Properties and Functions of Intraneuronal Monoamine Compartments in Central Aminergic Neurons

  • J. Glowinski
Part of the Handbook of Psychopharmacology book series (HBKPS, volume 3)


Norepinephrine (NE), dopamine (DA), and serotonin (5-HT) are probably neurotransmitters at a number of important synapses in the central nervous system. The amines can be synthesized locally in the cell bodies, axons, and numerous varicosities or “synapses en passage” of aminergic neurons. According to estimates made on peripheral adrenergic neurons, which are probably similar for neurons in the CNS, the concentrations of transmitter in the terminal varicosities are very much higher (approximately 10,000 μg/g) than in the cell bodies (10–100 μg/g) or in the preterminal axons (10–1500 μg/g) (Norberg and Hamberger, 1964). These important differences in the intraneuronal distribution of the monoamines reveal the existence of several morphologically distinct “pools” or “compartments.” In addition, the amine localized in the synaptic varicosities, which are regularly spaced in the terminal arborizations of the axons, is the only form that can be liberated in response to nerve activity and is thus distinguished by a functional criterion from the other intraneuronal forms of monoamines.


Tyrosine Hydroxylase Caudate Nucleus Storage Form Synaptic Terminal Noradrenergic Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Besson, M. J., Cheramy, A., Feltz, P., and Glowinski, J., 1969, Release of newly synthesized dopamine from dopamine-containing terminals in the striatum of the rat, Proc. Natl. Acad. Sci. 62: 741–748.PubMedCrossRefGoogle Scholar
  2. Besson, M. J., Cheramy, A., Feltz, P., and Glowinski, J., 1971a, Dopamine: Spontaneous and drug induced release from the caudate nucleus in the cat, Brain Res. 32: 407–424.PubMedCrossRefGoogle Scholar
  3. Besson, M. J., Cheramy, A., Gauchy, C., and Glowinski, J., 19716, Libération de la dopamine nouvellement synthetisée au niveau du noyau caudé chez le chat, J. Physiol. 63 (6):114A.Google Scholar
  4. Besson, M. J., Cheramy, A., Gauchy, C., and Glowinski, J., 1973, In vivo continuous estimation of 3H-DA synthesis and release in the cat caudate nucleus: Effects of a-MPT and of transection of the nigro neostriatal pathway, Arch. Pharmacol. 278: 101–105.Google Scholar
  5. Brodie, B. B., Costa, E., Dlabac, A., Neff, N. H., and Smookler, H. H., 1966, Application of steady state kinetics to the estimation of synthesis rates and turnover time of tissue catecholamines, J. Pharmacol. Exp. Ther. 3: 493–498.Google Scholar
  6. Costa, E., 1970, Simple neuronal models to estimate turnover rate of noradrenergic transmitters in vivo, in: Advances in Biochemical Psychopharmacology, Vol. 2 ( E. Costa and R. Giacobini, eds.), pp. 169–204, Raven Press, New York.Google Scholar
  7. Costa, E., and Neff, N. H., 1966, Isotopic and non-isotopic measurements of the rate of catecholamine biosynthesis, in: Biochemistry and Pharmacology of the Basal Ganglia ( E. Costa, L. J. Côte, and M. Yahr, eds.), pp. 141–155, Proceedings of the Second Symposium on Parkinson’s Disease, Raven Press, New York.Google Scholar
  8. Costa, E., and Neff, N. H., 1970, Estimation of turnover rates to study the metabolic regulation of the steady-state level of neuronal monoamines, in: Handbook of Neurochemistry, Vol. 4 ( A. Lajtha, ed.), pp. 45–90, Plenum Press, New York.Google Scholar
  9. Coyle, J. T., and Kuhar, M. J., 1974, Subcellular localization of dopamines-hydroxylase and endogenous norepinephrine in the rat hypothalamus, Brain Res. 65: 475–487.PubMedCrossRefGoogle Scholar
  10. Dahlstrom, A., 1971, The effects of drugs on axonal transport of amine storage granules, in: Bayer Symposium II ( H. J. Schumann and G. Kronberg, eds.), pp. 20–30, Springer, Berlin.Google Scholar
  11. Dahlstrom, A., and Haggendal, J., 1970, Axonal transport of amine storage granules in sympathetic adrenergic neurons, Advan. Biochem. Psychopharmacol. 4 (4): 377–383.Google Scholar
  12. deRobertis, E., 1964, Electron microscope and chemical study of binding sites of brain biogenic amines, in: Progress in Brain Research: Biogenic Amines, Vol. 8 ( H. E. Himwich and W. A. Himwich, eds.), pp. 118–136, Elsevier, Amsterdam.Google Scholar
  13. Farnebo, L. O., 1971, Effect of reserpine on release of 3 H noradrenaline, 3H dopamine and 3H metaraminol from field stimulated rat iris, Biochem. Pharmacol. 20 (10): 2715–2726.Google Scholar
  14. Florvall, L., and Corrodi, H., 1970, Dopamines-hydroxylase inhibitors: The preparation and the dopamine β-hydroxylase inhibitory activity of some compounds related to dithiocarbamic and thiuramdisulphide, Acta Pharm. Suec. 7: 7–22.Google Scholar
  15. Geffen, L. B., and Livett, B. G., 1971, Synaptic vesicles in sympathetic neurons, Physiol. Rev. 51 (1): 98–157.Google Scholar
  16. Glowinski, J., 1970, Storage and release of monoamines in the central nervous system, in: Handbook of Neurochemistry, Vol. 4 ( A. Lajtha, ed.), pp. 91–114, Plenum Press, New York.Google Scholar
  17. Glowinski,]., and Baldessarini, R., 1966, Metabolism of norepinephrine in the central nervous system, Pharmacol. Rev. 18 (4): 1201–1238.Google Scholar
  18. Glowinski, J., and Iversen, L., 1966a, Regional studies of catecholamines in the rat brain. I. The disposition of 3H-norepinephrine, 3H-dopamine, 3H-dopa in various regions of the brain, J. Neurochem. 13 (4): 655–669.PubMedCrossRefGoogle Scholar
  19. Glowinski, J., and Iversen, L., 19666, Regional studies of catecholamines in the rat brain. III. Subcellular distribution of endogenous and exogenous catecholamines in various brain regions, Biochem. Pharmacol. 15(7):977–987.Google Scholar
  20. Glowinski, J., Kopin, I., and Axelrod, J., 1965, Metabolism of 3H-norepinephrine in the rat brain, J. Neurochem. 12 (l): 25–30.PubMedCrossRefGoogle Scholar
  21. Glowinski, J., I Versen, L., and Axelrod, J., 1966a, Storage and synthesis of norepinephrine in the reserpine-treated rat brain, J. Pharmacol. Exp. Ther. 151 (2): 385–399.PubMedGoogle Scholar
  22. Glowinski, J., Snyder, S. H., and Axelrod, J., 19666, Subcellular localization of 8H- norepinephrine in the rat brain and the effect of drugs, J. Pharmacol. Exp. Ther. 152(2):282–292.PubMedGoogle Scholar
  23. Glowinski, J., Besson, M. J., Cheramy, A., Javoy, F., and Thierry, A. M., 1972, Caractéristiques et fonctions des compartiments intraneuronaux des monoamines dans le système nerveux central, in: Les Médiateurs Chimiques: Leur Rôle dans la Physiopathologie de la Motricité de la Vigilance et du Comportiment, XXIXe Réunion Neurologique Internationale, Paris, Rev. Neurol. 127 (1): 1–22.Google Scholar
  24. Glowinski, J., Hamon, M., and Hery, F., 1973, Regulation of 5-HT synthesis in central serotoninergic neurons, in: New Concepts in Neurotransmitter Regulation ( A. J. Mandell, ed.), pp. 239–257, Plenum Press, New York.CrossRefGoogle Scholar
  25. Haggendal, J., and Lindqvist, M., 1963, Behaviour and monoamine levels during long term administration of reserpine to rabbits, Acta Physiol. Scand. 57 (4): 431–436.Google Scholar
  26. Haggendal, J., and Lindqvist, M., 1964, Disclosure of labile monoamine fractions in brain and their correlation to behaviours, Acta Physiol. Scand. 57 (4): 351–357.Google Scholar
  27. I versen, L., 1967, The Uptake and Storage of Noradrenaline in Sympathetic Nerves, pp. 199–223, Cambridge University Press, Cambridge.Google Scholar
  28. I versen, L., and Glowinski, J., 1966a, Regional differences in the rate of turnover of norepinephrine in the rat brain, Nature 210 (5040): 1006–1008.PubMedCrossRefGoogle Scholar
  29. Iversen, L., and Glowinski, J., 19666, Regional studies of catecholamines in the rat brain. II. Rate of turnover of catecholamines in various brain regions, J. Neurochem. 13(4):671–682.Google Scholar
  30. Iversen, L., Glowinski, J., and Axelrod, J., 1965, The uptake and storage of 3H- norepinephrine in the reserpine-pretreated rat heart, J. Pharmacol. Exp. Ther. 150 (1): 173–183.PubMedGoogle Scholar
  31. Javoy, F., and Glowinski, J., 1971, Dynamic characteristics of the “functional compartment” of dopamine in dopaminergic terminals of the rat striatum, J. Neurochem. 18 (7): 1305–1311.PubMedCrossRefGoogle Scholar
  32. Javoy, F., Hamon, M., and Glowinski, J., 1970, Disposition of newly synthesized amines in cell bodies and terminals of central catecholaminergic neurons. I. Effect of amphetamine and thioproperazine on the metabolism of CA in the caudate nucleus, the substantia nigra and the ventromedial nucleus of the hypothalamus, Europ. J. Pharmacol. 10(2): 178– 188.Google Scholar
  33. Javoy, F., Agid, Y., Bouvet, D., and Glowinski, J., 1972, Feedback control of dopamine synthesis in dopaminergic terminals of the rat striatum, J. Pharmacol. Exp. Ther. 182 (3): 454–463.PubMedGoogle Scholar
  34. Javoy, F., Youdim, M. B. H., Agid, Y., and Glowinski, J., 1973, Early effect of monoamine oxidase inhibitors on dopamine metabolism and monoamine oxidase activity in the neostriatum of the rat, J. Neural Transmission 34: 270–289.CrossRefGoogle Scholar
  35. Javoy, F., Agid, Y., Glowinski, J., and Sotelo, C., 1974, Biochemical and morphological changes after mechanical or chemical degeneration of the dopaminergic nigro-neostriatal pathway, in: Dynamics of Degeneration and Growth in Neurons ( K. Fuxe and Y. Zotterman, eds.), pp. 85–97, Pergamon Press, London.Google Scholar
  36. Katz, R. I., and Chase, I. N., 1970, Neurohumoral mechanisms in the brain slices, in: Advances in Pharmacology and Chemotherapy, pp. 1–30, Academic Press, New York.Google Scholar
  37. Kehr, W., Carlsson, A., Lindqvist, M., Magnusson, T., and Atack, C., 1972, Evidence for a receptor mediated feedback control of striatal tyrosine hydroxylase activity, J. Pharm. Pharmacol. 24: 744–747.PubMedCrossRefGoogle Scholar
  38. Kopin, I., Breese, G. R., Krauss, K. R., and Weise, V. K., 1968, Selective release of newly synthesized norepinephrine from the cat spleen during sympathetic nerve stimulation, J. Pharmacol. Exp. Ther. 161 (2): 271–278.PubMedGoogle Scholar
  39. Kordon, C., and Glowinski, J., 1969, Selective inhibition of superovulation by blockage of dopamine synthesis during the “critical period” in the immature rat, Endocrinology 85: 924–931.PubMedCrossRefGoogle Scholar
  40. Korf, J., Roth, R. H„ and Aghajanian, G. K., 1973, Alternations in turnover and endogenous levels of norepinephrine in cerebral cortex following electrical stimulation and acute axotomy of cerebral noradrenergic pathways, Europ. J. Pharmacol. 23: 276–282.Google Scholar
  41. Kuczenski, R., 1973, Striatal tyrosine hydroxylases with high and low affinity for tyrosine: Implications for the multiple-pool concept of catecholamines, Life Sci. 13: 247–255.PubMedCrossRefGoogle Scholar
  42. Macon, J. B., Sokoloff, L., and Glowinski, J., 1971, Feedback control of rat brain 5-hydroxytryptamine synthesis, J. Neurochem. 18 (3): 323–331.PubMedCrossRefGoogle Scholar
  43. Maynert, E. W., and Kuriyama, K., 1964, Some observations on nerve-ending particles and synaptic vesicles, Life Sci. 3 (2): 1067–1087.PubMedCrossRefGoogle Scholar
  44. Maynert, E. W., Levi, R., and De Lorenzo, A. J., 1964, The presence of norepinephrine and 5-hydroxytryptamine in vesicles from disrupted nerve-ending particles, J. Pharmacol. Exp. Ther. 144 (2): 386–392.Google Scholar
  45. Morot-Gaudry, Y., Hamon, M., Bourgoin, S., Ley, J. P., and Glowinski, J., 1974, Estimation of the rate of 5-HT synthesis in the mouse brain by various methods available, Naunyn- Schmiedebergs Arch. Pharmacol. 282: 223–238.Google Scholar
  46. Neff, N. H., Tozer, T. N., and Brodie, B. B., 1967, Application of steady-state kinetics to studies of the transfer of 5-hydroxyindolacetic acid from brain to plasmg, J- Pharmacol. 158: 207–214.Google Scholar
  47. Norberg, K. A., and Hamberger, B., 1964, The sympathetic neuron, Acta Physiol. Scand. 63: 238.Google Scholar
  48. Page, I. H., and Carlsson, A., 1970, Serotonin, in: Handbook of Neurochemistry, Vol. 4 ( A. Lajtha, ed.), pp. 251–262, Plenum Press, New York.Google Scholar
  49. Rech, R. M., Carr, L. A., and Moore, K. E., 1968, Behavioural effects of a-methyl-tyrosine after prior depletion of brain catecholamines, J. Pharmacol. Exp. Ther. 160 (2): 326–335.PubMedGoogle Scholar
  50. Schildkraut, J. J., Draskoczy, P. R., and Sunlo, P., 1971, Norepinephrine pools in rat brain: Differences in turnover rates and pathways of metabolism, Science 172: 587–589.PubMedCrossRefGoogle Scholar
  51. Sedvall, G. C., Weise, V. K., and Kopin, I., 1968, The rate of norepinephrine synthesis measured in vivo during short intervals: Influence of adrenergic nerve impulse activity, J. Pharmacol. Exp. Ther. 159 (2): 274–282.PubMedGoogle Scholar
  52. Sheard, M. H., and Aghajanian, G. K., 1968, Stimulation of the midbrain raphe: Effect on serotonin metabolism, J. Pharmacol. Exp. Ther. 163 (3): 425–430.PubMedGoogle Scholar
  53. Shields, P. J., and Eccleston, D., 1972, Effects of electrical stimulation of rat brain on 5-hydroxytryptamine synthesis as determined by a sensitive radio-isotope method, J. Neurochem. 19 (2): 265–272.PubMedCrossRefGoogle Scholar
  54. Shields, P. J., and Eccleston, D., 1973, Evidence for the synthesis and storage of 5–hydroxytryptamine in two separate pools in the brain, J. Neurochem. 20: 881–888.PubMedCrossRefGoogle Scholar
  55. Spector, S., Sjoerdsma, A., and Udenfriend, S., 1965, Blockade of endogenous norepi-nephrine synthesis by a-methyl-tyrosine, an inhibitor of tyrosine hydroxylase, J. Pharmacol. Exp. Ther. 147: 86–95.PubMedGoogle Scholar
  56. Spector, S., Gordon, R., Sjoerdsma, A., and Udenfriend, S., 1967, End-product inhibition of tyrosine hydroxylase as a possible mechanism for regulation of norepinephrine synthesis, Mol. Pharmacol. 3: 549–555.Google Scholar
  57. Stinus, L., Le Moal, and Cardo, B., 1972, Autostimulation et catecholamines. I. Intervention possible de deux “compartiments” (compartiment fonctionnel et compartiment de reserve), Physiol. Behav. 9: 175–182.Google Scholar
  58. Stinus, L., Thierry, A. M., Blanc, G., Glowinski, J., and Cardo, B., 1973, Self stimulation and catecholamines. III. Effect of imposed or self-stimulation in the area ventralis tegmenti on catecholamine utilization in the rat brain, Brain Res. 64: 199–210.PubMedCrossRefGoogle Scholar
  59. Thierry, A. M., 1972, Stress et metabolisme des monoamines centrales chez le rat, Thèse de Doctorat, Université de Paris.Google Scholar
  60. Thierry, A. M., Fekete, M., and Glowinski, J., 1968a, Effects of stress on the metabolism of noradrenaline (NA), dopamine (DA) and serotonin (5-HT) in the central nervous system of the rat. II. Modifications of serotonin metabolism, Europ. J. Pharmacol. 4 (4): 384.Google Scholar
  61. Thierry, A. M., Javoy, F., Glowinski, J., and Kety, S. S., 19686, Effects of stress on the metabolism of norepinephrine, dopamine and serotonin in the central nervous system of the rat. I. Modification of norepinephrine turnover, J. Pharmacol. Exp. Ther. 163(1): 163—171.Google Scholar
  62. Thierry, A. M., Blanc, D., and Glowinski, J., 1970, Preferential utilization of newly synthesized norepinephrine in the brain stem of stressed rats, Europ. J. Pharmacol. 10 (1): 139–142.Google Scholar
  63. Thierry, A. M., Blanc, G., and Glowinski, J., 1971a, Effect of stress on the disposition of catecholamines localized in various intraneuronal storage forms in the brainstem of the rat, J. Neurochem. 18 (3): 449–461.PubMedCrossRefGoogle Scholar
  64. Thierry, A. M., Blanc, G., and Glowinski, J., 19716, Dopamine-norepinlphrine: Another regulatory step of norepinephrine synthesis in central noradrenergic neurons, Europ. J. Pharmacol. 14(3):303–307.Google Scholar
  65. Thierry, A. M., Blanc, G., and Glowinski, J., 1973, Further evidence for the heterogenous storage of NA on central noradrenergic terminals, Arch. Pharmacol. 279: 255–266.Google Scholar
  66. Ungerstedt, U., 1971, Stereotaxic mapping of the monoamine pathway in the rat brain, Acta Physiol. Scand. 367 (1): 1–48.Google Scholar
  67. Weil-Malherbe, H., and Bone, A. D., 1957, Intracellular distribution of catecholamines in the brain, Nature 180 (4594): 1050–1051.PubMedCrossRefGoogle Scholar
  68. Weiner, N., 1970, Regulation of NE biosynthesis, Ann. Rev. Pharmacol. 10:273–29(3.Google Scholar
  69. Weissman, A., Koe, K. B., and Tenen, S. S., 1966, Antiamphetamine effects following inhibition of tyrosine hydroxylase, J. Pharmacol. Exp. Ther. 151 (2): 339–352.PubMedGoogle Scholar
  70. Whittaker, V. P., 1966, Catecholamine storage particles in the central nervous system, Pharmacol. Rev. 18: 401–412.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • J. Glowinski
    • 1
  1. 1.Groupe NB (INSERM U.114)Collège de FranceParisFrance

Personalised recommendations