Enzymes Involved in the Biosynthesis and Degradation of Catecholamines

  • José M. Musacchio
Part of the Handbook of Psychopharmacology book series (HBKPS, volume 3)


Under normal physiological conditions, the concentration of tissue catecholamines does not change appreciably. This is because all the tissues that store and release catecholamines have the capacity to synthesize them. In addition, the sympathetic nerve endings and probably most of the central adrenergic structures have the property of taking up a considerable fraction of the catecholamines which have been released.


Tyrosine Hydroxylase Monoamine Oxidase Adrenal Medulla Fusaric Acid Tyrosine Hydroxylase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberici, M., Rodriguez De Lores Arnaz, G., and De Robertis, E., 1965 Catechol-O- methyltransferase in nerve endings of rat brain, Life Sci. 4: 1951–1960.Google Scholar
  2. Andén, N. E., and FuxÉ, K., 1971, A new dopamines-hydroxylase inhibitor: Effects on the noradrenaline concentration and on the action of L-DOPA in the spinal cord, Brit. J. Pharmacol. 43: 747–756.Google Scholar
  3. Anderson, P. J., and D’iorio, A., 1968, Purification and properties of catechol-O- methyltransferase, Biochem. Pharmacol. 17: 1943–1949.Google Scholar
  4. Arbuthnott, G. W., Crow, T. J., Fuxé, K., Olson, L., and Ungerstedt, U., 1970, Depletion of catecholamines in vivo induced by electrical stimulation of central monoamine pathways, Brain Res. 24: 471–483.PubMedGoogle Scholar
  5. Assicot, M., and Bohuon, C., 1970, Purification and studies of catechol-O-methyltransferase of rat liver, Europ. J. Biochem. 12: 490–495.Google Scholar
  6. Axelrod, J., 1962a, Purification and properties of phenylethanolamine N-methyltransferase, J. Biol. Chem. 237: 1657–1660.PubMedGoogle Scholar
  7. Axelrod, J., 19626, Catechol-O-methyltransferase from rat liver, in: Methods in Enzymology, Vol. 5 (S. P. Colowick,and N. O. Kaplan, Eds.), pp. 748–751, Academic Press, New York.Google Scholar
  8. Axelrod, J., 1966, Methylation reactions in the formation and metabolism of catecholamines and other biogenic amines, Pharmacol. Rev. 18: 95–113.Google Scholar
  9. Axelrod, J., and Laroche, M. J., 1959, Inhibition of O-methylation of epinephrine and norepinephrine in vitro and in vivo, Science 130: 800.PubMedGoogle Scholar
  10. Axelrod, J., and Tomchick, R., 1958, Enzymatic O-methylation of catecholamines, J. Biol. Chem. 233: 702–705.PubMedGoogle Scholar
  11. Axelrod, J., and Vesell, E. S., 1970, Heterogeneity of N- and O-methyltransferases, Mol. Pharmacol. 6: 78–84.Google Scholar
  12. Axelrod, J., Albers, W., and Clemente, C. D., 1959, Distribution of catechol-O- methyltransferase in the nervous system and other tissues, J. Neurochem. 5: 68–72.Google Scholar
  13. Ayukawa, S., Takeuchi, T., Sezaki, M., Hara, T., Umezawa, H., and Nagatsu, T., 1968, Inhibition of tyrosine hydroxylase by aquayamycin,]. Antibiot. 21: 350–355.Google Scholar
  14. Ayukawa, S., Hamada, M., Kojiri, K., Takeuchi, T., Hara, T., Nagatsu, T., and Umezawa, H., 1969, Studies on a new pigment antibiotic chrothiomycin, J. Antibiot. 22: 303–308.PubMedGoogle Scholar
  15. Bacq, Z. M., Gosselin, L., Dresse, A., and Renson, J., 1959, Inhibition of O-methyltransferase by catechol and sensitization to epinephrine, Science 130: 453.PubMedGoogle Scholar
  16. Bagchi, S. P., and Zarycki, E. P., 1973, Formation of catecholamines from phenylalanine in brain—Effects of chlorpromazine and catron, Biochem. Pharmacol. 22: 1353–1368.Google Scholar
  17. Bapna, J., Neff, N. H., and Costa, E., 1970, The mechanism of tissue norepinephrine depletion by a,a’-dipyridyl, Neuropharmacology 9: 333–340.PubMedGoogle Scholar
  18. Belleau, B., and Burba, J., 1961, Tropolones: A unique class of potent noncompetitive inhibitors of S-adenosylmethionine-catechol methyltransferase, Biochim. Biophys. Acta 54: 195–196.Google Scholar
  19. Belleau, B., and Burba, J., 1963, Occupancy of adrenergic receptors inhibition of pyrocatechol O-methyltransferase by tropolones, J. Med. Chem. 6: 755–759.PubMedGoogle Scholar
  20. Besson, M. J., Cheramy, A., Feltz, P., and Glowinski, J., 1971, Dopamine: Spontaneous and drug induced release from the caudate nucleau in the rat, Brain Res. 32: 407–424.PubMedGoogle Scholar
  21. Black, I. B., Hendry, I. A., and Iverson, L. L., 1971, Trans-synaptic regulation of growth and development of adrenergic neurones in a mouse sympathetic ganglion, Brain Res. 34: 229–240.PubMedGoogle Scholar
  22. Blaschko, H., 1966, Amine oxidases, in: Molecular Basisof Some Aspects of Mental Activity, Vol. 1 ( O. Walaas, ed.), pp. 403–413, Academic Press, London.Google Scholar
  23. Blaschko, H., Hägen, P., and Welch, A. D., 1955, Observations on the intracellular particles of the adrenal medulla, J. Physiol. 129: 27–49.PubMedGoogle Scholar
  24. Blumberg, W. E., Goldstein, M., Lauber, E., and Peisach, J., 1965, Magnetic resonance studies on the mechanism of the enzymic ß-hydroxylation of 3,4- dihydroxyphenylethylamine, Biochim. Biophys. Acta. 99: 187–190.Google Scholar
  25. Bohuon, C., and Assicot, M., 1973, Catechol-O-methyltransferase, in: Frontiers in Catecholamine Research ( E. Usdin and S. Snyder, eds.), pp. 107–112, Pergamon Press, London.Google Scholar
  26. Brodie, B. B., Costa, E., Dlabac, A., Neff, N. H., and Smookler, H. H., 1966, Application of steady state kinetics to the estimation of synthesis rate and turnover time of tissue catecholamines, J. Pharmacol. Exp. Ther. 154: 493–498.PubMedGoogle Scholar
  27. Carlsson, A., Corrodi, H., and Waldeck, B., 1963, a-Substituierte Dopacetamide als Hemmer der Catechol-O-methyl-transferase und der enzymatischen Hydroxylierung aromatischer Aminosäuren in den catecholamin-metabolismus eingreifende Substanzen, Helv. Chim. Acta 46: 2271–2285.Google Scholar
  28. Cheema, S., Soldin, S. J., Knapp, A., Hofmann, T., and Scrimgeour, K. G., 1973, Properties of purified quinonoid dihydropterin reductase, Can. J. Biochem. 51: 1229–1239.Google Scholar
  29. Cheramy, A., Gauchy, C., Glowinski, J., and Besson, M. J., 1973, In vivo activation by benzotropine of dopamine release and synthesis in the caudate nucleus, Europ. J. Pharmacol. 21: 246–248.Google Scholar
  30. Chesson, M., Dubnick, B., Leeson, G., and Scott, C. C., 1959, Biochemical and pharmacological studies of ß-phenylethylhydrazine and selected related compounds, Ann. N. Y. Acad. Sei. 80: 597–608.Google Scholar
  31. Christenson, J. G., Dairman, W., and Udenfriend, S., 1970, Preparation and properties of a homogeneous aromatic L-amino acid decarboxylase, Arch. Biochem. Biophys. 141: 356–367.Google Scholar
  32. Christenson, J. G., Dairman, W. D., and Udenfriend, S., 1972, On the identity of DOPA decarboxylase and 5-hydroxytryptophan decarboxylase, Proc. Natl. Acad. Sei. 69: 343–347.Google Scholar
  33. Ciaranello, R. D., Barchas, R. E., Byers, G. S., Stemmle, D. W., and BARCHAS, J. P., 1969, Enzymatic synthesis of adrenaline in mammalian brain, Nature 221: 368–369.PubMedGoogle Scholar
  34. Ciaranello, R. D., Dornbusch, J. N., and Barchas, R. E., 1972, Regulation of adrenal phenylethanolamine N-methyltransferase activity in three inbred mouse strains, Mol. Pharmacol. 8: 511–520.Google Scholar
  35. Ciaranello, R. D., Jacobowitz, D., and Axelrod, J., 1973, Effect of dexamethasone on phenylethanolamine N-methyltransferase in chromaffin tissue of the neonatal rat, J. Neurochem. 20: 799–805.PubMedGoogle Scholar
  36. Collins, G. G. S., Sandler, M., Williams, E. D., and Youdim, M. B. H., 1970, Multiple forms of human brain mitochondrial monoamine oxidase, Nature 255: 817–820.Google Scholar
  37. Connett, R. J., and Kirshner, N., 1970, Purification and properties of bovine phenylethanolamine N-methyltransferase, J. Biol. Chem. 245: 329–334.PubMedGoogle Scholar
  38. Costa, E., Green, A. R., Koslow, S. H., Lefevre, H. F., Revuelta, A. V., and Wang, C., 1972, Dopamine and norepinephrine in noradrenergic axons: A study in vivo of their precursor product relationship by mass fragmentography and radiochemistry, Pharmacol. Rev. 24: 167–190.Google Scholar
  39. Coupland, R. E., 1953, On the morphology and adrenaline-noradrenaline content of chro-maffin tissue, J. Endocrinol. 9: 194–203.PubMedGoogle Scholar
  40. Coyle, J. T., 1972, Tyrosine hydroxylase in the rat brain—Cofactor requirements, regional and subcellular distribution, Biochem. Pharmacol. 21: 1935–1944.Google Scholar
  41. Craine, J. E., Hall, E. S., and Kaufman, S., 1972, The isolation and characterization of dihydropteridine reductase from sheep liver, J. Biol. Chem. 247: 6082–6091.PubMedGoogle Scholar
  42. Creveling, C. R., 1962, Studies on dopamine-oxidase. Doctoral thesis, George Washington University, Washington, D.C.Google Scholar
  43. Creveling, C. R., Daly, J. W., Witkop, B., and Udenfriend, S., 1962, Substrates and inhibitors of dopamine-jS-oxidase, Biochim. Biophys. Acta 64: 125–134.Google Scholar
  44. Creveling, C. R., Morris, N., Shimizu, H., Ong, H. H., and Daly, J., 1972, Catechol-O- methyltransferase. IV. Factors affecting m- and p-methylation of substituted catechols, Mol. Pharmacol. 8: 398–409.Google Scholar
  45. Drain, D. J., Horlington, M., Lazare, R., and Poulter, G. A., 1962, The effect of a-methyl DOPA and same decarboxylase inhibitors on brain 5-hydroxytryptamine, Life Sci. 1: 93–97.PubMedGoogle Scholar
  46. Duch, D. S., Viveros, O. H., and Kirshner, N., 1968, Endogenous inhibitors in adrenal medulla of dopamine-/miydroxylase, Biochem. Pharmacol. 17: 255–264.Google Scholar
  47. Ellenbogen, L., Taylor, R. J., Jr., and Brundage, G. B., 1965, On the role of pteridines as cofactors for tyrosine hydroxylase, Biochem. Biophys, Res. Commun. 19: 708–715.Google Scholar
  48. Voneuler, U. S., 1967, Some factors affecting catecholamine uptake, storage, and release in adrenergic nerve granules, Circ. Res. Suppl. 20, 21:111–5–111-11.Google Scholar
  49. Foldes, A., Jeffrey, P. L., Preston, B. N., and Austin, L., 1972, Dopamine/¡-hydroxylase of bovine adrenal medullae: A rapid purification procedure, Biochem. J. 126: 1209–1217.PubMedGoogle Scholar
  50. Friedman, S., and Kaufman, S., 1965, 3,4-Dihydroxyphenylethylamine -hydroxylase—Physical properties, copper content, and role of copper in the catalytic activity, J. Biol. Chem. 240: 4763–4773.PubMedGoogle Scholar
  51. Fuller, R. W., 1972, Selective inhibition of monoamine oxidase, in: Advances in Biochemical Psychopharmacology, Vol. 5 ( E. Costa and M. Sandler, eds.), pp. 339–354, Raven Press, New York.Google Scholar
  52. Fuller, R. W., and Hunt, J. M., 1965, Substrate specificity of phenylethanolamine iV-methyl- transferase, Biochem. Pharmacol. 14: 1896–1897.Google Scholar
  53. Fuller, R. W., WARREN, B. J., and MOLLOY, B. B., 1970, Substrate specificity of phenethanolamine iV-methyltransferase from rabbit adrenal, Biochim. Biophys. Acta 222: 210–212.Google Scholar
  54. Fuxe, K., Goldstein, M., Hokfelt, T., and Joh, T. H., 1971a, Cellular localization of dopamine-j3-hydroxylase and phenylethanolamine-N-methyltransferase as revealed by immunohistochemistry, in: Progress in Brain Research, Vol. 34 ( O. Eranko, ed.), pp. 127–138, Elsevier, Amsterdam.Google Scholar
  55. Fuxe, K., Goldstein, M., Hokfelt, T., Freedman,L.,and Anagnoste, B., 19716, The effect of hypophysectomy and ACTH treatment on catecholamine synthesizing enzymes in tissues, Acta Pharmacol. Toxicol. (Suppl. 4) 29: 15.Google Scholar
  56. Gauchy, C., Agid, Y., Glowinski, J., and Cheramy, A., 1973, Acute effects of morphine on dopamine synthesis and release and tyrosine metabolism in the rat striatum, Europ. J. Pharmacol. 22: 311–319.Google Scholar
  57. Geffen, L. B., Livett, D. G., and RUSH, R. A., 1969, Immunohistochemical localization of protein components of catecholamine storage vesicles, J. Physiol. 204: 593–605.PubMedGoogle Scholar
  58. Gey, K. F., and Pletscher, A., 1961, Activity of monoamine oxidase in relation to the 5-hydroxytryptamine and norepinephrine content of rat brain, J. Neurochem:239–243.Google Scholar
  59. Glowinski, J., Agid, Y., Besson, M. J., Cheramy, A. Gauchy, C., and Javoy, F., 1973, Regulation of DA synthesis in the nigro neostriatal system, in: Frontiers in Catecholamine Research ( E. Usdin and S. Snyder, eds.), pp. 605–611, Pergamon Press, London.Google Scholar
  60. Goldstein, M., 1966, Dopamine-/?-hydroxylase: A copper enzyme, in: Biochemistry of Copper ( J. Peisach, ed.), pp. 443–453, Academic Press, New York.Google Scholar
  61. Goldstein, M., and CONTRERA, J. F., 1962, The substrate specificity of phenylamine-0- hydroxylase, J. Biol. Chem. 237: 1898–1902.PubMedGoogle Scholar
  62. Goldstein, M., and JOH, T. H., 1967, The effect of reduced and oxidized pteridine on dopamines-hydroxylase activity, Mol. Pharmacol. 3: 396–398.Google Scholar
  63. Goldstein, M., Mckereghan, M. R., and Lauber, E., 1964a, The stereospecificity of the enzymatic amphetamine /?-hydroxylation, Biochim. Biophys. Acta 89: 191–193.Google Scholar
  64. Goldstein, M., Anagnoste, B., Lauber, E., and Mckereghan, M. R., 19646, Inhibition of dopamines-hydroxylase by disulfiram, Life Sci. 3: 763–767.Google Scholar
  65. Goldstein, M., Lauber, E., and Mckereghan, M. R., 1965, Studies on the purification and characterization of 3,4-dihydroxyphenylethylamine β-hydroxylase, J. Biol. Chem. 240: 2066–2072.PubMedGoogle Scholar
  66. Goldstein, M., Joh, T. H., and Garvey, T. Q., Ill, 1968, Kinetic studies of the enzymatic dopamines-hydroxylase reaction, Biochemistry 7: 2724–2730.PubMedGoogle Scholar
  67. Goldstein, M., Anagnoste, B., Battista, A. F., Owen, W. S., and Nakatani, S., 1969, Studies of amines in the striatum in monkeys with nigral lesions, J. Neurochem. 16: 645–653.PubMedGoogle Scholar
  68. Goldstein, M., Fuxe, K., and Hokfelt, T., 1972, Characterization and tissue localization of catecholamine synthesizing enzymes, Pharmacol. Rev. 24: 293–309.Google Scholar
  69. Goldstein, M., Anagnoste, B., Freedman, L. S., Roffman, M., Ebstein, R. P., Park, D. H., Fuxe, K., and Hokfelt, T., 1973, Characterisation, localisation and regulation of catecholamine synthesising enzymes, in: Frontiers in Catecholamine Research ( E. Usdin and S. Snyder, eds.), pp. 69–78, Pergamon Press, London.Google Scholar
  70. Gomes, B., Igaue, I., Kloepfer, H. G., and Yasunobu, K. T., 1969, Amine oxidase. XIV. Isolation and characterization of the multiple beef amine oxidase components, Arch. Biochem. Biophys. 132: 16–27.Google Scholar
  71. Goodall, MCC., and Kirshner, N., 1957, Biosynthesis of adrenaline and noradrenaline in vitro, J. Biol. Chem. 226: 213–221.PubMedGoogle Scholar
  72. Gorkin, V. Z., 1973, Transformation of monoamine oxidases and deamination of fatty- aromatic monoamines, in: Frontiers in Catecholamine Research ( E. Usdin and S. Snyder, eds.), pp. 151–152, Pergamon Press, London.Google Scholar
  73. Hagen, P., 1956, Biosynthesis of norepinephrine from 3,4-dihydroxyphenylethylamine (dopamine), J. Pharmacol. Exp. Ther. 116: 26.Google Scholar
  74. Hall, D. W. R., Logan, B. W., and Parsons, G. H., 1969, Further studies on the inhibition of monoamine oxidase by M + B 9302 (clorgyline)–l:. Substrate specificity in various mammalian species, Biochem. Pharmacol. 18: 1447–1454.Google Scholar
  75. Hansson, E., Fleming, R. M., and Clark, W. G., 1964, Effect of some benzylhydrazines and benzyloxyamines on DOPA and 5-hydroxytryptophan decarboxylase in vivo, Int. J. Neuropharmacol. 3: 177–188.PubMedGoogle Scholar
  76. Hartman, B. K., 1973, The innervation of cerebral blood vessels by central noradrenergic neurons, in: Frontiers in Catecholamine Research ( E. Usdin and S. Snyder, eds.), pp. 91–96, Pergamon Press, London.Google Scholar
  77. Hartman, B. K., and Udenfriend, S., 1970, Immunofluorescent localization of dopamine-hydroxylase in tissues, Mol. Pharmacol. 6: 85–92.Google Scholar
  78. Hidaka, H., Nagatsu, T., Takeya, K., Takeuchi, T., Suda, H., Kojiri, K., Matsuzaki, M., and Umerzawa, H., 1969, Fusaric acid, a hypotensive agent produced by fungi,/. Anitbiot. 22: 228–230.Google Scholar
  79. Hidaka, H.,. Asano, T., and Takemoto, N., 1973, Analogues of fusaric (5-butylpicolinic) acid as potent inhibitors of dopamine -hydroxylase, Mol. Pharmacol. 9: 172–177.Google Scholar
  80. Hokfelt, T., Fuxe, K., Goldstein, M., and Johansson, O., 1974, Immunohistochemical evidence for the existence of adrenaline neurons in the rat brain, Brain Res. 66: 235–251.Google Scholar
  81. Holtz, P., Heise, R., and Ludtke, K., 1938, Fermentativer Abbau von 1-Dioxyphenylalanin (DOPA) durch Niere, Arch. Exp. Pathol. Pharmakol. 191: 87–118.Google Scholar
  82. Horita, A., and Mcgrath, W. R., 1960, The interaction between reversible and irreversible monoamine oxidase inhibitors, Biochem. Pharmacol. 3: 206–211.Google Scholar
  83. Houslay, M. D., and Tipton, K. F., 1973, The nature of the electrophoretically separable forms of monoamine oxidase, in: Frontiers in Catecholamine Research ( E. Usdin and S. Snyder, eds.), pp. 147–149, Pergamon Press, London.Google Scholar
  84. Ikeda, M., Levitt, M., and Udenfriend, S., 1965, Hydroxylation of phenylalanine by purified preparations of adrenal and brain tyrosine hydroxylase, Biochem. Biophys. Res. Commun. 18: 482–488.Google Scholar
  85. Ikeda, M., Fahien, L. A., and Udenfriend, S., 1966, A kinetic study of bovine adrenal tyrosine hydroxylase,/. Biol. Chem. 241: 4452–4456.Google Scholar
  86. Inscoe, J. K., Daly, J., and Axelrod, J., 1965, Factors affecting the enzymatic formation of O-methylated dihydroxy derivatives, Biochem. Pharmacol. 14: 1257–1263.Google Scholar
  87. Jarrott, B., 1971, Occurrence 2nd properties of catechol-O-methyltransferase in adrenergic neurons,/. Neurochem. 11: 17–27.Google Scholar
  88. Jarrott, B., and Iversen, L. L., 1971a, Subcellular distribution of monoamine oxidase activity in rat liver and vas deferens, Biochem. Pharmacol. 17: 1619–1625.Google Scholar
  89. Jarrott, B., and Iversen, L. L., 19716, Noradrenaline metabolizing enzymes in normal and sympathetically denervated vas deferens,/. Neurochem. 18: 1–6.Google Scholar
  90. Jarrott, B., and Langer, S. Z., 1971, Changes in monoamine oxidase and catechol-O- methyltransferase activities after denervation of the nictitating membrane of the cat, /. Physiol. 212: 549–559.Google Scholar
  91. Javoy, F., Agid, Y., Bouvet, D., and Glowinski, J., 1972, Feedback control of dopamine synthesis in dopaminergic terminals of the rat striatum, /. Pharmacol. Exp. Ther. 182: 454–463.Google Scholar
  92. Jequier, E., Robinson, D. S., Lovenberg, W., and Sjoerdsma, A., 1969, Further studies on tryptophan hydroxylase in rat brain stem and beef pineal, Biochem. Pharmacol. 18: 1071–1081.Google Scholar
  93. Joh, T. H., and Goldstein, M., 1973, Isolation and characterization of multiple forms of phenylethanolamine N-methyltransferase, Mol. Pharmacol. 9: 117–129.Google Scholar
  94. Joh, T. H., Kapit, R., and Goldstein, M., 1969, A kinetic study of particulate bovine adrenal tyrosine hydroxylase, Biochim. Biophys. Acta 171: 378–380.Google Scholar
  95. Joh, T. H., Geghman, C., and Reis, D., 1973, Immunochemical demonstration of increased accumulation of tyrosine hydroxylase protein in sympathetic ganglia and adrenal medulla elicited by reserpine, Proc. Natl. Acad. Sci. 70: 2767–2771.PubMedGoogle Scholar
  96. Johnston, J. P., 1968, Some observations upon a new inhibitor of monoamine oxidase in brain tissue, Biochem. Pharmacol. 17: 1285–1297.Google Scholar
  97. Jonason, J., 1969, Metabolism of catecholamines in the central and peripheral nervous system, Acta Physiol. Scand. Suppl. 320: 1–50.PubMedGoogle Scholar
  98. Karobath, M., and Baldessarini, R. J., 1972, Formation of catechol compounds from phenylalanine and tyrosine with isolated nerve endings, Nature New Biol. 236: 206–208.PubMedGoogle Scholar
  99. Katz, R. I., Goodwin, J. S., and Kopin, I. J., 1969, Disposition of neurotransmitters in experimental mouse glioma, Life Sci. 8: 561–569.PubMedGoogle Scholar
  100. Kaufman, S., 1957, The enzymatic conversion of phenylalanine to tyrosine, J. Biol. Chem. 226: 511–524.PubMedGoogle Scholar
  101. Kaufman, S., 1967, Metabolism of the phenylalanine hydroxylation cofactor, /. Biol. Chem. 242: 3934–3943.Google Scholar
  102. Kirshner, N., 1957, Pathway of noradrenaline formation from DOPA, J. Biol. Chem. 226: 821–825.PubMedGoogle Scholar
  103. Kirshner, N., and GOODALL, MCC., 1957, The formation of adrenaline from noradrenaline, Biochim. Biophys. Acta 24: 658–659.Google Scholar
  104. Korf, J., Aghajanian, G. K., and Roth, R. H., 1973, Stimulation and destruction of the locus coeruleus: Opposite effects on 3-methoxy-4-hydroxyphenylglycol sulfate levels in the rat cerebral cortex, Europ. J. Pharmacol. 21: 305–310.Google Scholar
  105. Krakoff, L. R., and Axelrod, J., 1967, Inhibition of phenylethanolamine-iV-methyl transfer-ase, Biochem. Pharmacol. 16: 1384–1386.Google Scholar
  106. Kuczenski, R., 1973, Rat brain tyrosine hydroxylase, J. Biol. Chem. 248: 2261–2265.PubMedGoogle Scholar
  107. Kuczenski, R. T., and Mandell, A. J., 1972, Regulatory properties of soluble and particulate rat brain tyrosine hydroxylase, J. Biol. Chem. 247: 3114–3122.PubMedGoogle Scholar
  108. Laduron, P., 1972, N-Methylation of dopamine to epinine in adrenal medulla: A new model for the biosynthesis of adrenaline, Arch. Int. Pharmacodyn. 195: 197–208.Google Scholar
  109. Laduron, P., and BELPAIRE, F., 1968, Tissue fractionation and catecholamines. II, Biochem. Pharmacol. 17: 1127–1140.Google Scholar
  110. Lancaster, G. A., and Sourkes, T. L., 1972, Purification and properties of hog-kidney 3,4-dihydroxyphenylalanine decarboxylase, Canad. J. Biochem. 50: 791–797.Google Scholar
  111. Levin, E. Y., and Kaufman, S., 1961, Studies on the enzyme catalyzing the conversion of 3,4-dihydroxyphenylethylamine to norepinephrine, J. Biol. Chem. 236: 2043–2049.PubMedGoogle Scholar
  112. Levin, E. Y., Levenberg, B., and Kaufman, S., 1960, The enzymatic conversion of 3,4- dihydroxyphenylethylamine to norepinephrine, J. Biol. Chem. 235: 2080–2086.PubMedGoogle Scholar
  113. Levitt, M., Spector, S., Sjoerdsma, A., and Udenfriend, S., 1965, Elucidation of the rate-limiting step in norepinephrine biosynthesis in the perfused guinea-pig heart, J. Pharmacol. Exp. Ther. 148: 1–8.PubMedGoogle Scholar
  114. Levitt, M., Gibb, J. W., Daly, J. W., Lipton, M., and Udenfriend, S., 1967, A new class of tyrosine hydroxylase inhibitors and a simple assay of inhibition in vivo, Biochem. Pharmacol. 16: 1313–1321.Google Scholar
  115. Lind, K. E., 1972, Dihydropteridine reductase: Investigation of the specificity for quinoid dihydropteridine and the inhibition by 2,4-diaminopteridines, Europ. J. Biochem. 25: 560–562.Google Scholar
  116. Livett, B. G., Geffen, L. B., and Rush, R. A., 1969, Immunohistochemical evidence for the transport of dopamine-hydroxylase and a catecholamine-binding protein in sympathetic nerves, Biochem. Pharmacol. 18: 923–924.Google Scholar
  117. Lloyd, T., and Weiner, N., 1971, Isolation and characterization of a tyrosine hydroxylase cofactor from bovine adrenal medulla, Mol. Pharmacol. 7: 569–580.Google Scholar
  118. Lovenberg, W., Weissbach, H., and Udenfriend, S., 1962, Aromatic L-aminoacid decarboxyl-ase, J. Biol. Chem. 237: 89–93.PubMedGoogle Scholar
  119. Lovenberg, W., Barchas, J., Weisbach, Y., and Udenfriend, S., 1963, Characteristics of the inhibition of aromatic L-amino acid decarboxylase by a-methylamino acids, Arch. Biochem. Biophys. 103: 9–14.Google Scholar
  120. Mcgeer, E. G., Mcgeer, P. L., and Peters, D. A., 1967, Inhibition of brain tyrosine hydroxylase by 5-halotryptophans, Life Sci. 6: 2221–2232.PubMedGoogle Scholar
  121. McGeer, P. L., and McGeer, E. G., 1964, Formation of adrenaline by brain tissue, Biochem. Biophys. Res. Commun. 17: 502–507.Google Scholar
  122. Mizutani, K., Nagatsu, T., Asashima, M., and Kinoshita, S., 1971, Inhibition of tyrosine hydroxylase by naphthoquinone pigments in Echinodermata, J. Jap. Biochem. Soc. 43: 747–751.Google Scholar
  123. Mizutani, K., Nagatsu, T., Asashima, M., and Kinoshita, S., 1972, inhibition of tyrosine hydroxylase by naphthoquinone pigments of echinoids, Biochem. Pharmacol. 21: 2463–2468.Google Scholar
  124. Molinoff, P. B., Weinshilboum, R. M., and Axelrod, J., 1971, A sensitive enzymatic assay for dopamine-jS-hydroxylase, J. Pharmacol. Exp. Ther. 178: 425–431.PubMedGoogle Scholar
  125. Moore, K. E., and Dominic, J. A., 1971, Tyrosine hydroxylase inhibitors, Fed. Proc. 30: 859–870.Google Scholar
  126. Moore, K. E., Wright, P. F., and Bert, J. K., 1967, Toxicologic studies with a-methyltyrosine, an inhibitor of tyrosine hydroxylase, J. Pharmacol. Exp. Ther. 155: 506–515.PubMedGoogle Scholar
  127. Musacchio, J. M., 1967, Subcellular distribution of adrenal tyrosine hydroxylase, Pharmacologist 9: 210.Google Scholar
  128. Musacchio, J. M., 1968, Subcellular distribution of adrenal tyrosine hydroxylase, Biochem. Pharmacol. 17: 1470–1473.Google Scholar
  129. Musacchio, J. M., and Craviso, G. L., 1973, Properties of tyrosine hydroxylase, in: Frontiers in Catecholamine Research ( E. Usdin and S. Snyder, eds.), pp. 47–52, Pergamon Press, London.Google Scholar
  130. Musacchio, J. M., and Wurzburger, R. J., 1973, Catecholamine biosynthesis: Regional distribution of dihydropteridine reductase in the bovine brain, Fed. Proc. 32: 707.Google Scholar
  131. Musacchio, J. M., Julou, L., Kety, S. S., and Glowinski, J., 1969, Increase in rat brain tyrosine hydroxylase activity produced by electroconvulsive shock, Proc. Natl. Acad. Sci. 63: 1117–1119.PubMedGoogle Scholar
  132. Musacchio, J. M., Wurzburger, R. J., and D’angelo, G. L., 1971a, Different molecular forms of bovine adrenal tyrosine hydroxylase, Mol. Pharmacol. 7: 136–146.Google Scholar
  133. Musacchio, J. M., D’angelo, G. L., and McQueen, C. A., 19716, Dihydropteridine reductase: Implication on the regulation of catecholamine biosynthesis, Proc. Natl. Acad. Sci. 68: 2087–2091.Google Scholar
  134. Musacchio, J. M., Craviso, G. L., and Wurzburger, R. J., 1972, Dihydropteridine reductase in the rat brain, Life Sci. 11: 267–276 (Part II).Google Scholar
  135. Musacchio, J. M., Mcqueen, C. A., and Crabiso, G. L., 1973, Tyrosine hydroxylase: Subcellular distribution and molecular and kinetic characteristics of the different enzyme forms, in: New Concepts in Neurotransmitter Regulation ( A. J. Mandell, ed.), pp. 69–88, Plenum Press, New York.Google Scholar
  136. Nagatsu, I., Nagatsu, T., Mizutani, K., Umezawa, H., Matsuzaki, M., and Takeuchi, T., 1971, Adrenal tyrosine hydroxylase and dopamine β-hydroxylase in spontaneously hypertensive rats, Nature 230: 381–382.PubMedGoogle Scholar
  137. Nagatsu, T., Levitt, M., and Udenfriend, S., 1964a, Tyrosine hydroxylase—Initial step in norepinephrine biosynthesis,/. Biol. Chem. 239: 2910–2917.Google Scholar
  138. Nagatsu, T., Levitt, M., and Udenfriend, S., 19646, A rapid and simple radioassay for tyrosine hydroxylase activity, Anal. Biochem. 9: 122–126.Google Scholar
  139. Nagatsu, T., Kuzuya, H., and Hidaka, H., 1967, Inhibition of dopamine β-hydroxylase by sulfhydryl compounds and the nature of the natural inhibitors, Biochim. Biophys. Acta 139: 319–327.Google Scholar
  140. Nagatsu, T., Yamamoto, T., and Nagatsu, I., 1970, Partial separation and properties of tyrosine hydroxylase from human pheochromocytoma: Effect of norepinephrine, Biochim. Biophys. Acta 198: 210–218.Google Scholar
  141. Nagatsu, T., Nagatsu, I., Umezawa, H., and Takeuchi, T., 1971, Effect of oudenone on adrenal tyrosine hydroxylase activity in vivo and on tissue catecholamine concentrations, Biochem. Pharmacol. 20: 2505–2507.Google Scholar
  142. Nagatsu, T., Mizutani, K., Nagatsu, I., Matsuura, S., and Sugimoto, T., 1972a, Pteridines as cofactor or inhibitor of tyrosine hydroxylase, Biochem. Pharmacol. 21: 1945–1953.Google Scholar
  143. Nagatsu, T., Nakano, G., Mizutani, K., and Harada, M., 19726, Purification and properties of amine oxidases in brain and connective tissue (dental pulp), in: Advances in Biochemical Psychopharmacology, Vol. 5 (E. Costa and M. Sandler, Eds.), pp. 25–36, Raven Press, New York.Google Scholar
  144. Nakashima, Y., Suzue, R., Sanada, H., and Kawada, S., 1972, Effect of ascorbic acid on tyrosine hydroxylase activity in vivo, Arch. Biochem. Biophys. 152: 515–520.Google Scholar
  145. Neff, N. H., Yang, H.-Y. T., and Goridis, C., 1973, Degradation of the transmitter amines by specific types of monoamine oxidases, in: Frontiers in Catecholamine Research ( E. Usdin and S. Snyder, eds.), pp. 133–137, Pergamon Press, London.Google Scholar
  146. Nielsen, K. H., Simonsen, V., and Lind, K. E., 1969, Dihydropteridine reductase—a method for the measurement of activity, and investigations of the specificity for NADH and NADPH, Europ. J. Biochem. 9: 497–502.Google Scholar
  147. Nikodijevic, B., Creveling, C. R., and Udenfriend, S., 1963, Inhibition of dopamine /J-hydroxylase in vivo by benzyloxyamine and benzylhydrazine analogs, J. Pharmacol. Exp. Ther. 140: 224–228.PubMedGoogle Scholar
  148. Pendleton, R. G., and SNOW, I. B., 1973, The binding order of substrates to phenylethanolamine iV-methyltransferase, Mol. Pharmacol. 9: 718–715.Google Scholar
  149. Petrack, B., Sheppy, F., and Fetzer, V., 1968, Studies on tyrosine hydroxylase from bovine adrenal medulla, J. Biol. Chem. 243: 743–748.PubMedGoogle Scholar
  150. Petrack, B., Sheppy, F., Fetzer, V., Manning, T., Chertock, H., and Ma, D., 1972, Effect of ferrous ion on tyrosine hydroxylase of bovine adrenal medulla, J. Biol. C/im. 247: 4872–4878.Google Scholar
  151. Petrack, B., Fetzer, V., and Altiere, R., 1973, Comparative studies on bovine and guinea pig tyrosine hydroxylase, in: Frontiers in Catecholamine Research ( E. Usdin and S. Snyder, eds.), pp. 97–100, Pergamon Press, London.Google Scholar
  152. Pletscher, A., and Gey, K. F., 1963, The effect of a new decarboxylase inhibitor on endogenous and exogenous amines, Biochem. Pharmacol 12: 223–228.Google Scholar
  153. Pletscher, A., Gey, K. F., and Zeller, P., 1960, Monoaminoxydase-Hemmer, in: Progress in Drug Research, Vol. II ( E. Jucker, ed.), pp. 417–590, Birkhauser-Verlag, Basel/Stuttgart.Google Scholar
  154. Pletscher, A., Goschke, H., Gey, K. F., and Tholen, H., 1961, Species differences in the action of monoamine oxidase inhibitors, Med. Exp. 4: 113–117.Google Scholar
  155. Pohorecky, L. A., Zigmond, M., Karten, H., and Wurtman, R. J., 1969, Enzymatic conversion of norepinephrine to epinephrine by the brain, J. Pharmacol. Exp. Ther. 165: 190–195.PubMedGoogle Scholar
  156. Poillon, W. N., 1973, Tyrosine hydroxylase of sheep brain: Some catalytic and chemical properties of the detergent-solubilized, partially purified enzyme, J. Neurochem. 21: 729–741.PubMedGoogle Scholar
  157. Pomerantz, S. H., 1964, Tyrosine hydroxylation catalyzed by mammalian tyrosinase: An improved method of assay, Biochem. Biophys. Res. Commun. 16: 188–194.Google Scholar
  158. Potter, L. T., and Axelrod, J., 1963, Subcellular localization of catecholamines in tissues of the rat,/. Pharmacol. Exp. Ther. 142: 291–298.Google Scholar
  159. Reis, D. J., Ross, R. A., and JOH, T. H., 1974, Reserpine increases the accumulation of tyrosine hydroxylase and dopamines-hydroxylase enzyme protein in catecholamine neurons of rat brain. Fed. Proc. 33: 535.Google Scholar
  160. Rodriguesdelores Aenaiz, G., and Derobertis, E., 1964,5-Hydroxytryptophan decarboxyl-ase activity in nerve endings of the rat brain, J. Neurochem. 11: 213–219.Google Scholar
  161. Roth, R. H., Walters, J. R., and Aghajanian,G. K., 1973, Effect of impulse flow on the release and synthesis of dopamine in the rat striatum, in: Frontiers in Catecholamine Research ( E. Usdin and S. Snyder, eds.), pp. 567–574, Pergamon Press, London.Google Scholar
  162. Scatton, B., Cheramy, A., Besson, M. J., and Glowinski, J., 1970, Increased synthesis and release of dopamine in the striatum of the rat after amantadine treatment, Europ. J. Pharmacol. 13: 131–133.Google Scholar
  163. Scrimgeour, K. G., and Cheema, S., 1971, Discussion paper: Quinonoid dihydropterin reductase, Ann. N.Y. Acad. Sci. 186: 115–118.PubMedGoogle Scholar
  164. Shiman, R., Akino, M., and Kaufman, S., 1971, Solubilization and partial purification of tyrosine hydroxylase from bovine adrenal medulla, J. Biol. Chem. 246: 1330–1340.PubMedGoogle Scholar
  165. Silberstein, S. D., Shein, H. M., and Berv, K. R., 1972, Catechol-O-methyl transferase and monoamine oxidase activity in cultured rodent astrocytoma cells, Brain Res. 41: 245–248.PubMedGoogle Scholar
  166. Smith, T. E., Weissbach, H., and Udenfriend, S., 1964, Studies on monoamine oxidase: The mechanism of inhibition of monamine oxidase by iproniazid, Biochemistry 2: 746–751.Google Scholar
  167. Sourkes, T. L., 1966, Dopadecarboxylase: Substrates, coenzyme, inhibitors, in: Pharmacological Reviews, Vol. 18 ( G. H. Acheson, ed.), pp. 53–60, Williams and Wilkins, Baltimore.Google Scholar
  168. Spector, S., Sjoerdsma, A., and Udenfriend, S., 1965, Blockade of endogenous norepine-phrine synthesis by a-methyl-tyrosine, an inhibitor of tyrosine hydroxylase, J. Pharmacol. Exp. Ther. 147: 86–95.PubMedGoogle Scholar
  169. Squires, R. F., 1972, Multiple forms of monoamine oxidase in intact mitochondria as characterized by selective inhibitors and thermal stability: A comparison of eight mam-malian species, in: Advances in Biochemical Psychopharmacology, Vol. 5 ( E. Costa and M. Sandler, eds.), pp. 355–370, Raven Press, New York.Google Scholar
  170. Stjarne, L., and Lishajko, F., 1967, Localization of different steps in noradrenaline synthesis to different fractions of a bovine splenic nerve homogenate, Biochem. Pharmacol. 16: 1719–1728.Google Scholar
  171. Stolk, J. M., and Hanlon, D. P., 1973, Inhibition of brain dopamines-hydroxylase activity by methimazole, Life Sci. 12: 417–423.Google Scholar
  172. Taylor, R. J., Stubbs, C. S., and Ellenbogen, L., 1968, inhibition of tyrosine hydroxylase in vitro and in vivo by 3-amino-pyrrolo[3,4c]isoxazole and derivatives, Biochem. Pharmacol. 17: 1779–1788.Google Scholar
  173. Taylor, R. J., Stubbs, C. S., and Ellenbogen, L., 1969, Tyrosine hydroxylase inhibition in vitro and in vivo by chelating agents, Biochem. Pharmacol. 18: 587–594.Google Scholar
  174. Taylor, R. J., Stubbs, C. S., and Ellenbogen, L., 1970, Tyrosine hydroxylase inhibition invitro and in vivo by deoxyfrenolicin, Biochem. Pharmacol. 19: 1737–1741.Google Scholar
  175. Thoenen, H., 1970, Induction of tyrosine hydroxylase in peripheral and central adrenergic neurons by cold-exposure of rats, Nature 228: 861–862.PubMedGoogle Scholar
  176. Tipton, K. F., 1968a, The purification of pig brain mitochondrial monoamine oxidase, Europ. J. Biochem. 4: 103–107.Google Scholar
  177. Tipton, K. F., 19686, The reaction pathway of pig brain mitochondrial monoamine oxidase, Europ. J. Biochem. 5: 316–320.Google Scholar
  178. Tipton, K. F., 1972, Some properties of monoamine oxidase, in: Advances in Biochemical Psychopharmacology, Vol. 5 ( E. Costa and M. Sandler, eds.), pp. 11–24, Raven Press, New York.Google Scholar
  179. Tipton, K. F., 1973, Biochemical aspects of monoamine oxidase, Brit. Med. Bull. 29: 116–119.Google Scholar
  180. Tipton, K. F., Houslay, M. D., and Garrett, N. J., 1973, Allotopic properties of human brain monoamine oxidase, Nature New Biol. 246: 213–214.PubMedGoogle Scholar
  181. Udenfriend, S., 1966, Biosynthesis of the sympathetic neurotransmitter, norepinephrine, in: The Harvey Lectures, Series 60, pp. 57–83, Academic Press, New York.Google Scholar
  182. Udenfriend, S., and Creveling, C. R., 1959, Localization of dopamine-/?-oxidase in brain,/. Neurochem. 4: 350–352.Google Scholar
  183. Udenfriend, S., Zaltzman-Nirenberg, P., and Nagatsu, T., 1965, inhibitors of purified beef adrenal tyrosine hydroxylase, Biochem. Pharmacol. 14: 837–845.Google Scholar
  184. Umezawa, H., Takeuchi, T., Inuma, H., Suzuki, K., Ito, M., Matsuzaki, M., Nagatsu, T., and Tanabe, O., 1970, A new microbial product, oudenone, inhibiting tyrosine hydroxylase, J. Antibiotics 28: 514–518.Google Scholar
  185. Vanderschoot, J. B., Creveling, C. R., Nagatsu, T., and Udenfriend, S., 1963, On the mechanism of inhibition of dopamines–oxidase by benzylamines, J. Pharmacol. Exp. Ther. 141: 74–78.Google Scholar
  186. Voltattorni, C. B., Minelli, A., and Turano, C., 1971, Spectral properties of the coenzyme bound to dopa decarboxylase from pig kidney, FEBS Letters 17: 231–235.PubMedGoogle Scholar
  187. Voneuler, U. S., 1967, Some factors affecting catecholamine uptake, storage, and release in adrenergic nerve granules, Circ. Res. Suppl. 20, 21:111–5-111-11.Google Scholar
  188. Vonvoigtlander, P. F., and MOORE, K. E., 1971, Nigrostriatal pathway: Stimulation-evoked release of [3H]dopamine from caudate nucleus, Brain Res. 35: 580–583.Google Scholar
  189. Wallace, E. F., Krantz, M. J., and Lovenberg, W., 1973, Dopamines-hydroxylase: A tetrameric glycoprotein, Proc. Natl. Acad. Sci. 70: 2253–2255.PubMedGoogle Scholar
  190. Waymire, J. C., Bjur, R., and WEINER, N., 1971, Assay of tyrosine hydroxylase by coupled decarboxylation of dopa formed from l-l4C-L-tyrosine, Anal. Biochem. 43: 588–600.Google Scholar
  191. Weiner, N., Waymire, J. C., and Schneider, F. H., 1971, The localization and kinetics of tyrosine hydroxylase of the adrenals of several species and of human chromaffin tissue, Acta Cient. Venez. 22: 179–183.Google Scholar
  192. Weiner, N., Bjur, R., Lee, F.-L., Becker, G., and Mosimann, W. F., 1973, Studies on the mechanism of regulation of tyrosine hydroxylase activity during nerve stimulation, in: Frontiers in Catecholamine Research ( E. Usdin and S. Snyder, eds.), pp. 211–221, Pergamon Press, London.Google Scholar
  193. Wurtman, R. J., and Axelrod, J., 1966, Control of enzymatic synthesis of adrenaline in the adrenal medulla by adrenal cortical steroids, J. Biol. Chem. 241: 2301–2305.PubMedGoogle Scholar
  194. Wurtman, R. J., Axelrod, J., Vesell, E. S., and Ross, G. T., 1968, Species differences in inducibility of phenylethanolamine-N-methyl transferase, Endocrinology 82: 584–590.PubMedGoogle Scholar
  195. Wurzburger, R. J., and Musacchio, J. M., 1971, Subcellular distribution and aggregation of bovine adrenal tyrosine hydroxylase, J. Pharmacol. Exp. Ther. 177: 155–168.PubMedGoogle Scholar
  196. Yasunobu, K. T., Igaue, I., and Gomes, B., 1968, The purification and properties of beef liver mitochondrial monoamine oxidase, in: Advances in Pharmacology, Vol. 6, Part A ( S. Garattini and P. A. Shore, eds.), pp. 43–59, Academic Press, New York.Google Scholar
  197. Youdim, M. B. H., Collins, C. G. S., and Sandler, M., 1969, Multiple forms of rat brain monoamine oxidase, Nature 223: 626–628.PubMedGoogle Scholar
  198. Zeller, E. A., and Hsu, M., 1973, On the the mechanism of inhibition of monoamine oxidase, in: Frontiers in Catecholamine Research ( E. Usdin and S. Snyder, eds.), pp. 153–155, Pergamon Press, London.Google Scholar
  199. Zhelyaskov, D. K., Levitt, M., and Udenfriend, S., 1968, Tryptophan derivatives as inhibitors of tyrosine hydroxylase in vivo and in vitro, Mol. Pharmacol. 4: 445–451.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • José M. Musacchio
    • 1
  1. 1.Department of Pharmacology, School of MedicineNew York University Medical CenterNew YorkUSA

Personalised recommendations