5-Hydroxytryptamine and Other Indoles in the Central Nervous System

  • A. Richard Green
  • David G. Grahame-Smith
Part of the Handbook of Psychopharmacology book series (HBKPS, volume 3)


Although this review concentrates on the biochemistry and pharmacology of 5-hydroxytryptamine (5-HT) and related indolealkylamines in the central nervous system, any physiological role which these substances have occurs within the constraints of the gross anatomy, microanatomy, and ultrastructural organization of neuronal tissue. Consideration of their synthesis, compartmentation, release, inactivation, metabolism, and pharmacological action should when possible always take into account these structural constraints. As stated elsewhere, “The brain is not a plastic bag filled with a solution of diffusing neurohumors” (Grahame-Smith, 19736). The early studies of Amin et al. (1954) and Bogdanski et al. (1957) showed that 5-HT was unevenly distributed in the brain, and a great deal of work has been done to plot this regional distribution (see Erspamer, 1966; Dahlström et al., 1973).


Monoamine Oxidase Monoamine Oxidase Inhibitor Paradoxical Sleep Tryptophan Hydroxylase Brain Serotonin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aghajanian, G. K., and Asher, I. M., 1971, Histochemical fluorescence of raphe neurons: Selective enhancement by tryptophan, Science 172: 1159–1161.PubMedCrossRefGoogle Scholar
  2. Aghajanian, G. K., and Bloom, F., 1967, Localization of tritiated serotonin in rat brain by electron-microscopic autoradiography, J. Pharmacol. Exp. Ther. 156: 23–30.PubMedGoogle Scholar
  3. Aghajanian, G. K., and Haigler, H. J., 1973, Direct and indirect actions of LSD, serotonin and related compounds on serotonin-containing neurons in: Serotonin and Behavior (J. Barchas, and E. Usdin, Eds.) pp. 263–266, Academic Press, New York and London.Google Scholar
  4. Aghajanian, G. K., Foot, W. E., and Sheard, M. H., 1968, Lysergic acid diethylamide: Sensitive neuronal units in the midbrain raphe, Science 161: 706–708.PubMedCrossRefGoogle Scholar
  5. Aghajanian, G. K., Bloom, F. E., and Sheard, M. H., 1969, Electron microscopy of degeneration within the serotonin pathway of rat brain, Brain Res. 13: 266–273.PubMedCrossRefGoogle Scholar
  6. Ahlenius, S., Eriksson, H., Larsson, K., Modigh, K., and Sodersten, P., 1971, Mating behavior in the male rat treated with β-chlorophenylalanine methyl ester alone and in combination with pargyline, Psychopharmacologia 20: 383–388.PubMedCrossRefGoogle Scholar
  7. Airaksinen, E. M., 1971, Platelet-rich plasma 5-hydroxytryptamine, urinary 5-hydroxyindole acetic acid and tryptophan ingestion in mongols, J. Merit. Defic. Res. 15: 244–256.Google Scholar
  8. Airaksinen, E. M., 1973, Tryptophan and 5-hydroxytryptamine in Down’s syndrome, M.D. thesis, Department of Pharmacology, University of Helsinki, Finland.Google Scholar
  9. Airaksinen, E. M., 1974, Tryptophan treatment of infants with Down’s syndrome, Ann. Clin. Res., 6: 33–39.PubMedGoogle Scholar
  10. Airaksinen, E. M., and Airaksinen, M. M., 1972, The binding of tryptophan to plasma proteins and the rate of the inactivation of 5HT released from platelets in Down’s syndrome, Ann. Clin. Res. 4: 361–365.PubMedGoogle Scholar
  11. Airaksinen, E. M., and Kauko, K., 1973, Effect of probenecid on 5–hydroxyindoles in cerebrospinal fluid in Down’s syndrome, Ann. Clin. Res. 5: 392–394.PubMedGoogle Scholar
  12. Airaksinen, E. M., Airaksinen, M. M., and Pentikáinen, P., 1973, Fate of,4C-labelled tryptophan and 5-hydroxytryptophan in Down’s syndrome, Ann. Clin. Res. 5: 385–391.PubMedGoogle Scholar
  13. Alexander, F., Curtis, G. C., Sprince, H., and Crosley, A. P., 1963, l-Methionine and l-tryptophan feedings in non-psychotic and schizophrenic patients with and without tranylcypromine, J. Nerv. Ment. Dis. 137: 135–142.Google Scholar
  14. Algeri, S., and Costa, E., 1971. Physical dependence on morphine fails to increase serotonin turnover rate in rat brain, Biochem. Pharmacol. 20: 877–884.Google Scholar
  15. Alpers, H. S., and Himwich, H. E., 1969a, An in vitro study of the effects of tricyclic antidepressant drugs on the accumulation of C14 serotonin by rabbit brain, Biol. Psychiat. 1: 81–85.Google Scholar
  16. Alpers, H. S., and Himwich, H. E., 19696, Drug induced changes in the accumulation of C14-serotonin by rabbit brain slices, Fed. Proc. 28: 794.Google Scholar
  17. Alpers, H. S., and Himwich, H. E., 1972, The effects of chronic imipramine administration on rat brain levels of serotonin, 5–hydroxyindoleacetic acid, norepinephrine and dopamine, J. Pharmacol. Exp. Ther. 180: 531–538.PubMedGoogle Scholar
  18. Amin, A. H., Crawford, T.B.B., and Gaddum, J. H., 1954, The distribution of substance P and 5-hydroxytryptamine in the central nervous system of the dog. J. Physiol. 126: 596–618.PubMedGoogle Scholar
  19. Andén, N.-E., 1968, Discussion of serotonin and dopamine in the extrapyramidal system, Advan. Pharmacol. 6A: 347–349.Google Scholar
  20. Andén, N.-E., and Modigh, K., 1972, Effects of β-chlorophenylalanine and a monoamine oxidase inhibitor on the hydroxytryptamine in the spinal cord after transection, J. Neural Trans. 33: 211–222.CrossRefGoogle Scholar
  21. Andén, N.-E., Corrodi, K., and Hókfelt, T., 1968, Evidence for a central 5-hydroxytryptamine receptor stimulation by lysergic acid diethylamine, Brit. J. Pharmacol. 34: 1–7.Google Scholar
  22. Andén, N.-E., FuxÉ, K., and Henning, M., 1969, Mechanisms of noradrenaline and 5-hydroxytryptamine disappearance induced by a-methyl-dopa and a-methyl- metatyrosine, Europ. J. Pharmacol. 8: 302–309.Google Scholar
  23. Andén, N.-E., Corrodi, H., and FuxÉ, K., 1971, Hallucinogenic drugs of the indolealkylamine type and central monoamine neurons, J. Pharmacol. Exp. Ther. 179: 236–249.PubMedGoogle Scholar
  24. Angst, J., Weis, P., Grof, P., Baastrup, P. C., and Shou, M., 1970, Lithium prophylaxis in recurrent affective disorders, Brit. J. Psychiat. 116: 604–614.CrossRefGoogle Scholar
  25. Anton-Tay, F., and Wurtman, R. J., 1969, Regional uptake of 3H-melatonin from blood or cerebrospinal fluid by rat brain, Nature 221: 474–475.PubMedCrossRefGoogle Scholar
  26. Asberg, M., Bertilsson, L., Tuck, D., Cronholm, B., and Sjóqvist, F., 1973, Indoleamine metabolites in the cerebrospinal fluid of depressed patients before and during treatment with nortriptyline, Clin. Pharmacol. Ther. 14: 277–286.Google Scholar
  27. Ashcroft, G. W., and Sharman, D. F., 1960, 5-Hydroxyindoles in human cerebrospinal fluid, Nature 186: 1050–1051.Google Scholar
  28. Ashcroft, G. W., Eccleston, D., and Crawford, T. B. B., 1965,5-Hydroxyindole metabolism in rat brain: A study of intermediate metabolism using the technique of tryptophan loading, /. Neurochem. 12: 483–503.Google Scholar
  29. Ashcroft, G. W., Crawford, T. B. B., Eccleston, D., Sharman, D. F., McDougall, E. J., Stanton, J. B., and Binns, J. K., 1966,5-Hydroxyindole compounds in the cerebrospinal fluid of patients with psychiatric or neurological diseases, Lancet ii: 1049–1052.Google Scholar
  30. Ashcroft, G. W., Blackburn, I. M., Eccleston, D., Glen, A. I. M., Hartley, W., Kinloch, N. E., Lonergan, M., Murray, L. G., and Pullar, I. A., 1973, Changes on recovery in the concentrations of tryptophan and the biogenic amine metabolites in the cerebrospinal fluid of patients with affective illness, Psychol. Med. 3: 319–325.Google Scholar
  31. Axelrod, J., 1961, Enzymatic formation of psychotomimetic metabolites from normally occurring compounds, Science 134: 343.PubMedCrossRefGoogle Scholar
  32. Axelrod, J., 1962, The enzymatic N-methylation of serotonin and other amines, J. Pharmacol. Exp. Ther. 138: 28–33.PubMedGoogle Scholar
  33. Axelrod, J., and Inscoe, J. K., 1963, The uptake and binding of circulating serotonin and the effect of drugs, J. Pharmacol. Exp. Ther. 141: 161–165.PubMedGoogle Scholar
  34. Axelrod, J., and Weissbach, H., 1961, Purification and properties of hydroxyindole-O-methyl transferase, J. Biol. Chem. 236: 211–213.PubMedGoogle Scholar
  35. Axelrod, J., and Wurtman, R. J., 1968, Photic and neural control of indoleamine metabolism in the rat pineal gland, Advan. Pharmacol. 6A: 157–166.Google Scholar
  36. Axelrod, J., Quay, W. B., and Baker, P. C., 1965, Enzymatic synthesis of the skin-lightening agent, melatonin, in amphibians, Nature 208: 386.PubMedCrossRefGoogle Scholar
  37. Azmitia, E. C., and McEwen, B. S., 1969, Corticosterone regulation of tryptophan hydroxylase in midbrain of the rat, Science 166: 1274–1276.PubMedCrossRefGoogle Scholar
  38. Baastrup, P. C., Poulsen, J. C., Shou, M., Thomsen, K., and Amdisen, A., 1970, Prophylactic lithium: Double blind discontinuation in manic-depressive and recurrent depressive disorders, Lancet ii: 326–330.Google Scholar
  39. Banerjee, S. P., and Snyder, S. H., 1973, Methyltetrahydrofolic acid mediates N- and O-methylation of biogenic amines, Science 182: 74–75.PubMedCrossRefGoogle Scholar
  40. Bapna, J., Neff, N. H., and Costa, E., 1971, A method for studying norepinephrine and serotonin metabolism in small regions of rat brain; effect of ovariectomy on amine metabolism in anterior and posterior hypothalamus, Endocrinology 89:1345– 1349.Google Scholar
  41. Barkai, A., Glusman, M., and Rapport, M. M., 1972, Serotonin turnover in the intact cat brain, J. Pharmacol. Exp. Ther. 138: 28–35.Google Scholar
  42. Barofsky, I., and Feldstein, A., 1969, Serotonin and its metabolites; their respective roles in the production of hypothermia in mouse, Experientia 26: 990–991.CrossRefGoogle Scholar
  43. Baumgarten, H. G., and Lachenmayer, L., 1972a, Chemically induced degeneration of indoleamine-containing nerve terminals in rat brain, Brain. Res. 38: 228–232.Google Scholar
  44. Baumgarten, H. G., and Lachenmayer, L., 19726, 5,7-Dihydroxytryptamine: Improvement in chemical lesioning of indoleamine neurons in the mammalian brain, Z. Zellforsch. 135: 399–414.Google Scholar
  45. Baumgarten, H. G., and Schlossberger, H. G., 1973, Effect of 5,6-dihydroxytryptamine on brain monoamine neurons in the rat, \n: Serotonin and Behavior (J. Barchas and E. Usdin, Eds.), pp. 209–224, Academic Press, New York and London.Google Scholar
  46. Baumgarten, H. G., Bjorklund, A., Lachenmayer, L., Nobin, A., and Stenevi, V., 1971, Long lasting selective depletion of brain serotonin by 5,6-dihydroxytryptamine, Acta Physiol. Scand. Suppl. 373: 1–16.Google Scholar
  47. Baumgarten, H. G., Evetts, K. D., Holman, R. B., Iversen, L. L., Vogt, M., and Wilson, G., 1972a, Effects of 5,6-dihydroxytryptamine on monoaminergic neurons in the central nervous system of the rat, /. Neurochem. 19: 1587–1597.CrossRefGoogle Scholar
  48. Baumgarten, H. G., Lachenmayer, L., and Schlossberger, H. G., 19726, Evidence for a degeneration of indoleamine containing nerve terminals in rat brain, induced by 5,6- dihydroxytryptamine, Z. Zellforsch. 125: 553–569.Google Scholar
  49. Baumgarten, H. G., Lachenmayer, L., Bjorklund, A., Nobin, A., and Rosengren, E., 1973a, Long term recovery of serotonin concentrations in the rat CNS following 5,6- dihydroxytryptamine, Life Sci. 12: 357–364.CrossRefGoogle Scholar
  50. Baumgarten, H. G., Victor, S. J., Lovenberg, W., 19736, Effect of intraventricular injection of 5,7-dihydroxytryptamine on regional tryptophan hydroxylase in rat brain, J. Neurochem. 21: 251–253.Google Scholar
  51. Bazelon, M., Paine, R. S., Cowie, V. A., Hunt, P., Houck, J. C., and Mahanard, D., 1967, Reversal of hypotonia in infants with Down’s syndrome by administration of 5-hydroxytryptophan, Lancet i: 1130 — 1133.Google Scholar
  52. Bender, D. A., and Coulson, W. F., 1972, Variations in aromatic amino acid decarboxylase activity towards DOPA and 5-hydroxytryptophan caused by pH changes and denaturation, J. Neurochem 19: 2801–2810.PubMedCrossRefGoogle Scholar
  53. Benson, P. F., and Southgate, J., 1971, Diminished activity of platelet monoamine oxidase in Down’s syndrome, Am. J. Hum. Genet. 23: 211–214.PubMedGoogle Scholar
  54. Bertler, A., Falck, B., and Owman, C., 1964, 5-Hydroxytryptamine stores in pineal gland of rat, Acta Physiol. Scand. Suppl. 239: 1–18.Google Scholar
  55. Biel, J. H., Nuhfer, P. A., and Conway, A. C., 1959, Structure and activity relationships of monoamine oxidase inhibitors, Ann. N. Y. Acad. Sci. 80: 568–582.PubMedCrossRefGoogle Scholar
  56. Bjorklund, A., and Falck, B., 1969, Histochemical characterization of a tryptamine-like substance stored in cells of the mammalian adenohypophysin, ACTA Physiol. Scand. 77: 475–489.PubMedCrossRefGoogle Scholar
  57. Bjorklund, A., Falck, B., and Stenevi, U., 1970, On the possible existence of a new intraneuronal monoamine in the spinal cord of the rat, J. Pharmacol. Exp. Ther. 175: 525–532.PubMedGoogle Scholar
  58. Bjorklund, A., Falck, B., and Stenevi, U., 1971a, Classification of monoamine neurones in the rat mesencephalon: distribution of a new monoamine neurone system, Brain Res. 32: 269–285.PubMedCrossRefGoogle Scholar
  59. Bjorklund, A., Falck, B., and Stenevi, V., 19716, Microspectrofluorimetric characterisation of monoamines in the central nervous system: Evidence for a new neuronal monoamine- like compound, Prog. Brain Res. 34: 63–73.Google Scholar
  60. Bjorklund, A., Nobin, A., and Stenevi, U., 1973a, Effects of 5,6-dihydroxytryptamine on nerve terminal serotonin and serotonin uptake in the rat brain, Brain Res. 53: 117–127.PubMedCrossRefGoogle Scholar
  61. Bjorklund, A., Nobin, A., and Stenevi, U., 19736, Regeneration of central serotonin neurons after axonal degeneration induced by 5,6-dihydroxy tryptamine, Brain Res. 50: 214–220.Google Scholar
  62. Blackburn, K. J., French, P. C., and Merrills, R. J., 1967, 5-Hydroxytryptamine uptake by rat brain in vitro, Life Sci. 6: 1653–1663.Google Scholar
  63. Blackwell, B., 1963, Hypertensive crisis due to monoamine oxidase inhibitors, Lancet ii: 849 — 851.Google Scholar
  64. Blackwell, B., and Marley, E., 1964, Interaction between cheese and monoamine oxidase inhibitors in rats and cats, Lancet i: 530–531.Google Scholar
  65. Blackwell, B., and Marley, E., 1966, Interactions of cheese and of its constituents with monoamine oxidase inhibitors, Brit. J. Pharmacol. 26: 120–141.Google Scholar
  66. Blaschko, H., 1952, Amine oxidase and ephedrine, J. Physiol. 93: 7 P.Google Scholar
  67. Blaschko, H., and Crusciel, T. L., 1960, The decarboxylation of amino acids related to tyrosine and their awakening action in reserpine-treated mice, J. Physiol. 151: 272–284.PubMedGoogle Scholar
  68. Bliss, E. L., and Ailion, J., 1970, The effect of lithium upon brain monoamines, Brain Res. 24: 305–310.PubMedCrossRefGoogle Scholar
  69. Bliss, E. L., Ailion, J., and Zwanziger, J., 1968, Metabolism of norepinephrine, serotonin and dopamine in rat brain with stress, J. Pharmacol. Exp. Ther. 164: 122–134.PubMedGoogle Scholar
  70. Bloom, F. E., Algeri, S., Gropetti, A., Revuelta, A., and Costa, E., 1969, Lesions of central norepinephrine terminals with 6-hydroxydopamine: Biochemistry and fine structure, Science 166: 1284–1286.PubMedCrossRefGoogle Scholar
  71. Bloom, F. E., Hoffer, B. J., Siggins, G. R., Barker, J. L., and Nicoll, R. A., 1972, Effects of serotonin on central neurons—Microiontophoretic administration, Fed. Proc. 31: 97–106.Google Scholar
  72. Bloom, F. E., Hoffer, B. J., Nelson, C., Sheu, Y.-S., and Siggins, G. R., 1973, The physiology and pharmacology of serotonin mediated synapses in: Serotonin and Behavior (J. Barchas and E. Usdin, Eds.), pp. 249–261, Academic Press, New York and London.Google Scholar
  73. Bogdanski, D. F., Weissbach, H., and Udenfriend, S., 1957, The distribution of serotonin, 5-hydroxy tryptophan decarboxylase and monoamine oxidase in brain, J. Neurochem. 1: 272–278.PubMedCrossRefGoogle Scholar
  74. Boullin, D. J., 1975, The relationship between platelet and brain 5-hydroxytryptamine in mongolism, in: Metabolism of 5-Hydroxytryptamine in Mongolism (D. J. Boullin, ed.), Proc. 3rd Int. Congr. Int. Assoc. Sci. Study Ment. Defic., Netherlands, in press.Google Scholar
  75. Boullin, D. J., and O’Brien, R. A., 1971, Abnormalities of 5-hydroxytryptamine uptake and binding by blood platelets from children with Down’s syndrome, J. Physiol. 212: 287–297.PubMedGoogle Scholar
  76. Boullin, D. J., and O’Brien, R. A., 1973, The metabolism of 5-hydroxytryptamine by blood platelets from children with mongolism, Biochem. Pharmacol. 22: 1647–1651.Google Scholar
  77. Boullin, D. J., Coleman, M., and O’Brien, R. A., 1969, Defective binding of 5-HT by blood platelets from children with the trisomy 21 form of Down’s syndrome, J. Physiol. 204: 128–129.Google Scholar
  78. Bourne, H. R., Bunney, W. E., Colburn, R. W., Davis, J. M., Davis, J. N., Shaw, D. M., and Coppen, A., 1968, Noradrenaline, 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in the hindbrains of suicidal patients, Lancet ii: 805–808.Google Scholar
  79. Bowers, M. B., Heringer, G. R., and Gerbode, F., 1969, Cerebrospinal fluid 5-hydroxyindoleacetic acid and homovanillic acid in psychiatric patients, Int. J. Neurophar- macol. 8: 255–262.CrossRefGoogle Scholar
  80. Bradley, P. B., 1972, Mechanism of action of psychotominetic drugs, in: V Int. Congr. Pharmacol. ( San Francisco), abst. 167.Google Scholar
  81. Bradley, P. B., Wolstencroft, J. H., Hosli, L., and Avanzino, G. L., 1966, Neuronal basis for the central action of chlorpromazine, Nature 212: 1425–1427.PubMedCrossRefGoogle Scholar
  82. Breese, G. R., and Traylor, T. D., 1970, Effect of 6-hydroxdopamine on brain norepinephrine and dopamine: Evidence for selective degeneration of catecholamine neurons, J. Pharmacol. Exp. Ther. 174: 413–420.PubMedGoogle Scholar
  83. Brodie, B. B., and Shore, P. D., 1957, A concept for the role of serotonin and norepinephrin as chemical mediators in the brain, Ann. N.Y. Acad. Sci. 66: 631–642.PubMedCrossRefGoogle Scholar
  84. Brodie, B. B., Kuntzman, R., Hirsch, C. W., and Costa, E., 1962, Effects of decarboxylase inhibition on the biosynthesis of brain monoamines, Life Sci. 1: 81–84.PubMedCrossRefGoogle Scholar
  85. Brodie, B. B., Comer, M. S., Costa, E., and Dlabac, A., 1966, The role of brain serotonin in the mechanism of the central action of reserpine, J. Pharmacol. Exp. Ther. 152: 340–349.PubMedGoogle Scholar
  86. Bruinvels, J., 1972, Inhibition of the biosynthesis of 5-hydroxytryptamine in rat brain by imipramine, Europ. J. Pharmacol. 20: 231–237.Google Scholar
  87. Brune, G. G., and Himwich, H. E., 1962, Effects of methionine loading on the behavior of schizophrenic patients, J. Nerv. Ment. Dis. 134: 447–450.PubMedCrossRefGoogle Scholar
  88. Bulat, M., and Zivkovic, B., 1971, Origin of 5-hydroxyindoleacetic acid in the spinal fluid, Science 173: 738–740.PubMedCrossRefGoogle Scholar
  89. Burkard, W. P., Gey, K. F., and Pletscher, A., 1962a, Differentiation of monoamine oxidase and diamine oxidase, Biochem. Pharmacol. 11: 177–182.Google Scholar
  90. Burkard, W. P., Gey, K. F., and Pletscher, A., 19626, A new inhibitor of decarboxylase of aromatic amino acids, Experientia 18: 411–412.Google Scholar
  91. Burkard, W. P., Pavlin, R., Pletscher, A., and Gey, K. F., 1962c, Effect of psychotropic drugs on decarboxylase of aromatic amino acids in rat brain, Int. J. Neuropharmacol. 1: 233–237.CrossRefGoogle Scholar
  92. Cade, J. F. J., 1949, Lithium salts and the treatment of psychotic excitement, Med. J. Aust. 36: 349–352.Google Scholar
  93. Callingham, B. A., and Corte, D., 1972, The influence of growth and of adrenalectomy upon some rat heart enzymes, Brit. J. Pharmacol. 46: 530–531.Google Scholar
  94. Canal, N., and Ornesi, A., 1961, La serotoninaquale agente ipertermizzante, Atti. Accad. Med. (Lombardi) 16: 64–69.Google Scholar
  95. Cardinali, D. P., and Wurtman, R. J., 1972, Hydroxyindole-O-methyltransferases in rat pineal, retina and Harderian gland, Endocrinology 91: 247–252.PubMedCrossRefGoogle Scholar
  96. Cardinali, D. P., Hyyppa, M. D., and Wurtman, R. J., 1973, Fate of intracisternally injected melatonin in the rat brain, Neuroendocrinology 12: 30–40.PubMedCrossRefGoogle Scholar
  97. Carlsson, A., Corrodi, H., Fuxe, K., and Hokfelt, T., 1969a, Effects of some antidepressant drugs on the depletion of intraneuronal brain catecholamine stores caused by 4,a- dimethylmeta-tyramine, Europ. J. Pharmacol. 5: 367–373.Google Scholar
  98. Carlsson, A., Corrodi, H., Fuxe, K., and Hokfelt, T., 1969b, Effect of antidepressant drugs on the depletion of intraneuronal brain 5-hydroxytryptamine stores caused by 4-methyl-a- ethyl-meta-tyramine, Europ. J. Pharmacol. 5: 357–366.Google Scholar
  99. Carlsson, A., Bedard, P., Lindqvist, M., and Magnusson, T., 1972, The influence of nerve impulse flow on the synthesis and metabolism of 5-hydroxytryptamine in the central nervous system, in: Neurotransmitters and Metabolic Regulation ( R. M. S. Smellie, ed.), Biochemical Society, London.Google Scholar
  100. Carlsson, A., Lindqvist, M., Magnusson, T., and Atack, C., 1973, Effect of acute transection on the synthesis and turnover of 5-HT in the rat spinal cord, Naunyn-Schmiedebergs Arch. Pharmakol. 277: 1–12.Google Scholar
  101. Cattabeni, F., Koslow, S. H., and Costa, E., 1972, Gas chromatographic mass spectrometric assay of four indole alkylamines in rat pineal, Science 178: 166–168.PubMedCrossRefGoogle Scholar
  102. Chang, H. S. I., and Gaddum, J. H., 1933, Choline esters in tissue extracts, J. Physiol. 79: 255–285.PubMedGoogle Scholar
  103. Chase, T. N., Katz, R. I., and Kopin, I. J., 1969, Release of (3H) serotonin from brain, J. Neurochem. 16: 607–615.PubMedCrossRefGoogle Scholar
  104. Cheney, D. L., and Goldstein, A., 1971, The effect of β-chlorophenylalanine on opiate- induced running, analgesia, tolerance and physical dependence in mice, J. Pharmacol. Exp. Ther. 177: 309–315.PubMedGoogle Scholar
  105. Cheney, D. L., Goldstein, A., Algeri, S., and Costa, E., 1971, Narcotic tolerance and dependence: Lack of relationship with brain serotonin turnover, Science 171:1169- 1171.Google Scholar
  106. Christenson, J. G., Dairman, W., and Udenfriend, S., 1972, On the identity of DOPA decarboxylase and 5-hydroxytryptophan decarboxylase, Proc. Natl. Acad. Sci. 69: 343–347.PubMedCrossRefGoogle Scholar
  107. Civen, M., and Knox, W. E., 1960, The specificity of tryptophan analogues as inducers, substrates, inhibitors and stabilizers of liver tryptophan pyrrolase, J. Biol. Chem. 235: 1716–1718.PubMedGoogle Scholar
  108. Clark, C. T., Weissbach, H., and Udenfriend, S., 1954,5-Hydroxytryptophan decarboxylase: Preparation and properties, /. Biol Chem. 210: 139–148.Google Scholar
  109. Clineschmidt, B. V., Pierce, J. E., and Lovenberg, W., 1971, Tryptophan hydroxylase and serotonin in the spinal cord and brainstem before and after chronic transection, J. Neurochem. 18: 1593–1596.PubMedCrossRefGoogle Scholar
  110. Cohen, S. R., and Lajtha, A., 1972, Amino acid transport, in: Handbook of Neurochemistry, Vol. 7 ( A. Lajtha, ed.), pp. 543–573, Plenum Press, New York.CrossRefGoogle Scholar
  111. Collins, G. G. S., Youdim, M. B. H., and Sandler, M., 1972, Multiple forms of monoamine oxidase. Comparison of in vitro and in vivo inhibition patterns, Biochem. Pharmacol. 21: 1995–1998.Google Scholar
  112. Coppen, A., 1973, Role of serotonin in affective disorders, in: Serotonin and Behavior ( J. Barchas and E. Usdin, eds.), pp. 523–527, Academic Press, New York and London.Google Scholar
  113. Coppen, A., Shaw, D. M., and Farrell, J. P., 1963, Potentiation of the antidepressive effect of a monoamine oxidase inhibitor by tryptophan, Lancet i: 79–81.Google Scholar
  114. Coppen, A., Noguera, R., Bailey, J., Burns, B. M., Swarin, M. S., Hare, E. M., Gardner, R., and Maggs, R., 1971, Prophylactic lithium in affective disorders, Lancet ii: 275–279.Google Scholar
  115. Corrodi, H., and Fuxe, K., 1968, The effect of imipramine on central monoamine neurons, J. Pharm. Pharmacol. 20: 230–231.PubMedCrossRefGoogle Scholar
  116. Corrodi, H., and Jonsson, G., 1967, The formaldehyde fluorescence method for the histochemical demonstration of biogenic monoamines: A review on the methodology, J. Histochem. Cytochem. 15: 65–72.CrossRefGoogle Scholar
  117. Corrodi, H., Fuxe, K., and Hokfelt, T., 1967, The effect of some psychoactive drugs on central monoamine neurons, Europ. J. Pharmacol. 1: 363–368.Google Scholar
  118. Corrodi, H., Fuxe, K., and Hokfelt, T., 1968, The effect of immobilisation stress on the activity of central monoamine neurons, Life Sci. 7: 107–112.PubMedCrossRefGoogle Scholar
  119. Corrodi, H., Fuxe, K., and Schou, M., 1969, The effect of prolonged lithium administration on cerebral monoamine neurons in the rat, Life Sci. 8: 643–651.PubMedCrossRefGoogle Scholar
  120. Costa, E., 1968, Turnover rate of neuronal monoamines: Pharmacological implications, in: The Present Status of Psychotropic Drugs (Proc. VI Int. Congr. CINP), Excerpta Med. 180: 11–35.Google Scholar
  121. Costa, E., 1970, Simple neuronal models to estimate turnover rate of noradrenergic transmitters in vivo. Advan. Biochem. Psychopharmacol. 2: 169–204.Google Scholar
  122. Costa, E., and Neff, N. H., 1970, Estimation of turnover rates to study the metabolic regulation of the steady-state level of neuronal monoamines, in: Handbook of Neurochemistry ( A. Lajtha, ed.), pp. 45 - 90, Plenum Press, New York.Google Scholar
  123. Costa, E., and Sandler, M., 1972, Monoamine oxidases—New vistas, Advan. Biochem. Psychopharmacol. 5: 1–454.Google Scholar
  124. Costa, E., Lefevre, H., Meek, J., Revuelta, A., Spano, F., Strada, S., and Daly, J.., 1972a, Serotonin and catecholamine concentrations in brain of rats injected intracerebrally with 5,6-dihydroxytryptamine, Brain Res. 44: 304–308.PubMedCrossRefGoogle Scholar
  125. Costa, E., Green, A. R., Koslow, S. H., Lefevre, H. F., Revuelta, A. V., and Wang, C., 19726, Dopamine and norepinephrine in noradrenergic axons: A study in vivo of their precursor product relationship by mass fragmentography and radiochemistry, Pharmacol. Rev. 24: 167–190.Google Scholar
  126. Cotzias, G. C., Papavasiliou, P. S., and Gellene, R., 1969, Modification of parkinsonism: Chronic treatment with l-dopa, N. Engl. J. Med. 280: 337–345.PubMedCrossRefGoogle Scholar
  127. Curzon, G., 1965, The biochemistry of depression, in: Biochemical Aspects of Neurological Disorders, 2nd ser. ( J. N. Cumings and M. Kremer, eds.), pp. 257–270, Blackwell, Oxford.Google Scholar
  128. Curzon, G., 1969, Tryptophan pyrrolase—A biochemical factor in depressive illness? Brit. J. Psychiat. 115: 1367–1374.CrossRefGoogle Scholar
  129. Curzon, G., and Green, A. R., 1968, Effect of hydrocortisone on rat brain 5-hydroxytryptamine, Life Sci. 7: 657–663.CrossRefGoogle Scholar
  130. Curzon, G., and Green, A. R., 1969, Effects of immobilization on rat liver tryptophan pyrrolase and brain 5-hydroxytryptamine metabolism, Brit. J. Pharmacol. 37: 689–697.Google Scholar
  131. Curzon, G., and Green, A. R., 1971, Regional and subcellular changes in the concentration of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in the rat brain caused by hydrocortisone, dl-a-methyl tryptophan l-kynurenine and immobilization, Brit. J. Pharmacol. 43: 39–52.Google Scholar
  132. Curzon, G., Gumpert, E. J. W., and Sharpe, D. M., 1971, Amine metabolites in the lumbar cerebrospinal fluid of humans with restricted flow of cerebrospinal fluid, Nature New Biol. 231: 189–191.PubMedGoogle Scholar
  133. Curzon, G., Joseph, M. H., and Knott, P. J., 1972, Effects of immobilisation and food deprivation on rat brain tryptophan metabolism, J. Neurochem. 19: 1967–1974.PubMedCrossRefGoogle Scholar
  134. Curzon, G., Friedel, J., and Knott, P. J., 1973, The effect of fatty acids on the binding of tryptophan to plasma protein, Nature 242: 198–200.PubMedCrossRefGoogle Scholar
  135. Dahlstrom, A., Haggendal, J., and Atack, C., 1973, Localisation and transport of serotonin, in: Serotonin and Behavior ( J. Barchas and E. Usdin, eds.), pp. 87–96, Academic Press, New York and London.Google Scholar
  136. Daly, J., Fuxe, K., and Jonsson, G., 1973, Effects of intracerebral injections of 5,6- dihydroxytryptamine on central monoamine neurons: Evidence for selective degeneration of central 5-hydroxytryptamine neurons, Brain Res. 49: 476–482.PubMedCrossRefGoogle Scholar
  137. Da Prada, M., and Pletscher, A., 1968, Isolated 5-hydroxytryptamine organelles of rabbit blood platelets: Physiological properties and drug induced changes, Brit. J. Pharmacol. 34: 591–597.Google Scholar
  138. Da Prada, M., Carruba, M., O’Brien, R. A., Saner, A., and Pletscher, A., 1972, The effect of 5,6-dihydroxytryptamineon sexual behavior of male rats, Europ. J. Pharmacol. 19: 288–290.Google Scholar
  139. Davis, V. E., Huff, J. A., and Brown, H., 1966, Free and conjugated serotonin excretion in carcinoid syndrome, Clin. Chim. Acta 13: 390–402.Google Scholar
  140. Davis, V. E., Brown, H., Huff, J. A., and Cashaw, J. L., 1967, The alteration of serotonin metabolism to 5-hydroxytryptophol by ethanol injestion in man, J. Lab. Clin. Med. 69: 132–140.PubMedGoogle Scholar
  141. Deguchi, T., and Axelrod, J., 1972, Control of circadian change of serotonin N-acetyltransfer- ase activity in the pineal organ by the β-adrenergic receptor, Proc. Natl. Acad. Sci. 69: 2547–2550.PubMedCrossRefGoogle Scholar
  142. Deguchi, T., and Barchas, J., 1971, Inhibition of transmethylations of biogenic amines by S-adenosyl-homocysteine, J. Biol. Chem. 246: 3175–3181.PubMedGoogle Scholar
  143. Deguchi, T., and Barchas, J. D., 1972, Regional distribution and developmental change of tryptophan hydroxylase activity in the rat brain, J. Neurochem. 19: 927–929.PubMedCrossRefGoogle Scholar
  144. Deguchi, T., and Barchas, J. D., 1973, Comparative studies on the effect of para- chlorophenylalanine on hydroxylation of tryptophan in pineal and brain of rat, in -.Serotonin and Behavior (J. Barchas and E. Usdin, Eds.), pp. 33–48, Academic Press, New York and London.Google Scholar
  145. Dencker, S. J., Malm, U., Roos, B.-E., and Werdinius, B., 1966, Acid monoamine metabolites of cerebrospinal fluid in mental depression and mania, J. Neurochem 13: 1545–1548.PubMedCrossRefGoogle Scholar
  146. De Schaepdryver, A., Preziosi, P., and Scapagnini, U., 1969, Brain monoamines and adrenocortical activation, Brit. J. Pharmacol. 35: 460–467.Google Scholar
  147. Dewhurst, W. G., 1968, New theory of cerebral amine function and its clinical application, Nature 218: 1130–1133.PubMedCrossRefGoogle Scholar
  148. Diaz, P. M., Ngai, S. H., and Costa, E., 1968, Factors modulating brain serotonin turnover, Advan. Pharmacol. 6B: 75–92.Google Scholar
  149. Duncan, R. J. S., and Tipton, K. F., 1971, The purification and properties of the NAD-linked aldehyde dehydrogenase from pig brain, Europ. J. Biochem. 22: 257–262.Google Scholar
  150. Eccleston, D., Moir, A. T. B., Reading, H. W., and Ritchie, I. M., 1966, Formation of 5-hydroxytryptophol in brain in vitro, Brit. J. Pharmacol. Chemother. 28: 367–377.Google Scholar
  151. Eccleston, D., Reading, W. H., and Ritchie, I. M., 1969,5-Hydroxytryptamine metabolism in brain and liver slices and effects of ethanol, J. Neurochem. 16: 274–276.Google Scholar
  152. Efron, D. H., 1968, Psychopharmacology: A Review of Progress, 1957-1967, U.S. Public Health Service Publication 1836, Washington, D.C.Google Scholar
  153. Efron, D. H., and Kety, S. S., 1966, Antidepressant Drugs of the Non-MAO Inhibitor Type: Proceedings of a Workshop, U.S. Department of Health, Education, and Welfare, Washington, D.C.Google Scholar
  154. Ehringer, H., Hornykiewicz, O., and Lechner, K., 1960, The effect of chlorpromazine on catecholamine and 5-hydroxytryptamine metabolism in rat brain, Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmacol. 239: 507–519.Google Scholar
  155. Eiduson, S., 1972, Ontogenetic development of monoamine oxidase, Advan. Biochem. Psychopharmacol. 5: 271–287.Google Scholar
  156. Ellison, N., Weller, J., and Klein, D. C., 1972, Development of a circadian rhythm in the activity of pineal serotonin IV-acetyltransferase, J. Neurochem. 19: 1335–1341.PubMedCrossRefGoogle Scholar
  157. Erspamer, V., 1966, Occurence of indolealkylamines in nature, in: Handbook of Experimental Pharmacology, Vol. 19, pp. 132–181, Springer, Berlin.Google Scholar
  158. Evans, W. O., 1961, A new technique for the investigation of some analgesic drugs on a reflexive behaviour in the rat, Psychopharmacologia 2: 318–325.CrossRefGoogle Scholar
  159. Farnebo, L.-O., and Hamberger, B., 1971, Drug induced changes in the release of 3H- monoamines from field stimulated brain slices, Acta Physiol. Scand. Suppl. 371: 35–44.CrossRefGoogle Scholar
  160. Fashini, F., Mess, B., and Martini, L., 1968, Pineal gland, melatonin and the control of Iutenizing hormone secretion, Endocrinology, 82: 919–924.CrossRefGoogle Scholar
  161. Feldberg, W., and Myers, R. D., 1964, Effects on temperature of amines injected into the cerebral ventricles: A new concept of temperature regulation, /. Physiol. 173: 226–231.Google Scholar
  162. Feldberg, W., and Myers, R. D., 1965, Changes in temperature produced by injections of amines into the anterior hypothalamus of cats, J. Physiol. 177: 239–245.PubMedGoogle Scholar
  163. Feldstein, A., Hoagland, H., Freeman, H., and Williamson, O., 1967, Effect of ethanol ingestion on serotonin-C14 metabolism in man, Life Sci. 6: 53 - 61.PubMedCrossRefGoogle Scholar
  164. Feldstein, A., Chang, F. H., and Kucharski, J. M., 1970, Tryptophol, 5-hydroxytryptophol and 5-methoxytryptophol induced sleep in mice, Life Sci. 9: 323–329.PubMedCrossRefGoogle Scholar
  165. Fernstrom, J. D., and Wurtman, R. J., 1917a, Brain serotonin content: Physiological dependence on plasma tryptophan levels, Science 173: 149–152.CrossRefGoogle Scholar
  166. Fernstrom, J. D., and Wurtman, R. J., 19716, Effect of chronic corn consumption on serotonin content of rat brain, Nature New Biol. 234: 62–64.Google Scholar
  167. Fernstrom, J. D., and Wurtman, R. J., 1972, Brain serotonin: Physiological regulation by plasma neutral amino acids, Science 178: 414–416.PubMedCrossRefGoogle Scholar
  168. Fraschini, F., Mess, B., and Martini, L., 1968, Pineal gland, melatonin and the control of luteinizing hormone secretion, Endocrinology 82: 919–924.PubMedCrossRefGoogle Scholar
  169. Freedland, R. A., Wadzinski, I. M., and Waisman, H. A., 1961, The enzymatic hydroxylation of tryptophan, Biochem. Biophys. Res. Commun. 5: 94–98.CrossRefGoogle Scholar
  170. Freedman, D. X., 1961, Effect of LSD-25 on brain serotonin, J. Pharmacol. Exp. Ther. 134: 160–166.PubMedGoogle Scholar
  171. Freedman, P. A., Kappleman, A. H., and Kaufman, S., 1972, Partial purification and characterization of tryptophan hydroxylase from rabbit hindbrain, J. Biol. Chem. 247: 4165–4173.Google Scholar
  172. Fuller, R. W., 1968, Kinetic studies and effects in vivo of a new monoamine oxidase inhibitor, IV-[2-(0-chlorophenoxy)ethyl]-cyclopropylamine, Biochem. Pharmacol. 17: 2097–2106.Google Scholar
  173. Fuller, R. W., 1972, Selective inhibition of monoamine oxidase, Advan. Biochem. Psychophar- macol. 5: 339–354.Google Scholar
  174. Fuxe, K., and Ungerstedt, U., 1967, Localisation of 5-hydroxytryptamine uptake in rat brain after intraventricular injection, J. Pharm, Pharmacol. 19: 335–337.CrossRefGoogle Scholar
  175. Fuxe, K., and Ungerstedt, U., 1968, Histochemical studies on the distribution of catecholamines and 5-hydroxytryptamine after intraventricular injections, Histochemie 13: 16–28.PubMedCrossRefGoogle Scholar
  176. Fuxe, K., Holmstedt, B., and Jonsson, G., 1972, Effects of 5-methoxy N,N- dimethyltryptamine on central monoamine neurons, Europ. J. Pharmacol. 19: 25–34.Google Scholar
  177. Gál, E. M., 1965, In vitro hydroxylation of tryptophan by brain tissue, Fed. Proc. 24: 580.Google Scholar
  178. Gál, E. M., 1972, 5-Hydroxytryptamine-O-sulphate: An alternate route of serotonin inactiva- tion in brain, Brain Res. 44: 309–312.Google Scholar
  179. Gál, E. M., 1973, Metabolism of β-chlorophenylalanine and the molecular aspects of its action, in: Serotonin and Behavior ( J. Barchas and E. Usdin, eds.), pp. 9–18, Academic Press, New York and London.Google Scholar
  180. Gál, E. M., and Millard, S. A., 1972, Tryptophan 5-hydroxylase, Afgifi. Neurochem. 2: 131–146.Google Scholar
  181. Gál, E. M., Drewes, P. A., and Barraclough, C. A., 1962, Effect of reserpine on the metabolism of serotonin in tryptophan deficient rats, Proc. 1st Int. Pharmacol. Meeting 8: 107–118.Google Scholar
  182. Gál, E. M., Poczik, M., and Marshall, F. D., 1963, Hydroxylation of tryptophan to 5-hydroxytryptophan by brain tissues in vivo, Biochem. Biophys. Res. Commun. 12: 39–43.CrossRefGoogle Scholar
  183. Gershchenfeld, H. M., and Stefani, E., 1968, Evidence for an excitatory transmitter role of serotonin in moiluscan central synapses, Advan. Pharmacol. 6A: 369–392.Google Scholar
  184. Gershon, S., and Yuwiler, J., 1960, Lithium ion: A specific pharmacological approach to the treatment of mania, J. Neuropsychiat. 1: 229–241.PubMedGoogle Scholar
  185. Giarman, N. J., and Pepeu, G., 1962, Drug induced changes in brain acetylcholine, Brit. J. Pharmacol. 10: 226–234.Google Scholar
  186. Giarman, N. J., and Freedman, D. X., 1965, Biochemical aspects of the actions of psychotomimetic drugs, Pharmacol. Rev. 17: 1–25.Google Scholar
  187. Glowinski, J., Hamon, M., Javoy, F., and Morot-Gaudry, Y., 1972, Rapid effects of monoamine oxidase inhibitor on synthesis and release of central monoamines, Advan. Biochem. Psychopharmacol. 5: 423–439.Google Scholar
  188. Goodwin, F. K., and Post, R. M., 1973, The use of probenecid in high doses for the estimation of central serotonin turnover in affective illness and addicts on methadone, in: Serotonin and Behavior ( J. Barchas and E. Usdin, eds.), pp. 469–480, Academic Press, New York and London.Google Scholar
  189. Gordon, M., 1967, Phenothiazines, in: Psychopharmacological Agents, Vol. 2 ( M. Gordon, ed.), pp. 1–198, Academic Press, New York and London.Google Scholar
  190. Goridis, C., and Neff, N. H., 197 la, Evidence for a specific monoamine oxidase associated with sympathetic nerves, Neuropharmacology 10: 557–564.Google Scholar
  191. Goridis, C., and Neff, N. H., 19716, Monoamine oxidase in sympathetic nerves: A transmitter specific enzyme type, Brit. J. Pharmacol. 43: 814–818.Google Scholar
  192. Grahame-Smith, D. G., 1964, Tryptophan hydroxylation in brain, Biochem, Biophys. Res. Commun. 16: 586–592.Google Scholar
  193. Grahame-Smith, D. G., 1967, The biosynthesis of 5-hydroxytryptamine in brain, Biochem. J. 106: 351–360.Google Scholar
  194. Grahame-Smith, D. G., 1968, Discussion of tryptophan hydroxylation in mammalian systems, Advan. Pharmacol. 6A: 37–42.Google Scholar
  195. Grahame-Smith, D. G., 1971a, Studies in vivo on the relationship between brain tryptophan, brain 5-HT synthesis and hyperactivity in rats treated with a monoamine oxidase inhibitor and l-tryptophan, J. Neurochem. 18: 1053–1066.PubMedCrossRefGoogle Scholar
  196. Grahame-Smith, D. G., 19716, Inhibitory effect of chlorpromazine on the syndrome of hyperactivity produced by l-tryptophan or 5-methoxy-N,N-dimethyltryptamine in rats treated with a monoamine oxidase inhibitor, Brit. J. Pharmacol. 43: 856–864.Google Scholar
  197. Grahame-Smith, D. G., 1972, The prevention by inhibitors of brain protein synthesis of the hyperactivity and hyperpyrexia produced in rats by monoamine oxidase and the administration of l-tryptophan or 5-methoxy-N,N-dimethyltryptamine, J. Neurochem. 19: 2409–2422.PubMedCrossRefGoogle Scholar
  198. Grahame-Smith, D. G., 1973a, Does the total turnover of brain 5-HT reflect the functional activity of 5-HT in brain? in: Serotonin and Behavior (H. Barchas and E. Usdin, Eds.,), pp. 5–7, Academic Press, New York and London.Google Scholar
  199. Grahame-Smith, D. G., 19736, The metabolic compartmentation of brain monoamines, in: Metabolic Compartmentation in Brain (R. Balazs and E. Cremer, Eds.), pp. 47–57, Macmillan, London.Google Scholar
  200. Grahame-Smith, D. G., 1974, Pharmacological aspects of schizophrenia, in: Biochemistry and Mental Illness (L. L. Iversen and S. P. R. Rose, Eds.), Biochem. Soc. Spec. Publ. 1: 197–207.Google Scholar
  201. Grahame-Smith, D. G., and Green, A. R., 1974, The role of brain 5-hydroxytryptamine in the hyperactivity produced in rats by lithium and monoamine oxidase inhibitor, Brit. J. Pharmacol., 52: 19–26.Google Scholar
  202. Grahame-Smith, D. G., and Parfitt, A. H., 1970, Tryptophan transport across the synap-tosomal membrane, J. Neurochem. 17: 1339–1353.PubMedCrossRefGoogle Scholar
  203. Gray, E. G., and Whittaker, V. P., 1962, The isolation of nerve endings from brain: An electron-microscopic study of cell fragments derived by homogenization and centrifuga- tion, J. Anat. 96: 79–88.PubMedGoogle Scholar
  204. Green, A. L., 1962, The inhibition of monoamine oxidase by arylalkylhydrazines, Biochem. J. 84: 217–223.PubMedGoogle Scholar
  205. Green, A. R., and Curzon, G., 1968, Decrease of 5-hydroxytryptamine in the brain provoked by hydrocortisone and its prevention by allopurinol, Nature 220: 1095–1097.PubMedCrossRefGoogle Scholar
  206. Green, A. R., and Curzon, G., 1970, The effect of tryptophan metabolites on brain 5-hydroxytryptamine metabolism, Biochem. Pharmacol. 19: 2061–2068.Google Scholar
  207. Green, A. R., and Grahame-Smith, D. G., 1974, The role of brain dopamine in the hyperactivity syndrome produced by increased 5-hydroxytryptamine synthesis in rats, Neuropharmacology, 13: 949–959.PubMedCrossRefGoogle Scholar
  208. Green, A. R., Joseph, M. H., and Curzon, G., 1970, Oral contraceptives, depression and amino acid metabolism, Lancet i: 1288.Google Scholar
  209. Green, A. R., Koslow, S. H.,Spano, P. F., and Costa, E., 1972, Identification of melatonin (M) and 5-methoxytryptamine (5-MT) in rat hypothalamus by gas chromatography-mass spectrometry, v Int. Congr. Pharmacol. ( San Francisco), abst. 169.Google Scholar
  210. Green, A. R., Koslow, S. H„ and Costa, E., 1973, Identification and quantitation of a new indolealkylamine in rat hypothalamus, Brain Res. 5: 371–374.CrossRefGoogle Scholar
  211. Green, A. R., Sourkes, T. L., and Young, S. N., 1975, Liver and brain tryptophan metab-olism following hydrocortisone administration to rats and gerbils, Brit. J. Pharmacol., in press.Google Scholar
  212. Green, H., and Sawyer, J. L., 1966, Demonstration, characterization, and assay procedure of tryptophan hydroxylase in rat brain, Anal. Biochem. 15: 53–64.Google Scholar
  213. Greenawalt, J. W., 1972, Localization of monoamine oxidase in rat liver mitochondria, Advan. Biochem. Psychopharnmcol. 5: 207–226.Google Scholar
  214. Greenberg, R., 1973, N,iV-Dimethylated and N,N-diethylated indoleamines in schizophrenia, in: Chemical Modulation of Brain Function ( H. C. Sabelli, ed.), pp. 277–296, Raven Press, New York.Google Scholar
  215. Guldberg, H. C., and Yates, C. M., 1968, Some studies on the effects of chlorpromazine, reserpine and dihydroxyphenylalanine on the concentrations of homo vanillic acid, 3,4- dihydroxyphenylacetic acid and 5-hydroxyindol-3-ylacetic acid in ventricular cerebrospinal fluid of the dog using the technique of serial sampling of the cerebrospinal fluid, Brit. J. Pharmacol. 33: 457–471.Google Scholar
  216. Gyermek, L., 1966, The pharmacology of imipramine and related antidepressants, Int. Rev. Neurobiol. 9: 95–143.PubMedCrossRefGoogle Scholar
  217. Hakanson, R., and Hoffman, G. J., 1967, A sensitive radiometric assay for tryptophan 5-hydroxylase, Biochem. Pharmacol. 16: 1677–1680.Google Scholar
  218. Harvey, J. A., and Lints, C. E., 1971, Lesions in the medial forebrain bundle: Relationship between pain sensitivity and telencephalic content of serotonin, J. Comp. Physiol. Psychol. 74: 28–36.PubMedCrossRefGoogle Scholar
  219. Harvey, J. A., and Yunger, L. M., 1973, Relationship between telencephalic content of serotonin and pain sensitivity in: Serotonin and Behavior (J. Barchas and E. Usdin, Eds.), pp. 179–189, Academic Press, New York and London.Google Scholar
  220. Haubrich, D. R., and Blake, D. E., 1969, Effect of acute and chronic administration of morphine on the metabolism of brain serotonin in rats, Fed. Proc. 28: 793.Google Scholar
  221. Herbert, J., 1971, in: The Pineal Gland (G. E. W. Wolstenholme and J. Knight, Eds.), pp. 303–320, Churchill-Livingstone, Edinburgh.Google Scholar
  222. Hess, S. M., Redfield, B. G.,and Udenfriend,S., 1959, Effect of monoamine oxidase inhibitors and tryptophan on the tryptamine content of animal tissues and urine, J. Pharmacol. Exp. Ther. 127: 178–181.Google Scholar
  223. Hidaka, H., and Austin, J., 1972, Occurrence and distribution of sulfotransferase in human brain; a new radioisotopic assay, Biochim. Biophys. Acta 268: 132–137.CrossRefGoogle Scholar
  224. Hidaka, H., Nagatsu, T., Takeya, K., Matsumoto, S. H., and Yagi, K., 1969a, Inactivation of serotonin by sulfotransferase system, J. Pharmacol. Exp. Ther. 166: 272–275.PubMedGoogle Scholar
  225. Hidaka, H., Nagatsu, T., and Yagi, K., 19696, Occurrence of a serotonin sulphotransferase in the brain, J. Neurochem. 16: 783–785.Google Scholar
  226. Himwich, H. E., and Alpers, H. S., 1970, Psychopharmacology, An. Rev. Pharmacol. 10: 313–334.CrossRefGoogle Scholar
  227. Himwich, H. E., Narasimhachari, N., Heller, B., Spaide, J, Haskovec, L., Fujimori, M., and Tabushi, K., 1973, Biochemical approaches to the study of schizophrenia, in: Chemical Modulation of Brain Function ( H. C. Sabelli, ed.), pp. 297–312, Raven Press, New York.Google Scholar
  228. Hirsch, C. W., Kuntzman, R., and Costa, E., 1961, Effects of dopa-5-HTP decarboxylase inhibition on synthesis of brain amines, Fed. Proc. 21: 364.Google Scholar
  229. Ho, A. K. S., Loh, H. H., Craves, F., Hitzemann, R. J., and Gerson, S., 1970, The effect of prolonged lithium treatment on the synthesis rate and turnover of monoamines in brain regions of rats, Europ. J. Pharmacol. 10: 72–78.Google Scholar
  230. Ho, B. T., 1972, Monoamine oxidase inhibitors, J. Pharmacol. Sci. 61: 821–837.CrossRefGoogle Scholar
  231. Ho, I. K., Lu, S. E., Stolman, S., Loh, H. H., and Way, E. L., 1972, Influence of β–chlorophenylalanine on morphine tolerance and physical dependence and regional brain serotonin turnover studies in morphine tolerant-dependent mice, J. Pharmacol. Exp. Ther. 182: 155–165.PubMedGoogle Scholar
  232. Hôkfelt, T., and Ljungdahl, A., 1972, Modification of the Falck-Hillarp formaldehyde fluorescence method using the vibratome: Simple, rapid and sensitive localisation of catecholamines in sections of unfixed or formalin fixed brain tissue, Histochemie 29: 325–329.PubMedGoogle Scholar
  233. Holmstedt, B., and Lindgren, J. E., 1967, Ethnopharmacologic Search for Psychoactive Drugs (D. H. Efron, ed.), U.S. Public Health Service, Washington, D.C.Google Scholar
  234. Holzbauer, M., and Youdim, M. B. H., 1973, The oestrous cycle and monoamine oxidase activity, Brit. J. Pharmacol. 48: 600–608.Google Scholar
  235. Horita, A., and Gogerty, J. H., 1958, The pyretogenic effect of 5-hydroxytryptophan and its comparison with that of LSD, J. Pharmacol. Exp. Ther. 122: 195–200.PubMedGoogle Scholar
  236. Houslay, M. D., and Tipton, K. F., 1973, The nature of the electrophoretically separable multiple forms of rat liver monoamine oxidase, Biochem. J. 135: 173–186.PubMedGoogle Scholar
  237. Ichiyama, A., Nakamura, S., Nishizuka, Y., and Hayaishi, O., 1968, Tryptophan 5-hydroxylase in mammalian brain, Advan. Pharmacol. 6A: 5–17.Google Scholar
  238. Ichiyama, A., Nakamura, S., Nishizuka, Y., and Hayaishi, O., 1970, Enzymic studies on the biosynthesis of serotonin in mammalian brain, J. Biol. Chem. 245: 1699–1709.PubMedGoogle Scholar
  239. Illnerovâ, H., 1971, Effect of light on the serotonin content of the pineal gland, Life Sci. 10: 955–960.CrossRefGoogle Scholar
  240. Jarrott, B., 1971, Occurrence and properties of monoamine oxidase in adrenergic neurons, J. Neurochem. 18: 7–16.PubMedCrossRefGoogle Scholar
  241. Jéquier, E., Lovenberg, W., and Sjoerdsma, A., 1967, Tryptophan hydroxylase inhibition: The mechanisms by which β-chlorophenylalanine depletes rat brain serotonin, Mol. Pharmacol. 3: 274–278.Google Scholar
  242. Jéquier, E., Robinson, D. S., Lovenberg, W., and Sjoerdsma, A., 1969, Further studies on tryptophan hydroxylase in rat brainstem and beef pineal, Biochem. Pharmacol. 18: 1071–1080.Google Scholar
  243. Jerome, H.,and Kamoun, P., 1967, Diminution au taux de la serotonine associée à un défaut de captation dans les plaguettes sanguines des sujets trisomigues 21, Compt. Rend. Hebd. Acad. Sci. Paris, 251: 474–476.Google Scholar
  244. Johnston, J. P., 1968, Some observations upon a new inhibitor of monoamine oxidase in brain tissue, Biochem. Pharmacol. 17: 1285–1297.Google Scholar
  245. Jonsson, G., Fuxé, K., Hamberger, G., and Hôkfelt, T., 1969, 6-hydroxytryptamine—A new tool in monoamine fluorescence histochemistry, Brain Res. 13: 190–195.Google Scholar
  246. Jouvet, M., 1972, The role of monoamines and acetylcholine containing neurons in the regulation of the sleep-waking cycle, Ergeb. Physiol. 64: 116–307.Google Scholar
  247. Jouvet, M., 1973, Serotonin and sleep in the cat, in: Serotonin and Behavior ( J. Barchas and E. Usdin, eds.), pp. 385–400, Academic Press, New York and London.Google Scholar
  248. Kamberi, I., Mical, R. S., and Porter, J. C., 1970, Effects of anterior pituitary perfusion and intraventricular injection of catecholamines and indolamines on LH release, Endocrinology 87: 1–12.PubMedCrossRefGoogle Scholar
  249. Kaufman, S., 1961, The nature of the primary oxidation product formed from tetrahydrop- terines during phenylalanine hydroxylation, J. Biol. Chem. 236: 804–810.PubMedGoogle Scholar
  250. Kaufman, S., 1963, The structure of phenylalanine-hydroxylation cofactor, Proc. Natl. Acad. Sci. 50: 1085–1093.PubMedCrossRefGoogle Scholar
  251. Kaufman, S., 1971, The phenylalanine hydroxylating system from mammalian liver, Advan. Enzymol. 35: 245–319.Google Scholar
  252. Keglevic, D., Kveder, S., and Iskric, S., 1968, Indoleacetaldehydes—intermediates in indolealkylamine metabolism, Advan. Pharmacol. 6A: 79–89.Google Scholar
  253. Kelley, J. M., and Adamson, R. H., 1973, A comparison of common interatomic distances in serotonin and some hallucinogenic drugs, Pharmacology 10: 28–31.PubMedCrossRefGoogle Scholar
  254. Kiely, M., and Sourkes, T. L., 1972, Transport of l-tryptophan into slices of rat cerebral cortex, J. Neurochem. 19: 2863–2872.PubMedCrossRefGoogle Scholar
  255. Klein, D. C., and Weller, J., 1970, Indole metabolism in the pineal gland: Acircadian rhythm in iV-acetyltransferase, Science 169: 1093–1095.Google Scholar
  256. Klein, D. C. Berg, G. R., and Weller, J., 1970, Melatonin synthesis: Adenosine, 3’,5’-monophosphate and norepinephrine stimulates N-acetyltransferase, Science 168: 979–980.PubMedCrossRefGoogle Scholar
  257. Klein, D. C., Moore, R. Y., and Weller, J., 1971, Melatonin metabolism: Neural regulation of pineal serotonin:acetyl coenzyme A iV-acetyltransferase activity, Proc.Natl. Acad. Sci. 68: 3107–3110.CrossRefGoogle Scholar
  258. Knapp, S., and Mandell, A. J., 1972, Parachlorophenylalanine—Its three phase sequence of interactions with the two forms of brain tryptophan hydroxylase, Life Sci. 11: 761–771.CrossRefGoogle Scholar
  259. Knapp, S., and Mandell, A. J., 1973a, Some drug effects on the functions of two measurable forms of tryptophan hydroxylase: Influence of hydroxylation and uptake of substrate, in: Serotonin and Behavior ( J. Barchas and E. Usdin, Eds.), pp. 61–72, Academic Press, New York and London.Google Scholar
  260. Knapp, S., and Mandell, S. J., 19736, Short- and long-term lithium administration: Effects on the brain’s serotonergic biosynthetic systems, Science 180: 645–647.Google Scholar
  261. Knoll, J., Elseri, Z., Kellman, K., Nievel, J., and Knoll, B., 1966, Phenylisopropylmethyl- propinylamine (E-250), a new spectrum psychic energizer, Arch. Int. Pharmacodyn. Ther. 155: 154–164.Google Scholar
  262. Knoll, J., Vizi, E. S., and Somogyi, G., 1968, Phenylisopropylmethylpropinylamine (E-250),a monoamine oxidase inhibitor antagonising the effects of tyramine, Arzneimittel.-Forsch. 18: 109–112.Google Scholar
  263. Knott, P. J., and Curzon, G., 1972, Free tryptophan in plasma and brain tryptophan metabolism, Nature 239: 452–453.PubMedCrossRefGoogle Scholar
  264. Knott, P. J., Joseph, M. H., and Curzon, G., 1973, Effects of food deprivation and immobilization on tryptophan and other amino acids in rat brain, J. Neurochem. 20: 249–251.PubMedCrossRefGoogle Scholar
  265. Knox, W. E., and Auerbach, V. H., 1955, The hormonal control of tryptophan peroxidase in the rat, J. Biol. Chem. 214: 307–313.PubMedGoogle Scholar
  266. Koe, B. K., and Weissman, A., 1966, p-Chlorophenylalanine, a specific depletor of brain serotonin, J. Pharmacol. Exp. Ther. 154: 499–516.Google Scholar
  267. Korf, J., and Sebens, J. B., 1970, Failure to detect 5-Hydroxytryptamine-O-sulphate in normal rat brain and after a monoamine oxidase inhibitor, J. Neurochem 17: 447–448.PubMedCrossRefGoogle Scholar
  268. Korf, J., van Praag, H. M., and Sebens, J. B., 1972, Serum tryptophan decreased, brain tryptophan increased and brain serotonin synthesis unchanged after probenecid loading, Brain Res. 42: 239–242.PubMedCrossRefGoogle Scholar
  269. Koslow, S. H., and Green, A. R., 1973, Analysis of pineal and brain indole alkylamines by gas chromatography-mass spectrometry, Advan. Biochem. Psychopharmacol. 7: 33–43.Google Scholar
  270. Kroon, M. C., and Veldstra, H., 1972, Multiple forms of rat brain mitochondrial monoamine oxidase: Subcellular localization, FEBS Letters 24: 173–176.PubMedCrossRefGoogle Scholar
  271. Kuhar, M. J., Roth, R. H., and Aghajanian, G. K., 1971, Selective reduction of tryptophan hydroxylase activity in rat forebrain after midbrain raphe lesions, Brain, Res. 35: 167–176.Google Scholar
  272. Kuntzman, R., Shore, P. A., Bogdanski, D., and Brodie, B. B., 1961, Microanalytical procedures for fluorimetric assay of brain DOPA decarboxylase, 5-HTP decarboxylase, norepinephrine and serotonin and a detailed mapping of decarboxylase activity in brain, J. Neurochem. 6: 226–232.CrossRefGoogle Scholar
  273. Kunz, E., 1964, Vergleichende Wirkung von zwei Decarboxylasehemmern auf den metabolis- mus von endogenem und exogenem 5-hydroxytryptamin, Arch. Int. Pharmacodyn. Ther. 147: 1–8.PubMedGoogle Scholar
  274. Kuriyama, K., and Speken, R., 1970, Effect of lithium on content and uptake of norepinephrine and 5-hydroxytryptamine in mouse brain synaptosomes and mitochondria, Life Sci. 9: 1213–1220.CrossRefGoogle Scholar
  275. Laduron, P., 1972, iV-Methylation of dopamine to epinine in brain tissue using N-methyltet- rahydrafolic acid as the methyl donor, Nature 238: 212.Google Scholar
  276. Lahti, R. A., and Majchrowicz, E., 1969, Acetaldehyde—An inhibitor of the enzymatic oxidation of 5-hydroxyindole acetaldehyde, Biochem. Pharmacol. 18: 535–538.Google Scholar
  277. Lapin, I. P., and Oxenkrug, G. F., 1969, Intensification of the central serotoninergic processes as a possible determinant of the thymoleptic effect, Lancet i: 132–136.Google Scholar
  278. Lerner, A. B., Case, J. D., and Heinzelman, R. V., 1959, Structure of melatonin, J. Am. Chem. Soc. 81: 6084–6085.CrossRefGoogle Scholar
  279. Lin, R. C., Costa, E., Neff, N. H., Wang, C. T., and Ngai, S. H., 1969, In vivo measurement of 5-hydroxytryptamine turnover rate in the rat brain from the conversion of 14C-tryptophan to,4C 5-hydroxytryptamine, J. Pharmacol. Exp. Ther. 170: 232–238.PubMedGoogle Scholar
  280. Lipsett, D., Madras, B. K., Wurtman, R. J., and Munro, H. N., 1973, Serum tryptophan level after carbohydrate injestion: Selective decline in non-albumin-bound tryptophan coincident with reduction in serum free fatty acids, Life Sci. 12: 57–74.CrossRefGoogle Scholar
  281. Loh, H. H., Shem, F.-H., and Way, E. L., 1969, Inhibition of morphine tolerance and physical dependence development and brain serotonin synthesis by cyclohexamide, Biochem. Pharmacol 18: 2711–2721.Google Scholar
  282. Loh, I. T., Murphy, D. L., and Chase, T. N., 1972, Down’s syndrome: Central monoamine turnover in patients with diminished platelet serotonin, Neurology 22: 967–972.CrossRefGoogle Scholar
  283. Lovenberg, W., Weissbach, M., and Udenfriend, S., 1962, Aromatic l-amino acid decarboxylase, J. Biol. Chem. 237: 89–93.PubMedGoogle Scholar
  284. Lovenberg, W., Barchas, J., Weissbach, H., and Udenfriend, S., 1963, Characteristics of the inhibition of aromatic l-amino acid decarboxylase by a-methyl amino acids, Arch. Biochem. 103: 9–14.Google Scholar
  285. Lovenberg, W., Jequier, E., and Sjoerdsma, A., 1967, Tryptophan hydroxylation: Measure-ment in pineal gland, brainstem, and carcinoid tumor, Science 155: 217–219.PubMedCrossRefGoogle Scholar
  286. Lovenberg, W., Jequier, E., and Sjoerdsma, A., 1968, Tryptophan hydroxylation in mam-malian systems, Advan. Pharmacol. 6A: 21–36.Google Scholar
  287. Lovenberg, W., Bensinger, R. E., Jackson, R. L., and Daly, J. W., 1971, Rapid analysis in tryptophan hydroxylase in rat tissue using 5-3H-tryptophan, Anal. Biochem. 43:269– 274.Google Scholar
  288. Lovenberg, W., Besselaar, G. H., Bensinger, R. E., and Jackson, R. L., 1973, Physiologic and drug-induced regulation of serotonin synthesis in: Serotonin and Behavior (J. Barchas and E. Usdin, Eds.), pp. 49–54, Academic Press, New York and London.Google Scholar
  289. Maass, A. R., and Nimmo, M. J., 1959, A new inhibitor of serotonin metabolism, Nature 184: 547–548.PubMedCrossRefGoogle Scholar
  290. Madras, B. K., Cohen, E. L., Fernstrom, J. D., Larin, F., Munro, H. N., and Wurtman, R. J., 1973, Effect of dietary carbohydrate on levels of tryptophan in brain and serum, Nature 244: 34–35.PubMedCrossRefGoogle Scholar
  291. Mandell, A. J., 1963, Some determinants of indole excretion in man, Recent. Advan. Biol. Psychiat. 5: 237–256.Google Scholar
  292. Mandell, A. J., and Morgan, M., 1971, Indole(ethyl)amine iV-methyltransferase in human brain, Nature New Biol. 230: 85–87.PubMedGoogle Scholar
  293. Mandell, A. J., and Spooner, C. E., 1968, Psychochemical research studies in man, Science 162: 1442–1453.PubMedCrossRefGoogle Scholar
  294. Mann, P., and Quastel, J. H., 1940, Benzedrine (/5-phenylisopropylamine) and brain metabolism, Biochem. J. 34: 414–431.PubMedGoogle Scholar
  295. Marchbanks, R. M., 1967, Serotonin binding to nerve ending particles and other preparations from rat brain, J. Neurochem. 13: 1481–1493.CrossRefGoogle Scholar
  296. Marsden, C. A., and Curzon, G., 1974, Effect of lesions and drugs on brain tryptamine J. Neurochem, 23: 1171–1176.PubMedCrossRefGoogle Scholar
  297. Marshall, I., and Grahame-Smith, D. G., 1971, Evidence against a role of brain 5-hydroxytryptamine in the development of physical dependence upon morphine in mice, J. Pharmacol. Exp. Ther. 173: 634–641.Google Scholar
  298. Martin, W. R., Sloan, J. W., Christian, S. T., and Clements, T. M., 1972, Brain levels of tryptamine, Psychopharmacologia 24: 331–346.PubMedCrossRefGoogle Scholar
  299. Maruyama, Y., Hayashi, G., Smits, S. E., and Takemori, A. E., 1971, Studies on the relationship between 5HT turnover in brain and tolerance and physical dependence in mice, J. Pharmacol. Exp. Ther. 178: 20–29.PubMedGoogle Scholar
  300. McArthur, J. N., and Dawkins, P. D., 1969, The effect of sodium salicylate on the binding of l-tryptophan to serum proteins, /. Pharm. Pharmacol. 21: 744–750.Google Scholar
  301. McCormick, D. B., and Shell, E. E., 1959, Pyridoxal kinase of human brain and its inhibition by hydrazine derivatives, Proc. Natl. Acad. Sci. 45: 1371–1379.PubMedCrossRefGoogle Scholar
  302. McGeer, E. G., 1973, Tryptophan hydroxylase inhibitors other than PCPA, in: Serotonin and Behavior ( J. Barchas and E. Usdin, Eds.), pp. 55–60, Academic Press, New York and London.Google Scholar
  303. McGeer, P. L., Bagchi, S. P., and McGeer, E. G., 1965, Subcellular localization of tyrosine hydroxylase in beef caudate nucleus, Life Sci. 4: 1859–1867.PubMedCrossRefGoogle Scholar
  304. McKean, C. M., Boggs, D. E., and Peterson, N. A., 1968, The influence of high phenylalanine and tyrosine on the concentrations of essential amino acids in brain, J. Neurochem. 15: 235–241.PubMedCrossRefGoogle Scholar
  305. McMenamy, R. H., and Oncley, J. L., 1958, The specific binding of l-tryptophan to serum albumin, J. Biol. Chem. 233: 1436–1447.PubMedGoogle Scholar
  306. Meek, J., and Werdinius, B., 1970, Hydroxytryptamine turnover decreased by the antidepressant drug chlorimipramine, J. Pharm. Pharmacol. 22: 141–143.PubMedCrossRefGoogle Scholar
  307. Meek, J., Fuxe, K., and Anden, N.-E., 1970a, Effects of antidepressant drugs of the imipramine type on central 5-hydroxytryptamine neurotransmission, Europ. J. Pharmacol. 9: 325–332.Google Scholar
  308. Meek, J. L., Krall, A. R., and Lipton, M. A., 19706, Psychotropic drugs and the metabolism of intracerebrally injected tryptamine, 5-hydroxytryptamine, and norepinephrine, /. Neurochem. 17: 1627–1635.Google Scholar
  309. Miller, F. P., and Maickel, R. P., 1970, Fluorimetric determination of indole derivative, Life Sci. 9: 747–752.CrossRefGoogle Scholar
  310. Modigh, K., 1973a, Effects of chlorimipramine and protryptyline on the hyperactivity induced by 5-hydroxytryptophan after peripheral decarboxylase inhibition in mice, J. Neural Trans. 34: 101–109.CrossRefGoogle Scholar
  311. Modigh, K., 19736, Effect of chlorimipramine on the rate of tryptophan hydroxylation in the intact and transected spinal cord, J. Pharm. Pharmacol. 25: 926–928.Google Scholar
  312. Moir, A. T. B., 1971, Interaction in the cerebral metabolism of the biogenic amines: Effect of intravenous infusion of l-tryptophan on tryptophan and tyrosine in brain and body fluids, Brit. J. Pharmacol. 43: 724–731.Google Scholar
  313. Moir, A. T. B., and Eccleston, D., 1968, The effects of precursor loading in the cerebral metabolism of 5-hydroxyindoles, J. Neurochem. 15: 1093–1108.PubMedCrossRefGoogle Scholar
  314. Moran, J. F., and Sourkes, T. L., 1963, Induction of tryptophan pyrrolase by a-methyl tryptophan and its metabolic significance in vivo, J. Biol. Chem. 238: 3006–3008.PubMedGoogle Scholar
  315. Morgan, M., and Mandell, A. J., 1969, Indole(ethyI)amine N-methyltransferase in the brain, Science 165: 492–493.PubMedCrossRefGoogle Scholar
  316. Morgane, P. J., and Stern, W. C., 1973, Monoaminergic systems in the brain and their role in the sleep states, in ’.Serotonin and Behavior (J. Barchas and E. Usdin, Eds.), pp. 427–442, Academic Press, New York and London.Google Scholar
  317. Morpugo, C., 1962, Influence of phenothiazine derivatives on the accumulation of brain amines induced by monoamine oxidase inhibitors, Biochem. Pharmacol. 11: 967–972.Google Scholar
  318. Murphy, D. L., Baker, M., Kotin, J., and Bunney, W. E., Jr., 1973, Behavioral and metabolic effects of l-tryptophan in unipolar depressed patients, imSerotonin and Behavior (J. Barchas and E. Usdin, Eds.), pp. 529–537, Academic Press, New York and London.Google Scholar
  319. Myers, R. D., 1973, The role of hypothalamic serotonin in thermoregulation, in -.Serotonin and Behavior (J. Barchas and E. Usdin, Eds.), pp. 293–302, Academic Press, New York and London.Google Scholar
  320. Myers, R. D., and Beleslin, D. B., 1971, Changes in serotonin release in hypothalamus during cooling or warming of the monkey, Am. J. Physiol. 220: 1746–1754.PubMedGoogle Scholar
  321. Myers, R. D., and Yaksh, T. L., 1969, Control of body temperature in the unanesthetized monkey by cholinergic and aminergic systems in the hypothalamus, J. Physiol. 202: 483–500.PubMedGoogle Scholar
  322. Myers, R. D., Veale, W. L., and Beleslin, D. B., 1970, Calcium-evoked release of 5-hydroxytryptamine from the brain of the unanesthetized cat, Experientia 26: 1324–1325.PubMedCrossRefGoogle Scholar
  323. Nagatsu, T., Levitt, M., and Udenfriend, S., 1964, Tyrosine hydroxylase; the initial step in norepinephrine biosynthesis, J. Biol. Chem. 239: 2910–2917.PubMedGoogle Scholar
  324. Nagatsu, T., Nakano,G., Mizutani, K.,and Marada, M., 1972, Purification and properties of amine oxidases in brain and connective tissue (dental pulp), Advan. Biochem. Psychophar- macol. 5: 25–36.Google Scholar
  325. Nakamura, S., Ichiyama, A., and Hayaishi, O., 1965, Purification and properties of tryptophan hydroxylase in brain, Fed. Proc. 24: 604.Google Scholar
  326. Narasimhachari, N., Heller, B., Spaide, J., Haskovec, L., Fujimari, M., Tabushi, K., and Himwich, H. E., 1971, N,N-Dimethylated indoleamines in blood, Biol. Psvchiat. 3: 9–20.Google Scholar
  327. Narasimhachari, N., Plaut, J. M., and Himwich, H. E., 1972, Indole ethylamine-N- methyltransferase in serum samples of schizophrenics and normal controls, Life Sci. 11: 221–227.CrossRefGoogle Scholar
  328. Neff, N. H., and Goridis, C., 1972, Neuronal monoamine oxidase: Specific enzyme types and their rates of formation, Advan. Biochem. Psychopharmacol. 5: 307–323.Google Scholar
  329. Neff, N. H., and Tozer, T. N., 1968, In vivo measurement of brain serotonin turnover, Advan. Pharmacol. 6A: 97–109.CrossRefGoogle Scholar
  330. Neff, N. H., and Yang, H. Y. T., 1973, Monoamine oxidase. II. Evaluation of the physiological role of type A and B enzyme of brain, Fed. Proc. 32: 797.Google Scholar
  331. Neff, N. H., Tozer, T. N., and Brodie, B. B., 1967, Application of steady-state kinetics to studies of the transfer of 5-hydroxyindolacetic acid from brain to plasma, J. Pharmacol. Exp. Ther. 158: 214–218.Google Scholar
  332. Neff, N. H., Lin, R. C., Ngai,S. J., and Costa, E., 1969a, Turnover rate measurements of brain serotonin in unanesthetized rats, Advan. Biochem. Psychopharmacol. 1: 91–109.Google Scholar
  333. Neff, N. H., Barrett, R. E., and Costa, E., 19696, Kinetic and fluorescent histo- chemical analysis of the serotonin compartments in rat pineal gland, Europ. J. Pharmacol. 5: 348–356.Google Scholar
  334. Neff, N. H., Spano, P. F., Groppetti, A., Wang, C. T., and Costa, E., 1971, A simple procedure for calculating the synthesis rate of noradrenalin, dopamine and 5-hydroxytryptamine in rat brain, J. Pharmacol. Exp. Ther. 176: 701–710.PubMedGoogle Scholar
  335. Nistico, G., and Preziosi, P., 1969, Brain and liver tryptophan pathways and adrenocortical activation during restraint stress, Pharmacol. Res. Commun. 1: 363–368.Google Scholar
  336. Nistico, G., and Preziosi, P., 1970, Contraceptives, brain serotonin and liver tryptophan pyrrolase, Lancet ii: 213.Google Scholar
  337. Nobin, A., Baumgarten, H. G., Bjorklund, A., Lachenmayer, L., and Stenevi, U., 1973, Axonal degeneration and regeneration of the bulbospinal indolamine neurons after 5,6-dihydroxytryptamine treatment, Brain Res. 56: 1–24.PubMedCrossRefGoogle Scholar
  338. Nomura, J., 1965, Effect of stress and psychotropic drugs on rat liver tryptophan pyrrolase, Endocrinology 76: 1190–1194.PubMedCrossRefGoogle Scholar
  339. Nordin, G., Ottoson, J.-O., and Roos, B.-E., 1971, Influence of convulsive therapy on 5-hydroxyindole-acetic acid and homovanillic acid in cerebrospinal fluid in endogenous depression, Psychopharmacologia 20: 315–320.PubMedCrossRefGoogle Scholar
  340. Norn, S., and Shore, P. A., 1971, Further studies on the nature of persistent reserpine binding: Evidence for reversible and irreversible binding, Biochem. Pharmacol. 20: 1291–1295.Google Scholar
  341. O’Brien, D., and Groshek, A., 1962, The abnormality of tryptophan metabolism in children with mongolism, Arch. Dis. Child. 37: 17–20.CrossRefGoogle Scholar
  342. Owman, C., 1964, Sympathetic nerves probably storing two types of monoamine in the rat pineal gland, Int. J. Neuropharmacol. 3: 105–112.PubMedCrossRefGoogle Scholar
  343. Ozaki, K., Weissbach, H., Ozaki, A., Witkop, B., and Udenfiend, S., 1960, Monoamine oxidase inhibitors and procedures for their evaluation in vivo and in vitro,]. Med. Pharm. Chem. 2: 591–607.CrossRefGoogle Scholar
  344. Passonen, M. K., 1968, Platelet 5-hydroxytryptamine as a model in pharmacology, Med. Exp. Biol. Fenn. 46: 416–422.Google Scholar
  345. Pare, C. M. B., 1968, 5-Hydroxyindoles in phenylketonuric and nonphenylketonuric mental defectives, Advan. Pharmacol. 6B: 159–165.Google Scholar
  346. Pare, C. M. B., Sandler, M., and Stacey, R. S., 1957, 5-Hydroxytryptamine deficiency in phenylketonuria, Lancet i:551–553.Google Scholar
  347. Pare, C. M. B., Sandler, M., and Stacey, R. S., 1959, The relationship between decreased 5-hydroxyindole metabolism and mental defect in phenylketonuria, Arch. Dis. Child. 34: 422–425.CrossRefGoogle Scholar
  348. Pare, C. M. B., Young, D. P. H., Price, K. S., and Stacey. R. S., 1969,5-hydroxytryptamine, noradrenaline, and dopamine in brainstem, hypothalamus and caudate nucleus of controls and of patients committing suicide by coal-gas poisoning, Lancet ii: 133–135.Google Scholar
  349. Parfitt, A. G., and Grahame-Smith, D. G., 1974, Tryptophan transport across synaptosome membrane, in: Aromatic Amino Acids in the Brain, Ciba Symposium 22, Elsevier, Amsterdam.Google Scholar
  350. Perez-Cruet, J., Tagliamonte, A., Tagliamonte, P., and Gessa, G. L., 1971, Stimulation of serotonin synthesis by lithium, J. Pharmacol. Exp. Ther. 178: 325–330.PubMedGoogle Scholar
  351. Perez-Cruet, J., Tagliamonte, A., Tagliamonte, P., and Gessa, G. L., 1972, Changes in brain serotonin metabolism associated with fasting and satiation in rats, Life Sci. 11: 31–39.CrossRefGoogle Scholar
  352. Peters, D. A. V., 1971, Inhibition of serotonin biosynthesis by 6-halotryptophans in vivo, Biochem. Pharmacol. 20: 1413–1420.Google Scholar
  353. Peters, D. A. V., McGeer, P. L., and McGeer, E. G., 1968, The distribution of tryptophan hydroxylase in cat brain, J. Neurochem. 15: 1431–1435.PubMedCrossRefGoogle Scholar
  354. Philpot, F., 1940, Inhibition of adrenaline oxidation by local anaesthetics, J. Physiol. 97: 301–307.PubMedGoogle Scholar
  355. Pletscher, A., 1968, Metabolism, transfer and storage of 5-hydroxytryptamine in blood platelets, Brit. J. Pharmacol. 32: 1–16.Google Scholar
  356. Pletscher, A., Gey, K. F., and Zeller, P., 1960, Monoaminoxydase-Hemmer, Prog. Drug Res. 2: 417–590.Google Scholar
  357. Pletscher, A., Brossi, A., and Gey, K. F., 1962, Benzoquinolizine derivatives: A new class of monoamine decreasing drugs with psychotropic action, Int. Rev. Neurobiol. 4: 275–306.CrossRefGoogle Scholar
  358. Pletscher, A., Bartholini, G., Bruderer, H., Burkard, W. P., and Gey, K. F., 1964, Chlorinated arylalkylamines affecting the cerebral metabolism of 5-hydroxytryptamine, J. Pharmacol. Exp. Ther. 145: 344–350.PubMedGoogle Scholar
  359. Pletscher, A., Gey, K. F., and Burkard, W. P., 1966, Inhibitors of monoamine oxidase and decarboxylase of aromatic amino acids, in: Handbook of Experimental Pharmacology, Vol. 19 ( V. Esparmer, ed.), pp. 593–735, Springer, Berlin.Google Scholar
  360. Pletscher, A., Da Prada, M., Burkard, W. P., and Tranzier, J. P., 1968, Effects of benzoquinolizines and ring-substituted aralkylamines on serotonin metabolism, Advan. Pharmacol. 6B: 55–69.Google Scholar
  361. Pollin, W., Cardon, P. V., and Kety, S. S., 1961. Effects of amino acid feeding in schizophrenic patients treated with iproniazid, Science 133: 104–105.PubMedCrossRefGoogle Scholar
  362. Porter, C. L., Watson, L. S., Titus, D. C., Totaro, J. A., and Byer, S. S1962., Inhibition of dopa decarboxylase by the hydrazino analog of a-methyl dopa, Biochem. Pharmacol. 11: 1067–1077.Google Scholar
  363. Prien, R. F., Caffey, E. M., and Klett, C. J., 1972, Relationship between serum lithium level and clinical response in acute mania treated with lithium, Brit. J. psychiat. 120: 409–414.Google Scholar
  364. Quay, W. B., 1965, Indole derivatives of pineal and related neural and retinal tissues, Pharmacol. Rev. 17: 321–345.Google Scholar
  365. Quay, W. B., 1967, The significance of darkness and monoamine oxidase in the nocturnal changes in 5-hydroxytryptamine and hydroxyindole-O-methyl transferase activity of the macaque’s epiphysis cerebri, Brain Res. 3: 277–286.CrossRefGoogle Scholar
  366. Randic, M., and Padjen, A., 1971, Effect of N,iV-dimethyltryptamine and d-lysergic acid diethylamide on the release of 5-hydroxyindoles in rat forebrain, Nature 230: 532.PubMedCrossRefGoogle Scholar
  367. Rechtschaffer, A., Lovell, R. A., Freedman, D. X., Whitehead, W. E., and Aldrich, M., 1973, The effect of parachlorphenylalanine on sleep in the rat: Some implications for the serotonin-sleep hypothesis, in: Serotonin and Behavior ( J. Barchas and E. Usdin, Eds.), pp. 401–418, Academic Press, New York and London.Google Scholar
  368. Renson, J., 1971, Development of monoaminergic transmissions in the rat brain, in: Proc. NATO Advanced Study Chemistry Brain Develop. Advan. Exp. Med. Biol. 13: 175–184.Google Scholar
  369. Renson, J., 1973, Assays and properties of tryptophan-5-hydroxylase, in: Serotonin and Behavior ( J. Barchas and E. Usdin, Eds.), pp. 1932, Academic Press, New York and London.Google Scholar
  370. Renson, J., Weissbach, H., and Udenfriend, S., 1962, Hydroxylation of tryptophan by phenylalanine hydroxylase, J. Biol. Chem. 237: 2261–2264.PubMedGoogle Scholar
  371. Renson, J., Weissbach, H., and Udenfriend, S., 1964, Studies on the biological activities of the aldehydes derived from norepinephrine, serotonin, tryptamine and histamine,]. Pharmacol. Exp. Ther. 143: 326–331.Google Scholar
  372. Renson, J., Daly, J., Weissbach, H., Witkop, B., and Udenfriend, S., 1966, Enzymatic conversion of 5-tritio-tryptophan to 4-tritio-5-hydroxytryptophan, Biochem, Biophys. Res. Commun. 25: 504–513.Google Scholar
  373. Resnick, P. H., Smith, G. T., and Gray, S. T., 1961, Endocrine influences on tissue serotonin content of the rat, Am. J. Physiol. 201: 571–573.PubMedGoogle Scholar
  374. Richter, D., 1967, Tryptophan metabolism in mental illness, in: Amines and Schizophrenia ( H. E. Himwich, S. S. Kety and J. R. Smythies, eds.), pp. 167–182, Pergamon Press, Oxford.Google Scholar
  375. Robins, E., Robins, J. M., Croninger, A. B., Moses, S. G., Spencer, S. J., and Hudgens, R. W., 1967, The low level of 5-hydroxytryptophan decarboxylase in human brain, Biochem Med. 1: 240–251.CrossRefGoogle Scholar
  376. Rodriguez de Lores Arnaiz, G., and de Robertis, E., 1962, Cholinergic and non-cholinergic nerve endings in the rat brain. II. Subcellular localization of monoamine oxidase and succinate dehydrogenase, J. Neurochem. 9: 503–508.Google Scholar
  377. Rodriguez de Lores Arnaiz, G., and de Robertis, E., 1964,5-Hydroxytryptophan decarboxylase activity in nerve endings of the rat brain, J. Neurochem. 11: 213–219.Google Scholar
  378. Roos, B.-E., and Sjostrom, R., 1969,5-Hydroxyindole acetic acid (and homovanillic acid) levels in the cerebrospinal fluid after probenecid application in patients with manic-depressive psychosis, Pharmacol. Clin. 1: 153–155.Google Scholar
  379. Rose, D. P., and Braidman, I. P., 1970, Oral contraceptives, depression and aminoacid metabolism, Lancet i: 1117–1118.Google Scholar
  380. Rosecrans, J. A., Lovell, R. A., and Freedman, D. X., 1967, Effects of lysergic acid diethylamide on the metabolism of brain 5-hydroxytryptamine, Biochem. Pharmacol. 16: 2011–2021.Google Scholar
  381. Rosner, R., Ong, B. H., Paine, R. S., and Mahanand, D., 1965, Blood serotonin activity in trisomic and translocation Down’s syndrome, Lancet i: l191–1193.Google Scholar
  382. Saavedra, J. M., and Axelrod, J., 1972a, A specific and sensitive enzymatic assay for tryptamine in tissues, J. Pharmacol. Exp. Ther. 182: 363–369.PubMedGoogle Scholar
  383. Saavedra, J. M., and Axelrod, J., 19726, Psychotomimetic N-methylated tryptamines: Formation in brain in vivo and in vitro, Science 172: 1365–1366.Google Scholar
  384. Saavedra, J. M., and Axelrod, J., 1973, Effect of drugs on the tryptamine content of rat tissues, J. Pharmacol. Exp. Ther. 185: 523–529.PubMedGoogle Scholar
  385. Saavedra, J. M., Coyle, J. T., and Axelrod, J., 1973, The distribution and properties of the nonspecific N-methyltransferase in brain, J. Neurochem. 20: 743–752.PubMedCrossRefGoogle Scholar
  386. Sabelli, H. C., and Giardina, W. J., 1970, CNS effects of the aldehyde products of brain monoamines, Biol. Psychiat. 2: 119–139.Google Scholar
  387. Sabelli, H. C., and Giardina, W. J., 1973, Amine modulation of affective behavior, in: Chemical Modulation of Brain Function ( H. C. Sabelli, ed.), pp. 225–260, Raven Press, New York.Google Scholar
  388. Sabelli, H. C., Giardina, W. J., Alivisatos, S. K. A., Seth, P. K., and Ungar, F., 1970, Indoleacetaldehydes: Serotonin-like effects on the central nervous system. Nature 223: 73–74.CrossRefGoogle Scholar
  389. Sanders-Bush, E., 1973, Recent studies on the mechanism of chlorinated amphetamines, in: Serotonin and Behavior ( J. Barchas and E. Usdin, Eds.), pp. 191–200, Academic Press, New York and London.Google Scholar
  390. Sanders-Bush, E., Bushing, J., and Sulser, F., 1972, β-Chloroamphetamine-inhibition of cerebral tryptophan hydroxylase, Biochem. Pharmacol. 21: 1501–1510.Google Scholar
  391. Sandler, M., and Youdim, M. B. H., 1972, Multiple forms of monoamine oxidase: Functional significance, Pharmacol. Rev. 24: 331–348.Google Scholar
  392. Scapagnini, U., Preziosi, P., and De Schaepdryver, A., 1969, Influence of restraint stress, corticosterone and betamethasone on brain amine levels, Pharmacol. Res. Commun. 1: 63–69.Google Scholar
  393. Schechter, P. J., Lovenberg, W., and Sjoerdsma, A., 1972, Dissociation of morphine tolerance and dependence from brain serotonin synthesis rate in mice, Biochem. Pharmacol. 21: 751–753.Google Scholar
  394. Schou, M., 1959, Lithium in psychiatric therapy: Stock taking after ten years, Psychophar- macologia 1: 65–78.CrossRefGoogle Scholar
  395. Schou, M., and Baastrup, P. C., 1967, Lithium as a prophylactic agent, Arch. Gen. Psychiat. 16: 162–173.CrossRefGoogle Scholar
  396. Schubert, J., 1973, Effect of chronic lithium treatment on monoamine metabolism in rat brain, Psychopharmacologia 32: 301–311.PubMedCrossRefGoogle Scholar
  397. Schubert, J., Nyback, H., and Sedvall, G., 1970, Effect of antidepressant drugs on accumulation and disappearance of monoamines formed in vivo from labelled precursors in mouse brain, J. Pharm. Pharmacol. 22: 136–139.PubMedCrossRefGoogle Scholar
  398. Schwartz, A. S., and Eidelberg, E., 1970, Role of biogenic amines in morphine dependence, Life Sci. 9: 613–624.CrossRefGoogle Scholar
  399. Sedvall, G. C., Weise, V. K., and Kopin, I. J., 1968, The rate of norepinephrine synthesis measured in vivo during short intervals; influence of adrenergic nerve impulse activity, J. Pharmacol. Exp. Ther. 159: 274–282.PubMedGoogle Scholar
  400. Shaw, D. M., Camps, F. E., and Eccleston, E. G., 1967,5-Hydroxytryptamine in the hindbrain of depressive suicides, Brit. J. Psychiat. 113: 1407–1411.Google Scholar
  401. Sheard, M. H., 1969, The effect of β-chlorophenylalanine on behaviour in rats: Relation to brain serotonin and 5-hydroxyindoleacetic acid, Brain Res. 15: 524–528.PubMedCrossRefGoogle Scholar
  402. Sheard, M. H., 1974, Effect of β-chloramphetamine on single raphe neurons, Advan. Biochem. PsyckopharmacoL, 10: 179–184.Google Scholar
  403. Sheard, M. H., and Aghajanian, G. K., 1968, Stimulation of the midbrain raphe: Effect on serotonin metabolism, J. Pharmacol. Exp, Ther. 163: 425–430.Google Scholar
  404. Sheard, M. H., and Aghajanian, G. K., 1970, Neuronally activated metabolism of brain serotonin: Effect of lithium, Life Sci. 9: 285–290.PubMedCrossRefGoogle Scholar
  405. Sheard, M. H., Zolovick, A., and Aghajanian, G. K., 1972, Raphe neurons: Effect of tricyclic antidepressant drugs, Brain Res. 43: 690–694.PubMedCrossRefGoogle Scholar
  406. Shein, H. M., Wilson, S., Lavin, R., and Wurtman, R. J., 1971, Stimulation of,4C serotonin synthesis from,4C tryptophan by mescaline in rat pineal organ cultures, Life Sci. 10: 273–282.CrossRefGoogle Scholar
  407. Shen, F.-H., Loh, H. H., and Way, E, L., 1970, Brain serotonin turnover in morphine tolerant and dependent mice, J. Pharmacol. Exp. Ther. 175: 427–434.PubMedGoogle Scholar
  408. Shields, P. J., 1972, Effects of electroconvulsive shock on the metabolism of 5-hydroxy- tryptamine in the rat brain, J. Pharm. Pharmacol. 24: 919–920.PubMedCrossRefGoogle Scholar
  409. Shields, P. J., and Eccleston, D., 1972, Effects of electrical stimulation of rat midbrain on 5-hydroxytryptamine synthesis as determined by a sensitive radioisotope method, J. Neurochem. 19: 255–272.CrossRefGoogle Scholar
  410. Shih, J. C., and Eiduson, S., 1969, Multiple forms of monoamine oxidase in the developing brain, Nature 224: 1309–1310.PubMedCrossRefGoogle Scholar
  411. Shih, J. C., and Eiduson, S., 1973, Monoamine oxidase (EC. Isolation and characterization of multiple forms of the brain enzyme, J. Neurochem. 21: 41–49.PubMedCrossRefGoogle Scholar
  412. Shillito, E. E., 1969, The effect of β-chlorophenylalanine on social interaction of male rats, Brit.]. Pharmacol. 36: 193P.Google Scholar
  413. Shore, P. A., 1972, Transport and storage of biogenic amines, Ann. Rev. Pharmacol. 12: 209–226.PubMedCrossRefGoogle Scholar
  414. Sicuteri, F., Anselmi, B., and Del Bianco, P. L., 1973, 5-Hydroxytryptamine supersensitivity as a new theory of headache and central pain: A clinical pharmacological approach with β-chlorophenylalanine, Psychopharmacologia 29: 347–356.Google Scholar
  415. Simmonds, M. A., 1970, Effect of environmental temperature on the turnover of 5-hydroxy- tryptamine in various areas of the brain, J. Physiol. 211: 93–108.PubMedGoogle Scholar
  416. Sims, K. L., and Bloom, F. E., 1971, Rat brain DOPA decarboxylase and 5-HTP decarboxylase: Two distinct enzymes, Trans. Am. Soc. Neurochem. 2: 109.Google Scholar
  417. Sims, K. L., and Bloom, F. E., 1973, Rat brain l-3,4-dihydroxyphenylalanine and l-5- hydroxytryptophan decarboxylase activities: Differential effect of 6-hydroxydopamine, Brain Res. 49: 165–175.PubMedCrossRefGoogle Scholar
  418. Sims, K. L., Davis, G. A., and Bloom, F. E., 1973, Activities of 3,4-dihydroxy-l-phenylalanine and 5-hydroxy-l-tryptophan decarboxylases in rat brain: Assay characteristics and distribution J. Neurochem 20: 449–464.PubMedCrossRefGoogle Scholar
  419. Smith, B., and Prockop, D. J., 1962, Central-nervous-system effects of ingestion of l-trypto- phan by normal subjects, New Engl. J. Med. 267: 1338–1341.Google Scholar
  420. Smith, H. G., and Lakatos, C., 1971, Effects of acetylsalicylic acid on serum protein binding and metabolism of tryptophan in man, J. Pharm. Pharmacol. 23: 180–189.PubMedCrossRefGoogle Scholar
  421. Smith, S. E., 1960, The pharmacological actions of 3,4-dihydroxy phenyl-a-methylalanine (a-methyldopa), an inhibitor of 5-hydroxytryptophan decarboxylase, Brit. J. Pharmacol. 15: 319–327.Google Scholar
  422. Smithies, J. R., 1974, Schizophrenia: The relevance of animal models, in: Biochemistry and Mental Illness (L. L. Iversen and P. R. Rose, Eds.), Biochem. Soc. Spec. Publ. 1: 189–196.Google Scholar
  423. Snodgrass, S. R., and Horn, A. S., 1973, An assay procedure for tryptamine in brain and spinal cord using its 3H dansyl derivative, J. Neurochem. 21: 687–696.PubMedCrossRefGoogle Scholar
  424. Snyder, S. H., Axelrod, J., Wurtman, R. J., and Fischer, J. E., 1965, Control of 5-hydroxytryptophan decarboxylase activity in the rat pineal gland by sympathetic nerves,]. Pharmacol. Exp. Ther. 147: 371–375.Google Scholar
  425. Snyder, S. H., Shaskan, E. G., and Kuhar, M. J., 1973, Serotonin uptake systems in brain tissue, in: Serotonin and Behavior ( J. Barchas and E. Usdin, Eds.), pp. 97–108, Academic Press, New York and London.Google Scholar
  426. Sourkes, T. L., 1954, Inhibition of dihydroxyphenylalanine decarboxylase by derivatives of phenylalanine, Arch. Biochem. 51: 444–456.Google Scholar
  427. Sourkes, T. L., 1971, Alpha-methyltryptophan and its actions on tryptophan metabolism, Fed. Proc. 30: 897–903.Google Scholar
  428. Sourkes, T. L., Missala, K., and Oravec, M., 1970, Decrease of cerebral serotonin and 5-hydroxyindolylacetic acid caused by (-)-a-methyltryptophan, J. Neurochem. 17:111– 115.Google Scholar
  429. Southgate, J., 1972, Endometrial monoamine oxidase: The effect of sex steroids, Advan. Biochem. Psychopharmacol. 5: 263–269.Google Scholar
  430. Sprince, H., 1970, An appraisal of methionine-tryptophan interrelationships in mental illness: Methylation reactions involved, Biol, psychiat. 2: 109–117.Google Scholar
  431. Strada, S. J., Klein, D. C., Weller, J. L., and Weiss, B., 1972, Effect of norepinephrine on the concentration of adenosine 3’,5’-monophosphate of rat pineal gland in organ culture, Endocrinology 90: 1470–1475.PubMedCrossRefGoogle Scholar
  432. Sulser, F., 1968, Discussion of the effects of benzoquinolizines and ring-substituted aral- kylamines on serotonin metabolism, Advan. Pharmacol. 6A: 70–71.Google Scholar
  433. Szara, S., 1956, Dimethyltryptamin: Its metabolism in man; the relation of its psychotic effect to the serotonin metabolism, Experientia 12: 441–442.PubMedCrossRefGoogle Scholar
  434. Tagliamonte, A., Tagliamonte, P., Gessa, G. L., and Brodie, B. B., 1969, Compulsive sexual activity induced by β-chlorophenylalanine in normal and pinealectomized rats, Science 166: 1433–1435.PubMedCrossRefGoogle Scholar
  435. Tagliamonte, A., Tagliamonte, P., Perez-Cret, J., and Gessa, G. L., 1971a, Increase of brain tryptophan caused by drugs which stimulate serotonin synthesis, Nature New Biol. 229: 125–126.PubMedCrossRefGoogle Scholar
  436. Tagliamonte, A., Tagliamonte, P., Perez-Cruet, J., Stern, S., and Gessa, G. L., 19716, Effect of psychotropic drugs on tryptophan concentration in the rat brain, J. Pharmacol. Exp. Ther. 177: 475–480.Google Scholar
  437. Tagliamonte, A., Tagliamonte, P., Di Chiara, G., Gessa, R., and Gessa, G. L., 1972, Increase in brain tryptophan by electroconvulsive shock in rats, J. Neurochem. 19: 1509–1512.PubMedCrossRefGoogle Scholar
  438. Tagliamonte, A., Biggio, G., Vargiu, L., and Gessa, G. L., 1973, Increase of brain tryptophan and stimulation of serotonin synthesis by salicylate, J. Neurochem. 20: 909–912.PubMedCrossRefGoogle Scholar
  439. Tanimukai, H., Ginther, R., Spaide, J., Bueno, J. R., and Himwich, H. E., 1970, Detection of psychotomimetic N,N-dimethylated indoleamines in the urine of four schizophrenic patients, Brit. J. Psychiat. 117: 421–430.CrossRefGoogle Scholar
  440. Taylor, J. D., Wykes, A. A., Gladish, Y. C., and Martin, W. B., 1960, New inhibitor of monoamine oxidase, Nature 187: 941–942.PubMedCrossRefGoogle Scholar
  441. Tenen, S. S., 1967, The effects of β-chlorophenylalanine, a serotonin depletor on avoidance acquisition, pain sensitivity and related behaviour in the rat, Psychopharmacologia 10: 204–219.PubMedCrossRefGoogle Scholar
  442. Thierry, A. M., Fekete, M., and Glowinski, J., 1968, Effects of stress on the metabolism of noradrenaline, dopamine and serotonin in the central nervous system of the rat. II. Modifications of serotonin metabolism, Europ. J. Pharmacol. 4: 384–389.Google Scholar
  443. Tipton, K. F., 1973, Biochemical aspects of monoamine oxidase, Brit. Med. Bull. 29: 116–119.Google Scholar
  444. Tozer, T. N., Neff, N. H., and Brodie, B. B., 1966, Application of steady-state kinetics to the synthesis rate and turnover time of serotonin in the brain of normal and reserpine-treated rats, J. Pharmacol. Exp. Ther. 153: 177–182.Google Scholar
  445. Tranzer, J. P., and Thoenen, H., 1967, Ultramorphologische Veränderungen der sympathischen Nervendigungen der Katze nach Vorbehandlung mit 5- und 6-hydroxydopamin, Naunyn-Schmiedebergs Arch. Pharmakop. Exp. Pathol. 257: 343–344.CrossRefGoogle Scholar
  446. Tu, J. B., and Zellweger, H., 1965, Blood serotonin deficiency in Down’s syndrome, Lancet ii: 715 — 716.Google Scholar
  447. Tyce, G. M., Flock, E. V., and Owen, C. A., 1968a, Effect of ethanol on serotonin (5-HT) metabolism in brain and isolated perfused liver, Fed. Proc. 27: 400.Google Scholar
  448. Tyce, G. M., Flock, E. V., and Owen, C. A., 1968h, 5-Hydroxytryptamine metabolism in brains of ethanol-intoxicated rats, Mayo Clin. Proc. 43: 668–673.Google Scholar
  449. Tyce, G. M., Flock, E. V., Taylor, W. F., and Owen, C. A., 1970, Effect of ethanol on 5-hydroxytryptamine turnover in rat brain, Proc. Soc. Exp. Biol. Med. 134: 40–44.PubMedGoogle Scholar
  450. Udenfriend, S., 1966, Biosynthesis of the sympathetic neurotransmitter norepinephrine, Harvey Lectures 60: 57–83.PubMedGoogle Scholar
  451. Udenfriend, S., and Weissbach, H., 1958, Turnover of 5-hydroxytryptamine (serotonin) in tissue, Proc. Soc. Exp. Biol. Med. 97: 748–851.PubMedGoogle Scholar
  452. Udenfriend, S., Titus, E., Weissbach, H., and Peterson, R. E., 1956, Biogenesis and metabolism of 5-hydroxyindole compounds, J. Biol. Chem. 219: 335–344.PubMedGoogle Scholar
  453. Udenfriend, S., Witkop, B., Redfield, B. G., and Weissbach, H., 1958, Studies with reversible inhibitors of monoamine oxidase: Harmaline and related compounds, Biochem. Pharmacol. 1: 160–165.Google Scholar
  454. Uretsky, N. J., and Iversen, L. L., 1970, Effects of 6-hydroxydopamine on catecholamine- containing neurons in rat brain, J. Neurochem. 17: 269–278.PubMedCrossRefGoogle Scholar
  455. Van Praag. H. M., and Korf, J., 1973, Monoamine metabolism in depression: Clinical application of the probenecid test, in: Serotonin and Behavior ( J. Barchas and E. Usdin, Eds.), pp. 457–468, Academic Press, New York and London.Google Scholar
  456. Van Praag, H. M., Korf, J., and Puite, J., 1970, 5-Hydroxyindoleacetic acid levels in the cerebrospinal fluid of depressive patients treated with probenecid, Nature 225: 1259–1260.Google Scholar
  457. Victor, S. J., Baumgarten, H. B., and Lovenberg, W., 1973, Effect of intraventricular administration of 5,6- and 5,7-dihydroxytryptamine on regional tryptophan hydroxylase activity in rat brain, Fed. Proc. 32: 564.Google Scholar
  458. Wang, H. L., Harwalker, V. H., and Waisman, H. A., 1962, Effect of dietary phenylalanine and tryptophan on brain serotonin, Arch. Biochem. Biophys. 96: 181–184.CrossRefGoogle Scholar
  459. Way, E. L., Loh, H. H., and Shen, F. H., 1968, Morphine tolerance, physical dependence and synthesis of brain 5-hydroxytryptamine, Science 162: 1290–1292.PubMedCrossRefGoogle Scholar
  460. Weber, L. J., and Horita, A., 1965, A study of 5-hydroxytryptamine formation from l-tryptophan in the brain and other tissues, Biochem. Pharmacol. 14: 1141–1149.Google Scholar
  461. Weiner, N., 1960, The distribution of monoamine oxidase and succinic oxidase in brain,]. Neurochem. 6: 79–86.CrossRefGoogle Scholar
  462. Weir, R. L., Chase, T. N., Ng, L. K. Y., and Kopin, I. J., 1973, 5-Hydroxyindoleacetic acid in spinal fluid: Relative contribution from brain and spinal cord, Brain Res. 52: 409–412.Google Scholar
  463. Weiss, B., 1968, Discussion of the formation, metabolism and physiologic effects of melatonin, Advan. Pharmacol. 6A: 152–155.Google Scholar
  464. Weiss, B., and Costa, E., 1967, Adenylcyclase activity in rat pineal gland: Effects of chronic denervation and norepinephrine, Science 156: 1750–1752.PubMedCrossRefGoogle Scholar
  465. Weissbach, H., Redfield, B. G., and Udenfriend, S., 1957, Soluble monoamine oxidase; its properties and actions on serotonin, J. Biol. Chem. 229: 953–963.PubMedGoogle Scholar
  466. Weissbach, H., Redfield, B. G., and Axelrod, J., 1960, Biosynthesis of melatonin: Enzymic conversion of serotonin to N-acetyl serotonin, Biochim. Biophys. Acta 43: 352–353.CrossRefGoogle Scholar
  467. Welch, B. L., and Welch, A. S., 1968, Differential activation by restraint stress of a mechanism to conserve brain catecholamines and serotonin in mice differing in excitability, Nature 218: 575–577.PubMedCrossRefGoogle Scholar
  468. Werdinius, B., 1968, Discussion of factors modulating brain serotonin turnover, Advan. Pharmacol. 6B: 93–95.Google Scholar
  469. Whalen, R. E., and Luttge, W. G., 1970, β-Chlorophenylalanine methyl ester: An aphrodisiac, Science, 169: 1000–1001.Google Scholar
  470. Wilk, S., 1973, Cerebrospinal fluid levels of 5-hydroxyindoleacetic acid in psychiatric disorders: A critical assessment, in: Serotonin and Behavior ( J. Barchas and E. Usdin, Eds.), pp. 483–486, Academic Press, New York and London.Google Scholar
  471. Wolstenholme, G. E. W., and Knight, J., 1971, The Pineal Gland, Churchill-Livingstone, Edinburgh.CrossRefGoogle Scholar
  472. Wurtman, R. J., and Anton-Tay, F., 1969, The mammalian pineal as a neuroendocrine transducer, Ree. Prog. Hormone Res. 25: 493–522.Google Scholar
  473. Wurtman, R. J., Axelrod, J., and Fisher, J. E., 1964, Melatonin synthesis in the pineal gland: Effect of light mediated by the sympathetic nervous system, Science 143: 1328–1330.CrossRefGoogle Scholar
  474. Wurtman, R. J., Axelrod, J., and Kelly, B. E., 1968, The Pineal, Academic Press, New York and London.Google Scholar
  475. Wyatt, R. J., Engleman, K., Kupfer, D. J., Fram, D. H., Sjoerdsma, A., and Snyder, F., 1970, Effects of l-tryptophan (a natural sedative) on human sleep, Lancet ii: 842–846.Google Scholar
  476. Wyatt, R. J., Vaughan, T., Kaplan,. J., Galanter, M., and Green, R., 1973a, 5-Hydroxytryptophan and chronic schizophenia—A preliminary study, in: Serotonin and Behavior (J. Barchas and E. Usdin, Eds.), pp. 487–497, Academic Press, New York and London.Google Scholar
  477. Wyatt, R. J.,Saavedra, J. M.,and Axelrod, J., 19736, Adimethyltryptamine-formingenzyme in human blood, Am. J. Psychiat. 130: 754–760.Google Scholar
  478. Yang, H. Y. T., and Neff, N. F., 1973, Monoamine oxidase. I. A natural substrate for B type enzyme, Fed. Proc. 32: 797.Google Scholar
  479. Yarbro, M. T., and Anderson, J. A., 1966, L-tryptophan metabolism in phenylketonuria, J. Pediat. 68: 895–904.PubMedCrossRefGoogle Scholar
  480. Yarbrough, G. G., Buxbaum, D. M., and Sanders-Bush, E., 1971, Increased serotonin turnover in the acutely morphine-treated rat, Life. Sei. 10: 977–983.Google Scholar
  481. Yarbrough, G. G., Buxbaum, D. M., and Sanders-Bush, E., 1972, Increased serotonin turnover in acutely morphine-treated mice, Biochem. Pharmacol. 21: 2667–2669.Google Scholar
  482. Youdim, M. B. H., 1972, Multiple forms of monoamine oxidase and their properties, Advan. Biochem. Psychopharmacol. 5: 67–77.Google Scholar
  483. Youdim, M. B. H., 1973a, Multiple forms of mitochondrial monoamine oxidase, Brit. Med. Bull. 29: 120–122.Google Scholar
  484. Youdim, M. B. H., 19736, Heterogeneity of rat brain and liver mitochondrial monoamine oxidase: Subcellular fractionation, Biochem. Soc. Trans. 1: 1126–1127.Google Scholar
  485. Youdim, M. B. H., 1974, Heterogeneity of rat brain mitochondrial monoamine oxidase, Advan. Biochem. Psychopharmacol. 11: 59–63.Google Scholar
  486. Youdim, M. B. H., 1975a, Monoamine deaminating system in mammalian tissues, in: MTP International Review of Science (H. Blasckho, Ed.), Butterworth, London, in press.Google Scholar
  487. Youdim, M. B. H., 19756, Assay and purification of brain monoamine oxidase, in: Methods in Neurochemistry (N. Marks and R. Rodnight, Eds.), Plenum Press, New York, in press.Google Scholar
  488. Youdim, M. B. H., and Sandler, M., 1968a, The effect of prenylamine on monoamine oxidase, Biochem. Appl. 14: 175–184.Google Scholar
  489. Youdim, M. B. H., and Sandler, M., 19686, Activation of monoamine oxidase and inhibition of aldehyde dehydrogenase by reserpine, Europ. J. Pharmacol. 4: 105–108.Google Scholar
  490. Youdim, M. B. H., Collins, G. G. S., and Sandler, M., 1969, Multiple forms of rat brain monoamine oxidase, Nature 223: 626–628.PubMedCrossRefGoogle Scholar
  491. Youdim, M. B. H., Collins, G. G. S., Sandler, M., Bevan-Jones, A. B., Pare, C. M. B., and Nicholson, W. J., 1972, Human brain monoamine oxidase: Multiple forms and selective inhibitors, Nature 236: 225–227.PubMedCrossRefGoogle Scholar
  492. Yuwiler, A., and Louttit, R. T., 1961, Effects of phenylalanine diet on brain serotonin in the rat, Science, 134: 831–832.PubMedCrossRefGoogle Scholar
  493. Yuwiler, A., Wetterberg, L., and Geller, E., 1971, Relationship between alternate routes of tryptophan metabolism following administration of tryptophan peroxidase inducers of stressors, J. Neurochem. 18: 593–599.PubMedCrossRefGoogle Scholar
  494. Zeller, E. A., 1959, The role of amine oxidases in the destruction of catecholamines, Pharmacol. Rev. 11: 387–393.Google Scholar
  495. Zeller, E. A., Barsky, J., Berman, E. R., and Fouls, J. R., 1952, Action of isonicotinic acid hydrazide and related compounds on enzymes involved in the autonomic nervous system, J. Pharmacol. Exp. Ther. 106: 427–432.Google Scholar
  496. Zitrin, A., 1973, Changes in brain serotonin level and male sexual behaviour, in -.Serotonin and Behavior (J. Barchas and E. Usdin, Eds.), pp. 365–370, Academic Press, New York and London.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • A. Richard Green
    • 1
  • David G. Grahame-Smith
    • 1
  1. 1.M.R.C. Unit and University Department of Clinical PharmacologyRadcliffe InfirmaryOxfordEngland

Personalised recommendations