: 179–184.PubMedGoogle Scholar
  177. Hokin, L. E., and Hokin, M. R., 1958, Acetylcholine and the exchange of inositol and phosphate in brain phosphoinositide, J. Biol. Chem. 233: 818–821.PubMedGoogle Scholar
  178. Hokin, M. R., and Hokin, L. E., 1953, Enzyme secretion and the incorporation of 32P into phospholipides of pancrease slices, J. Biol. Chem. 203: 967–977.PubMedGoogle Scholar
  179. Holmstedt, B., Lundgren, G., Schuberth, J., and Sundwall, A., 1965, Tremorine and oxotremorine effects on acetylcholinesterase and choline acetylase from rat brain, Biochem. Pharmacol. 14: 189–191.Google Scholar
  180. Holtzman, E., Freeman, A. R., and Kashner, L. A., 1971, Stimulation dependent alterations in peroxidase uptake at lobster neuromuscular junctions, Science 173: 733–736.PubMedGoogle Scholar
  181. Hosein, E. A., Proulx, P., and Ara, R., 1962, Substances with acetylcholine activity in normal rat brain, Biochem. J. 83: 341–346.PubMedGoogle Scholar
  182. Hosein, E. A., Booth, S. J., Gasoi, I., and Kato, G., 1967, Neuromuscular blocking activity and other pharmacologic properties of various carnitive derivatives, J. Pharmacol. Exp. Ther. 156: 565–572.PubMedGoogle Scholar
  183. Hrdina, P., and Ling, G. M., 1973, Effect of desmethylimipramine on acetylcholine uptake by slices of rat brain cortex, Biochem Pharmacol. 22: 2062–2066.PubMedGoogle Scholar
  184. Hsu, S. Y., and Gerald, M. C., 1973, Determination of femtomole levels of acetylcholine by an improved bioassay procedure, Europ. J. Pharmacol. 24: 269–273.Google Scholar
  185. Hubbard, J. I., 1961, The effect of calcium and magnesium on the spontaneous release of transmitter from mammalian motor nerve endings, J. Physiol. 158: 507–517.Google Scholar
  186. Hubbard, J. I., 1970, Mechanism of transmitter release, Prog. Biophys. Mol. Biol. 21: 33–124.Google Scholar
  187. Hubbard, J. I., 1973, Microphysiology of vertebrate neuromuscular transmission, Physiol. Rev. 53: 674–723.Google Scholar
  188. Hubbard, J. I., and Jones, S. F., 1973, Spontaneous quantal transmitter release: A statistical analysis and some implications, J. Physiol. 232: 1–21.PubMedGoogle Scholar
  189. Hutter, O. F., and Kostial, K., 1954, Effect of magnesium and calcium ions on the release of acetylcholine, J. Physiol. 124: 234–241.PubMedGoogle Scholar
  190. Israël, M., and Tucek, S., 1974, Utilization of acetate and pyruvate for the synthesis of “total,” “bound” and “free” acetylcholine in the electric organ of Torpedo, J. Neurochem. 22: 487–493.PubMedGoogle Scholar
  191. Israël, M., Gautron, J., and Lesbats, B., 1970, Fractionnement de l’organe electrique de la torpille: Localisation subcellulaire de l’acetylcholine, J. Neurochem. 17: 1441–1450.PubMedGoogle Scholar
  192. Israël, M., Lesbats, B., and Manaranche, R., 1972, Variations d’acétylcholine en relation avec l’évolution de la décharge pendant la stimulation de l’organe éléctrique de la Torpille, Compt. Rend. Acad. Sci. Paris 275: 2957–2960.Google Scholar
  193. Israël, M., Hirt, L., and Mastour-Frachon, P., 1973, Métabolisme et échange d’acétylcholine dans les terminaisons nerveuses de l’organe éléctrique de la Torpille, Compt. Rend. Acad. Sci. Paris 276: 2725–2728.Google Scholar
  194. Jenden, D. J., Hanin, I., and Lamb, S. I., 1968, Gas chromatographic microestimation of acetylcholine and related compounds, Anal. Chem. 40: 125–128.Google Scholar
  195. Jenden, D. J., Campbell, B., and Roch, M., 1970, Gas chromatographic estimation of choline esters in tissues: A modified procedure for submicrogram quantities, Anal. Biochem. 35: 209–211.Google Scholar
  196. Jenden, D. J., Choi, L., Silverman, R. W., Steinborn, J. A., Roch, M., and Booth, R. A., 1974, Acetylcholine turnover estimation in brain by gas chromatography/mass spectrometry, Life Sci. 14: 55–63.PubMedGoogle Scholar
  197. Johnson, M. K., 1970, Organophosphorous and other inhibitors of brain neurotoxic esterase and the development of delayed neurotoxicity in hens, Biochem. J. 120: 523–531.PubMedGoogle Scholar
  198. Johnson, M. K., and Whittaker, V. P., 1963, Lactate dehydrogenase as a cytoplasmic marker in the brain, Biochem. J. 88: 404–409.PubMedGoogle Scholar
  199. Jones, B. E., Guyenet, P., Cheramy, A., Gauchy, C., and Glowinski, J., 1973, The in vivo release of acetylcholine from cat caudate nucleus after pharmacological and surgical manipulations of dopaminergic nigrostriatal neurons, Brain Res. 64: 355–369.PubMedGoogle Scholar
  200. Jones, S. F., and Kwanbunbumpen, S., 1970a, The effects of nerve stimulation and hemicholinium on synaptic vesicles at the mammalian neuromuscular junctions, J. Physiol. 207: 31–50.PubMedGoogle Scholar
  201. Jones, S. F., and Kwanbunbumpen, S., 19706, Some effects of nerve stimulation and hemicholinium on quantal transmitter release at the mammalian neuromuscular junction, J. Physiol. 207: 51–61.Google Scholar
  202. Kaita, A. A., and Goldberg, A. M., 1969, Control of acetylcholine synthesis—The inhibition of choline acetyltransferase by acetylcholine, J. Neurochem. 16: 1185–1191.PubMedGoogle Scholar
  203. Kapfhammer, J., and Bischoff, C., 1930, Acetylcholine und Cholin aus tierischen Organen. 1. Mitteilung. Darstellung aus Rinderblut, Hoppe-Seylefs Z. Physiol. Chem., 191: 179–182.Google Scholar
  204. Kasa, P., Mann, S. P., and Hebb, C. O., 1970a, Localization of choline acetyltransferase: Histochemistry at the light microscope level, Nature 226: 812–814.PubMedGoogle Scholar
  205. Kâsa, P., Mann, S. P., and Hebb, C. O., 19706, Localization of choline acetyltransferase. Ultrastructural localization in spinal neurons, Nature 226: 814–816.Google Scholar
  206. Kato, A. C., Katz, H. S., and Collier, B., 1974, Absence of adenine nucleotide release from autonomic ganglion, Nature 249: 576.PubMedGoogle Scholar
  207. Kato, G., Tan, E., and Yung, J., 1972, Acetylcholinesterase; kinetic studies on the mechanism of atropine inhibition, J. Biol. Chem. 247: 3186–3189.PubMedGoogle Scholar
  208. Katz, B., 1962, The transmission of impulses from nerve to muscle and the subcellular unit of synaptic action, Proc. Roy. Soc. Lond. Ser. B 155: 455–477.Google Scholar
  209. Katz, B., 1969, Release of Neural Transmitter Substances, Liverpool University Press, Liverpool.Google Scholar
  210. Katz, B., and Miledi, R., 1967, The timing of calcium action during neuromuscular transmission, J. Physiol. 189: 535–544.PubMedGoogle Scholar
  211. Katz, B., and Miledi, R., 1972, The statistical nature of the acetylcholine potential and its molecular components, J. Physiol. 224: 665–699.PubMedGoogle Scholar
  212. Katz, B., and Miledi, R., 1973, The binding of acetylcholine to receptors and its removal from the synaptic cleft, J. Physiol. 231: 549–574.PubMedGoogle Scholar
  213. Katz, H. S., Salehmoghaddam, S., and Collier, B., 1973, The accumulation of radioactive acetylcholine by a sympathetic ganglion and by brain: Failure to label endogenous stores, J. Neurochem. 20: 569–579.PubMedGoogle Scholar
  214. Kewitz, H., 1959, Nachweis von 4-Amino-n-butyrylcholin in Warmblutergehirn, Naunyn- Schmiedebergs Arch. Exp. Pathol. Pharmakol. 237: 308–318.Google Scholar
  215. Kewitz, H., and Nachmansohn, D., 1957, A specific antidote against lethal alkyl phosphate intoxication. IV. Effect in brain, Arch. Biochem. Biophys. 66: 271–283.Google Scholar
  216. Kewitz, H., Dross, K., and Pleul, O., 1974, Choline and its metabolic successors in brain, in: Central Nervous System: Studies on Metabolic Regulation and Function ( E. Genazzani and H. Herken, eds.), pp. 21–32, Springer, Berlin.Google Scholar
  217. Kitz, R. J., and Ginsburg, S., 1968, The reaction of acetylcholinesterase (AChe) with some quaternary hydroxy amino phenols, Biochem. Pharmacol. 17: 525–532.Google Scholar
  218. Koelle, G. B., 1963, Cytological distributions and physiological functions of cholinesterases, in: Handbuch der Experimentellen Pharmakologie Erganzungswerk, Vol. XV ( G. B. Koelle, ed.), pp. 188–298, Springer, Berlin.Google Scholar
  219. Koelle, G. B., Koelle, E. S., and Friedenwald, J. S., 1950, The effect of inhibition of specific and non-specific cholinesterase on the mobility of the isolated ileum, J. Pharmacol. Exp. Ther. 100: 180–191.PubMedGoogle Scholar
  220. Koike, H., Eisenstadt, M., and Schwartz, J. H., 1972, Axonal transport of newly synthesized acetylcholine in an identified neuron of Aplysia, Brain Res. 37: 152–159.PubMedGoogle Scholar
  221. Kopin, I. J., Breese, G. R., Krauss, K. R., and Weise, V. K., 1968, Selective release of newly synthesized norepinephrine from the cat spleen during sympathetic nerve stimulation, J. Pharmacol. Exp. Ther. 161: 271–278.PubMedGoogle Scholar
  222. Kremzner, L. T., and Wilson, I. B., 1964, A partial characterization of acetyl cholinesterase, Biochemistry 31: 1902–1905.Google Scholar
  223. Krnjevic, K., and Mitchell, J. F., 1961, The release of acetylcholine in the isolated rat diaphragm, J. Physiol. 155: 246–263.PubMedGoogle Scholar
  224. Krnjevic, K., and Phillis, J. W., 1963a, Iontophoretic studies of neurones in mammalian cerebral cortex, J. Physiol. 165: 274–304.PubMedGoogle Scholar
  225. Krnjevic, K., and Phillis, J. W., 19636, Acetylcholine sensitive cells in the cerebral cortex, J. Physiol. 166: 296–327.Google Scholar
  226. Krnjevic, K., and Phillis, J. W., 1963c, Pharmacological properties of acetylcholine-sensitive cells in the cerebral cortex, J. Physiol. 166: 328–350.PubMedGoogle Scholar
  227. Kuriyama, K., Roberts, E., and Vos, J., 1968, Some characteristics of binding of y-amino- butyric acid and acetylcholine to a synaptic vesicle fraction from mouse brain, Brain Res. 9: 231–252.PubMedGoogle Scholar
  228. Kurokawa, M., Machiyama, Y., and Kato, M., 1963, Distribution of acetylcholine in the brain during various states of activity, J. Neurochem. 10: 341–348.PubMedGoogle Scholar
  229. Lapetina, E. G., Soto, E. F., and de Robertis, E., 1967, Gangliosides and acetylcholinesterase in isolated membranes of the rat brain cortex Biochim. Biophys. Acta 135: 33–43.Google Scholar
  230. Larrabee, M. G., and Leicht, W. S., 1965, Metabolism of phosphatidyl inositol and other lipids in active neurons of sympathetic ganglia and other peripheral nervous tissues: The site of the inositide effect, J. Neurochem. 12: 1–13.PubMedGoogle Scholar
  231. Lee, T. P., Kuo, J. F., and Greengard, P., 1972, Role of muscarinic cholinergic receptors in regulation of guanosine 3’:5’-cyclic monophosphate content in mammalian brain, heart muscle and intestinal smooth muscle, Proc. Natl. Acad. Sci. 69: 3287–3291.PubMedGoogle Scholar
  232. Lefresne, P., Guyenet, P., and Glowinski, J., 1973, Acetylcholine synthesis from (2-14C) pyruvate in rat striatal slices, J. Neurochem. 20: 1083–1097.PubMedGoogle Scholar
  233. Leuzinger, W., 1971, The number of catalytic sites in the acetylcholinesterase, Biochem. J. 123: 139–141.PubMedGoogle Scholar
  234. Leuzinger, W., and Baker, A. L., 1967, Acetylcholinesterase. I. Large-scale purification, homogeneity, and amino acid analysis, Proc. Natl. Acad. Sci. 57: 443–451.Google Scholar
  235. Leuzinger, W., Goldberg, M., and Cauvin, E., 1969, Molecular properties of acetylcholines-terases, J. Mol. Biol. 40: 217–225.PubMedGoogle Scholar
  236. Lewis, P. R., and Shute, C. C. D., 1966, The distribution of cholinesterase in cholinergic neurons demonstrated with the electron microscope, J. Cell. Sci. 1: 381–390.PubMedGoogle Scholar
  237. Liang, C. C., and Quastel, J. H., 1969a, Uptake of acetylcholine in rat brain cortex slices, Biochem. Pharmacol. 18: 1169–1185.Google Scholar
  238. Liang, C. C., and Quastel, J. H., 19696, Effects of drugs on the uptake of acetylcholine in rat brain cortex slices, Biochem. Pharmacol. 18: 1187–1194.Google Scholar
  239. Liley, A. W., 1956, The effect of presynaptic polarisation on the spontaneous activity at the mammalian neuromuscular junction, J. Physiol. 134: 427–443.PubMedGoogle Scholar
  240. Loewi, O., 1921, Uber humorale Ubertragbarkeit der Herznervenwirkung. I. Mittenlung, Pfluegers Arch. Ges. Physiol. 189: 239–242.Google Scholar
  241. Lubinska, L., and Niemierko, S., 1971, Velocity and intensity of bidirectional migration of acetylcholinesterase in transected nerves, Brain Res. 27: 329–342.PubMedGoogle Scholar
  242. Lunt, G. G., Canessa, O. M., and de Robertis, E., 1971, Association of the acetylcholine-phosphatidylinositol effect with a “receptor” proteolipid from cerebral cortex, Nature New Biol. 230: 187–189.PubMedGoogle Scholar
  243. Macintosh, F. C., 1941, The distribution of acetylcholine in the peripheral and the central nervous system, J. Physiol. 99: 436–442.PubMedGoogle Scholar
  244. Macintosh, F. C., 1959, Formation, storage and release of acetylcholine at nerve endings, Canad. J. Biochem. Physiol. 37: 343–356.PubMedGoogle Scholar
  245. Macintosh, F. C., 1961, Effect of HC-3 on acetylcholine turnover, Fed. Proc. 20: 562–568.Google Scholar
  246. Macintosh, F. C., and Perry, W. L. M., 1950, Biological estimation of acetylcholine, Meth. Med. Res. 3: 78–92.Google Scholar
  247. Malthe-Sorenssen, D., and Fonnum, F., 1972, Multiple forms of choline acetyltransferase in several species demonstrated by isoelectric focussing, Biochem. J. 127: 229–236.PubMedGoogle Scholar
  248. Mann, P. J. G., Tennenbaum, M., and Quastel, J. H., 1939, Acetylcholine metabolism in the central nervous system: The effects of potassium and other cations on acetylcholine liberations, Biochem. J. 33: 822–835.Google Scholar
  249. Mannervik, B., and Sörbo, B., 1970, Inhibition of choline acetyltransferase from bovine caudate nucleus by sulphydryl reagents and reactivation of inhibited enzyme, Biochem. Pharmacol. 19: 2509–2516.Google Scholar
  250. Marchbanks, R. M., 1967a, Compartmentation of acetylcholine in synaptosomes, Biochem. Pharmacol. 16: 921–923.Google Scholar
  251. Marchbanks, R. M., 19676, The osmotically sensitive potassium and sodium compartments of synaptosomes, Biochem. J. 104: 148–157.Google Scholar
  252. Marchbanks, R. M., 1968a, Exchangeability of radioactive acetylcholine of synaptosomes and synaptic vesicles, Biochem. J. 106: 87–95.PubMedGoogle Scholar
  253. Marchbanks, R. M., 19686, The uptake of (l4C)choline into synaptosomes in vitro, Biochem. J. 110: 533–541.Google Scholar
  254. Marchbanks, R. M., 1969a, The conversion of,4C~choline into,4C-acetylcholine in synapto-somes in vitro, Biochem. Pharmacol. 18: 1763–1766.Google Scholar
  255. Marchbanks, R. M., 19696, Biochemical organization of cholinergic nerve terminals in the cerebral cortex, in: Cellular Dynamics of the Neuron (S. H. Barondes, ed.), pp. 115–135, Academic Press, New York.Google Scholar
  256. Marchbanks, R. M., 1974, The isolation and study of synaptic vesicles, in: Research Methods in Neurochemistry ( N. Marks and R. Rodnight, eds.), pp. 79–98, Plenum Press, New York.Google Scholar
  257. Marchbanks, R. M., 1975, Subcellular fractionation in: Methods in Brain Research (P. B. Bradley, ed.), Wiley, Chichester, U.K., 113–172.Google Scholar
  258. Marchbanks, R. M., and Israël, M., 1971, Aspects of acetylcholine metabolism in the electric organ of Torpedo marmorata, J. Neurochem. 18: 439–448.PubMedGoogle Scholar
  259. Marchbanks, R. M., and Israël, M., 1972, The heterogeneity of bound acetylcholine and synaptic vesicles, Biochem. J. 129: 1049–1061.PubMedGoogle Scholar
  260. Marchbanks, R. M., and Israël, M., 1973, The association of recently synthesized acetyl-choline with synaptic vesicles, Trans. Biochem. Soc. 1: 131–134.Google Scholar
  261. Marchbanks, R. M., and Whittaker, V. P., 1969, Functional aspects of synaptosomes, in: Future of the Brain Sciences ( S. Bogoch, ed.), pp. 159–178, Plenum Press, New York.Google Scholar
  262. Marquardt, P. and Vogg, G., 1952, Uber einen emfindlichen Nachweis des cholins und Acetylcholins mit Hilfe von Tetraphenyl-bor-natrium, Hoppe-Seylers Z. Physiol. Chem. 291: 143–147.Google Scholar
  263. Martin, A. R., 1955, A further study of the statistical composition of the endplate potential, J. Physiol. 130: 114–122.PubMedGoogle Scholar
  264. Martin, A. R., 1966, Quantal nature of synaptic transmission, Physiol. Rev. 46: 51–66.Google Scholar
  265. Martin, K., 1969, Effects of quaternary ammonium compounds on choline transport in red cells, Brit. J. Pharmacol. 36: 458–469.Google Scholar
  266. Maslova, A. F., 1964, Quantitative determination of acetylcholine in biological materials by polarographic analysis, Vopr. Med. Khim. 10: 311–315. (In Russian.)Google Scholar
  267. Matsuda, T., Saito, K., Katsuki, S., Hata, F., and Yoshida, H., 1971. Studies on soluble protein released from the synaptic vesicles of rat brain cortex, J. Neurochem. 18: 713–719.PubMedGoogle Scholar
  268. Matthes, K., 1930, The action of blood on acetylcholine, J. Physiol. 70: 338–348.PubMedGoogle Scholar
  269. Matthies, W., Ranca, C. H., and Liebman, H., 1974, Changes in the acetylcholine content of different brain regions of the rat during a learning experiment, J. Neurochem., 23: 1109–1113.PubMedGoogle Scholar
  270. McCaman, R. E., and Hunt, J. M., 1965, Microdetermination of choline acetylase in nervous tissue, J. Neurochem. 12: 253–259.PubMedGoogle Scholar
  271. McCance, I., and Phillis, J. W., 1968, Cholinergic mechanisms in the cerebellar cortex, Int. J. Neuropharmacol. 7: 447–462.PubMedGoogle Scholar
  272. McCarty, L. P., Knight, A. S., and Chenoweth, M. B., 1973, Incorporation of (,4C)choline into phospholipids in the isolated phrenic nerve-diaphragm preparation of the rat, J. Neurochem. 20: 487–494.PubMedGoogle Scholar
  273. McGovern, S., Maguire, M. E., Gurd, R. S., Mahler, H. R., and Moore, W. J., 1973, Separation of adrenergic and cholinergic synaptosomes from rat brain, FEBS Letters 31: 193–197.PubMedGoogle Scholar
  274. McIntosh, C. H. S., and Plummer, D. T., 1973, Multiple form of acetylcholinesterase from pig brain, Biochem. J. 133: 655–665.PubMedGoogle Scholar
  275. McLennan, H., 1964, The release of acetylcholine and of 3-hydroxytyramine from the caudate nucleus, J. Physiol. 174: 152–161.PubMedGoogle Scholar
  276. McLennan, H., and York, D. H., 1966, Cholinergic mechanisms in the caudate nucleus, J. Physiol. 187: 163–175.PubMedGoogle Scholar
  277. McLennan, H., Curry, L., and Walker, R., 1963, The chromatographic behaviour of the acetylcholine activity of brain extracts, Biochem. J. 89: 163–166.PubMedGoogle Scholar
  278. Mendel, B., and Rudney, H., 1943, Studies on cholinesterase. 1. Cholinesterases and pseudo-cholinesterase, Biochem. J. 37: 59–63.Google Scholar
  279. Michaelson, I. A., and Whittaker, V. P., 1963, The subcellular localization of 5-hydroxytryptamine in guinea–pig brain, Biochem. Pharmacol. 12: 203–211.Google Scholar
  280. Miledi, R., 1961, From nerve to muscle, Discovery 22: 442–450.Google Scholar
  281. Miledi, R., 1973, Transmitter release induced by injection of calcium ions into nerve terminals, Proc. Roy. Soc. Lond. Ser. B 183: 421–425.Google Scholar
  282. Miledi, R., Molinoff, P., and Potter, L. T., 1971, Isolation of the cholinergic receptor protein of Torpedo electric tissue, Nature 229: 554–557.PubMedGoogle Scholar
  283. Miller, N. E., 1965, Chemical coding of behaviour in the brain, Science 148: 328–338.PubMedGoogle Scholar
  284. Mitchell, J. F., 1963, The spontaneous and evoked release of acetylcholine from cerebral cortex, J. Physiol. 165: 98–116.PubMedGoogle Scholar
  285. Mitchell, J. F., and Phillis, J. W., 1962, Cholinergic transmission in the frog spinal cord, Brit. J. Pharmacol. 19: 534–543.Google Scholar
  286. Molenaar, P. C., Polak, R. L., and Nickolson, V. J., 1973, Subcellular localization of newly-formed [3H]acetylcholine in rat cerebral cortex in vitro, J. Neurochem. 21: 667–678.Google Scholar
  287. Morris, D., 1966, The choline acetyltransferase of human placenta, Biochem. J., 98:754– 762.Google Scholar
  288. Morris, D., 1967, The effect of sulphydryl and other disulphide reducing agents on choline acetyltransferase activity estimated with synthetic acetyl-CoA, J. Neurochem. 14: 19–27.PubMedGoogle Scholar
  289. Morris, D., and Grewaal, D. S., 1971, Human placental choline acetyltransferase: Radiometric assay, inhibition by analogues of choline and isotopic exchange between choline and acetylcholine, Europ. J. Biochem. 22: 563–572.Google Scholar
  290. Morris, D., Maneckjee, A., and Hebb, C., 1971, The kinetic properties of human placental choline acetyltransferase, Biochem. J. 125: 857–863.PubMedGoogle Scholar
  291. Musick, J., and Hubbard, J. I., 1972, Release of protein from mouse motor nerve terminals, Nature 237: 279–280.PubMedGoogle Scholar
  292. Nachmansohn, D., 1968, Proteins in bioelectricity: The control of ion movements across excitable membranes, Proc. Natl. Acad. Sci. 61: 1034–1041.PubMedGoogle Scholar
  293. Nachmansohn, D., and Machado, A. L., 1943, The formation of acetylcholine. A new enzyme: “Choline acetylase,” J. Neurophysiol. 6: 397–403.Google Scholar
  294. Nakamura, R., Cheng. S.-C., and Naruse, H., 1970, A study of the precursors of the acetyl moiety of acetylcholine in brain slices, Biochem. J. 118: 443–450.Google Scholar
  295. Ogston, A. G., 1955, Removal of acetylcholine from a limited volume by diffusion, J. Physiol. 128: 222–223.PubMedGoogle Scholar
  296. Okamoto, M., Longenecker, H. E., Riker, W. F., and Song, S. K., 1971, Destruction of mammalian motor nerve terminals by black widow spider venom, Science 172: 733.PubMedGoogle Scholar
  297. Olivier, A., Parent, A., Simard, H., and Poirier, L. J., 1970, Cholinesterasic striatopallidal and striatonigral efferents in the cat and monkey, Brain Res. 18: 273–282.PubMedGoogle Scholar
  298. O’Neil, J. J., and Sakamoto, T., 1970, Enzymatic fluorometric determination of acetylcholine in biological extracts, J. Neurochem. 17: 1451–1460.Google Scholar
  299. Palay,S. L., 1956, Synapses in the central nervous system, J. Biophys. Biochem. Cytol. 2: 193–201.Google Scholar
  300. Partington, P., Feeney, J., and Burgen, A. S. V., 1972, The conformation of acetylcholine and related compounds in aqueous solution as studied by nuclear magnetic resonance spectroscopy, Mol. Pharmacol. 8: 269–277.Google Scholar
  301. Paton, W. D. M., 1957, The action of morphine and related substances on contraction and on acetylcholine output of coaxially stimulated guinea-pig ileum. Brit. J. Pharmacol. 11: 119–127.Google Scholar
  302. Pepeu, G., 1963, Effect of “tremorine” and some anti-parkinson’s disease drugs on acetylcholine in the rat’s brain, Nature 200: 895.PubMedGoogle Scholar
  303. Phillis, J. W., 1970, The Pharmacology of Synapses, Pergamon Press, Oxford.Google Scholar
  304. Phillis, J. W., and Chong, G. C., 1965, Acetylcholine release from the cerebral and cerebellar cortices: Its role in cortical arousal, Nature 207: 1253–1255.PubMedGoogle Scholar
  305. Phillis, J. W., and York, D. H., 1967, Cholinergic inhibition in the cerebral cortex, Brain Res. 5: 517–520.PubMedGoogle Scholar
  306. Polak, R. L., and Meeuws, M. M., 1966, The influence of atropine on the release and uptake of acetylcholine by the isolated cerebral cortex of the rat, Biochem. Pharmacol. 15: 989–992.Google Scholar
  307. Potter, L. T., 1967, A radiometric microassay of acetylcholinesterase, J. Pharmacol. Exp. Ther. 156: 500–506.PubMedGoogle Scholar
  308. Potter, L. T., 1968, Uptake of choline by nerve endings isolated from the rat cerebral cortex, in: The Interaction of Drugs and Subcellular Components on Animal Cells ( P. N. Campbell, ed.), pp. 293–304, Churchill, London.Google Scholar
  309. Potter, L. T., 1970, Synthesis, storage and release of (I4C)acetylcholine in isolated rat diaphragm muscles, J. Physiol. 206: 145–166.PubMedGoogle Scholar
  310. Potter, L. T., and Murphy, W., 1967, Electrophoresis of acetylcholine, choline and related compounds, Biochem. Pharmacol. 16: 1386–1389.Google Scholar
  311. Potter, L. T., Glover, V. A. S., and Saelens, J. K., 1968, Choline acetyltransferase from rat brain, J. Biol. Chem. 243: 3864–3870.PubMedGoogle Scholar
  312. Ranish, N., and Ochs, S., 1972, Fast axoplasmic transport of acetylcholinesterase in mam-malian nerve fibres, J. Neurochem. 19: 2641–2649.PubMedGoogle Scholar
  313. Reid, W. R., Haubrich, D. R., and Krishna, G., 1971, Enzymic radioassay for acetylcholine and choline in brain, Anal. Biochem. 42: 390–397.Google Scholar
  314. Richter, J. A., and Goldstein, A., 1970, Effects of morphine and levorphanol on brain acetylcholine content in mice, J. Pharmacol. Exp. Ther. 175: 685–691.PubMedGoogle Scholar
  315. Richter, J. A., and Marchbanks, R. M., 197la, Synthesis of radioactive acetylcholine from (3H)choline and its release from cerebral cortex slices in vitro, J. Neurochem. 18: 691–703.Google Scholar
  316. Richter, J. A., and Marchbanks, R. M., 19716, Isolation of f H)acetylcholine pools by subcellular fractionation of cerebral cortex slices incubated with (3H)choline, J. Neurochem. 18: 705–712.Google Scholar
  317. Shute, C. C. D., and Lewis, P. R., 1966, Cholinergic and monoaminergic pathways in the hypothalamus, Brit. Med. Bull. 22: 221–226.Google Scholar
  318. Silinsky, E., M., and Hubbard, J. I., 1973, Release of ATP from rat motor nerve terminals, Nature 243: 404–405.Google Scholar
  319. Rieger, F., Bon, S., Massoulie, J., and Cartaud, J., 1973, Observation par microscopic électronique des formes allongées et globulaires de l’acétylcholinestérase de gymnote (Electrophorus electricus), Europ. J. Biochem. 34: 539–547.Google Scholar
  320. Ritchie, A., and Goldberg, A. M., 1970, Vesicular and synaptoplasmic synthesis of acetyl-choline, Science 169: 489–490.PubMedGoogle Scholar
  321. Rodriguez de Lores, Arnaiz, G., Zieher, L. M., and de Robertis, E., 1970, Neurochemical and structural studies on the mechanism of action of hemicholinium-3 in central cholinergic synapses, J. Neurochem. 17: 221–229.Google Scholar
  322. Ross, L. L., Andreoli, V. M., and Marchbanks, R. M., 1971, A morphological and biochemical study of subcellular fractions of the guinea pig spinal cord, Brain Res. 25: 103–119.PubMedGoogle Scholar
  323. Saelens, J. K., Simke, J. P., Allen, M. P., and Conroy, C. A., 1973, Some dynamics of choline and acetylcholine metabolism in rat brain, Arch. Int. Pharmacodyn. 203:305– 312.Google Scholar
  324. Sato, S., Yoshida, H., Abe, H., and Tamiya, N., 1969, Properties and biosynthesis of a neurotoxic protein of the venoms of sea snakes Laticauda laticaudata and Laticauda colubrina, Biochem. J. 115: 85–90.Google Scholar
  325. Sattin, A., 1966, The synthesis and storage of acetylcholine in the striatum, J. Neurochem. 13: 515–524.PubMedGoogle Scholar
  326. Saunders, N. R., Dziegielewska, K., Haggendal, C. J., and Dahlstrom, A. B., 1973, Slow accumulation of choline acetyltransferase in crushed sciatic nerves of the rat, J. Neurobiol. 4: 95–103.PubMedGoogle Scholar
  327. Sawyer, C. H., and Hollinshead, W. H., 1945, Cholinesterases in sympathetic fibres and ganglia, J. Neurophysiol. 8: 137–153.Google Scholar
  328. Schacht, J., and Agranoff, B. W., 1974, Stimulation of hydrolysis of phosphatidic acid by cholinergic agents in guinea pig synaptosomes, J. Biol. Chem. 249: 1551–1557.PubMedGoogle Scholar
  329. Schaffer, N. K., May, S. C., and Summerson, W. H., 1954, Serine phosphoric acid from diisopropylphosphoryl derivative of eel cholinesterase, J. Biol. Chem. 206:201– 207.Google Scholar
  330. Schaumann, W., 1957, Inhibition by morphine of the release of acetylcholine from the intestine of the guinea pig, Brit. J. Pharmacol. 12: 115–127.Google Scholar
  331. Schrier, B. K., and Shuster, L., 1967, A simplified radiochémical assay for choline acetyltransferase, J. Neurochem. 141: 977–985.Google Scholar
  332. Schuberth, J., 1966, Choline acetyltransferase: Purification and effect of salts on the mechanism of the enzyme catalyzed reaction, Biochim. Biophys. Acta 122: 470–481.Google Scholar
  333. Schuberth, J., 1971, Measurement of choline acetylase, in: Analysis of Biogenic Amines and Their Related Enzymes ( D. Glick, ed.), pp. 275–296, Wiley, New York.Google Scholar
  334. Schuberth, J., and Sundwall, A., 1967, Effect of some drugs on the uptake of acetylcholine in cortex slices of mouse brain, J. Neurochem. 14: 807–812.Google Scholar
  335. Schuberth, J., Sundwall, A., Sorbo, B., and Lindell, J.-O., 1966, Uptake of choline by mouse brain slices, J. Neurochem. 13: 347–352.Google Scholar
  336. Sharkawi, M., 1972, Effect of some centrally acting drugs on acetylcholine synthesis by rat cerebral cortex slices, Brit. J. Pharmacol. 46: 473–479.Google Scholar
  337. Sharkawi, M., and Schulman, M. P., 1969, Relationship between acetylcholine synthesis and its concentration in rat cerebral cortex, Brit. J. Pharmacol. 36: 373–379.Google Scholar
  338. Shea, P. A., and Aprison, M. H., 1973, An enzymatic method for measuring picomole quantities of acetylcholine and choline in CNS tissue, Anal. Biochem. 56: 165–177.Google Scholar
  339. Sheridan, M. N., Whittaker, V. P., and Israel, M., 1966, The subcellular fractionation of the electric organ of Torpedo, Z. Zellforsch. 74: 291–307.Google Scholar
  340. Shute, C. C. D., and Lewis, P. R., 1963, Cholinesterase containing systems of the brain of the cat, Nature 199: 1160–1164.PubMedGoogle Scholar
  341. Silman, H. I., and Karlin, A., 1967, Effect of local pH changes caused by substrate hydrolysis on the activity of membrane bound acetylcholinesterase, Proc. Natl. Acad. Sci. 58: 1664–1668.PubMedGoogle Scholar
  342. Simpson, L. L., 1968, Effects of intraperitoneal injected botulinum toxin on rat cerebral cortex levels of acetylcholine, J. Neurochem. 15: 359–360.PubMedGoogle Scholar
  343. Smith, J. C., Cavallito, C. J., and Foldes, F. F., 1967, Choline acetyltransferase inhibition: A group of styryl-pyridine analogs, Biochem. Pharmacol. 16: 2438–2441.Google Scholar
  344. Sollenberg, J., and Sorbo, B., 1970, On the origin of the acetyl moiety of acetylcholine in brain studies with a differential labelling technique using 3H-14C mixed labelled glucose and acetate, J. Neurochem. 17: 201–209.PubMedGoogle Scholar
  345. Sparf, B., 1973, On the turnover of acetylcholine in the brain. Acta Physiol. Scand. Suppl. 397: 1–47.Google Scholar
  346. Stavinoha, W. B., and Ryan, L. C., 1965, Estimation of the acetylcholine content of rat brain by gas chromatography, J. Pharmacol. Exp. Ther. 150: 231–235.PubMedGoogle Scholar
  347. Stavinoha, W. B., Weintraub, S. T., and Modak, A. T., 1973, The use of microwave heating to inactivate cholinesterase in the rat brain prior to analysis for acetylcholine, J. Neurochem. 20: 361–371.PubMedGoogle Scholar
  348. Storm-Mathisen, J., 1970, Quantitative histochemistry of acetylcholinesterase in rat hip- pocampal region correlated to histochemical staining, J. Neurochem. 17: 739–750.PubMedGoogle Scholar
  349. Straughan, D. W., 1960, The release of acetylcholine from mammalian motor nerve endings, Brit. J. Pharmacol. 15: 417–424.Google Scholar
  350. Svensmark, O., 1961, Human serum cholinesterase as a sialo-protein, Acta Physiol. Scand. 52: 267–275.Google Scholar
  351. Szerb, J. C., 1962, The estimation of acetylcholine using leech muscle in a microbath, J. Physiol. 158: 8 P.Google Scholar
  352. Szerb, J. C., and Somogyi, G. T., 1973, Depression of acetylcholine release from cerebral cortreal slices by cholinesterase inhibition and by oxotremorine, Nature New Biol. 241: 121–122.PubMedGoogle Scholar
  353. Szerb, J. C., Malik, H., and Hunter, E. G., 1970, Relationship between acetylcholine content and release in the cats cerebral cortex, Canad. J. Physiol. Pharmacol. 48: 780–790.Google Scholar
  354. Szilagyi, P. I. A., Schmidt, D. E., and Green, J. P., 1968, Microanalytical determination of acetylcholine, other choline esters, and choline by pyrolysis gas chromatography, Anal. Chem. 40: 2009–2013.Google Scholar
  355. Szilagyi, P. I. A., Green, J. P., Monroe-Brown, O., and Margolis,S., 1972, The measurement of nanogram amounts of acetylcholine in tissues by pyrolysis gas chromatography, J. Neurochem. 19: 2555–2566.PubMedGoogle Scholar
  356. Takahashi, R., and Aprison, M. H., 1964, Acetylcholine content of discrete areas of the brain obtained by a near freezing method, J. Neurochem. 11: 887–898.PubMedGoogle Scholar
  357. Tammelin, L.-E., 1958, Methyl-fluoro-phosphorylcholines: Two synthetic cholinergic drugs and their tertiary homologues, Acta Chem. Scand. 1957: 859–865.Google Scholar
  358. Toru, M., and Aprison, M. H., 1965, Brain acetylcholine studies: A new extraction procedure, J. Neurochem. 13: 1533–1544.Google Scholar
  359. Toschi, G., 1959, A biochemical study of brain microsomes, Exp. Cell Res. 16: 232–255.Google Scholar
  360. Tucek, S., 1966, On subcellular localization and binding of choline acetyltransferase in cholinergic nerve endings of the brain, J. Neurochem. 13: 1317–1327.PubMedGoogle Scholar
  361. Tucek, S., 1967, Subcellular distribution of acetyl-CoA synthetase, ATP citrate lyase, citrate synthase, choline acetyltransferase, fumarate hydratase and lactate dehydrogenase in mammalian brain tissue, J. Neurochem. 14: 531–545.PubMedGoogle Scholar
  362. Ulmar, G., and Whittaker, V. P., 1974a, Immunohistochemical localization and immunoelec- trophoresis of cholinergic synaptic vesicle protein constituents from the Torpedo, Brain Res. 71: 155–159.PubMedGoogle Scholar
  363. Ulmar, G., and Whittaker, V. P., 19746, Immunological approach to the characterization of cholinergic vesicular protein, J. Neurochem. 22: 451–454.Google Scholar
  364. Umbreit, W. W., Burris, R. H., and Stauffer, J. F., 1964, Manometric Techniques 4th ed., Burgess, Minneapolis.Google Scholar
  365. White, H. L., and Cavallito, C. J., 1970. Choline acetyltransferase: Enzyme mechanism and mode of inhibition by a styrylpyridine analogue, Biochim. Biophys. Acta 206: 343–358.Google Scholar
  366. White, H. L., and Wu, J. C., 1973, Separation of apparent multiple forms of human brain choline acetyltransferase by isoelectric focussing, J. Neurochem. 21: 939–947.PubMedGoogle Scholar
  367. Whittaker, V. P., 1963, Identification of acetylcholine and related esters of biological origin, in Handbuch der Experimentellen Pharmakologie Erganzungswerk, Vol. XV ( G. B. Koelle, ed.), pp. 1–39, Springer, Berlin.Google Scholar
  368. Whittaker, V. P., 1965, The application of subcellular fractionation techniques to the study of brain function, Prog. Biophys. Mol. Biol. 15: 39–96.Google Scholar
  369. Whittaker, V. P., 1973, The biochemistry of synaptic transmission, Naturwissenschaften 60: 281–289.PubMedGoogle Scholar
  370. Whittaker, V. P., and Barker, L. A., 1972, The subcellular fractionation of brain tissue with special reference to the preparation of synaptosomes and their component organelles, in Methods of Neurochemistry, Vol. 2 ( R. Fried, ed.), pp. 1–52, Dekker, New York.Google Scholar
  371. Whittaker, V. P., and Sheridan, M. N., 1965, The morphology and acetylcholine content of isolated cerebral cortical synaptic vesicles, J. Neurochem. 12: 363–372.PubMedGoogle Scholar
  372. Whittaker, V. P., Michaelson, I. A., and Kirkland,R. J. A., 1964, The separation of synaptic vesicles from nerve ending particles (“synaptosomes”), Biochem. J., 90: 293–303.PubMedGoogle Scholar
  373. Whittaker, V. P., Essman, W. B., and Dowe, G. H. C., 1972, The isolation of pure cholinergic synaptic vesicles from the electric organs of elasmobranch fish of the family Torpedinidae, Biochem. J. 128: 833–846.Google Scholar
  374. Widlund, L., Karlsson, K. A., Winter, A., and Heilbronn, E., 1974, Immunochemical studies on cholinergic synaptic vesicles, J. Neurochem. 22: 455–457.PubMedGoogle Scholar
  375. Wiegandt, H., 1967, The subcellular localization of gangliosides in the brain, J. Neurochem. 14: 671–674.PubMedGoogle Scholar
  376. Wilson, I. B., 1951, Acetylcholinesterase. XI. Reversibility of tetraethyl pyrophosphate inhibition, J. Biol. Chem. 190: 111–117.PubMedGoogle Scholar
  377. Wilson, I. B., 1952, Acetylcholinesterase. XII. Further studies of binding forces, J. Biol. Chem. 197: 215–225.PubMedGoogle Scholar
  378. Wilson, I. B., 1960, Acetylcholinesterase, in: The Enzymes, Vol. 4 ( P. D. Boyer, H. Lardy, and K. Myrback, eds.), pp. 501–520, Academic Press, New York.Google Scholar
  379. Wilson, I. B., and Bergman, F., 1950a, Studies on cholinesterase. VII. The active surface of acetylcholine esterase derived from effects of pH on inhibitors, J. Biol Chem. 185: 479–489.PubMedGoogle Scholar
  380. Wilson, I. B., and Bergman, F., 19506, Acetylcholinesterase. VIII. Dissociation constants of the active groups, J. Biol. Chem. 186: 683–692.Google Scholar
  381. Wilson, I. B., Ginsburg, S., and Meislich, E. K., 1955, The reactivation of acetylcholinesterase inhibited by tetraethyl pyrophosphate and diisopropyl fluorophosphate, J. Am. Chem. Soc. 77: 4286–4291.Google Scholar
  382. Wilson, W. S., and Cooper, J. R., 1972, The preparation of cholinergic synaptosomes from bovine superior cervical ganglia, J. Neurochem. 19: 2779–2790.PubMedGoogle Scholar
  383. Wilson, W. S., Schulz, R. A., and Cooper, J. R., 1973, The isolation of cholinergic synaptic vesicles from bovine superior cervical ganglion and estimation of their acetylcholine content, J. Neurochem. 20: 659–667.PubMedGoogle Scholar
  384. Yagihara, Y., and Hawthorne, J. N., 1972, Effects of acetylcholine on the incorporation of (32P)orthophosphate in vitro into the phospholipids of nerve ending particles from guinea pig brain, J. Neurochem. 19: 355–367.PubMedGoogle Scholar
  385. Yagihara, Y., Beasdale, J. E., and Hawthorne, J. N., 1973, Effects of acetylcholine on the incorporation of (32P) orthophosphate in vitro into the phospholipids of subsynaptosomal membranes from guinea-pig brain, J. Neurochem. 21: 173–190.PubMedGoogle Scholar
  386. Yamamura, H. I., and Snyder, S. H., 1973, High affinity transport of choline into synaptosomes of rat brain, J. Neurochem. 21: 1355–1374.PubMedGoogle Scholar
  387. Zimmermann, H., and Whittaker, V. P., 1974a, Effect of electrical stimulation on the yield and composition of synaptic vesicles from the cholinergic synapses of the electric organ of Torpedo: A combined biochemical, electrophysiological and morphological study, J. Neurochem. 22: 435–450.PubMedGoogle Scholar
  388. Zimmermann, H., and Whittaker, V. P., 19746, Different recovery rates of the elec-trophysiological, biochemical and morphological parameters in the cholinergic synapses of the Torpedo electric organ after stimulation, J. Neurochem, 22: 1109–1114.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • R. M. Marchbanks
    • 1
  1. 1.Department of BiochemistryInstitute of PsychiatryLondonEngland

Personalised recommendations