Skip to main content

Enzymes Involved in the Biosynthesis and Degradation of Catecholamines

  • Chapter
Biochemistry of Biogenic Amines

Part of the book series: Handbook of Psychopharmacology ((SIBN,volume 3))

Abstract

Under normal physiological conditions, the concentration of tissue catecholamines does not change appreciably. This is because all the tissues that store and release catecholamines have the capacity to synthesize them. In addition, the sympathetic nerve endings and probably most of the central adrenergic structures have the property of taking up a considerable fraction of the catecholamines which have been released.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberici, M., Rodriguez De Lores Arnaz, G., and De Robertis, E., 1965 Catechol-O- methyltransferase in nerve endings of rat brain, Life Sci. 4: 1951–1960.

    Google Scholar 

  • Andén, N. E., and FuxÉ, K., 1971, A new dopamines-hydroxylase inhibitor: Effects on the noradrenaline concentration and on the action of L-DOPA in the spinal cord, Brit. J. Pharmacol. 43: 747–756.

    Google Scholar 

  • Anderson, P. J., and D’iorio, A., 1968, Purification and properties of catechol-O- methyltransferase, Biochem. Pharmacol. 17: 1943–1949.

    Google Scholar 

  • Arbuthnott, G. W., Crow, T. J., Fuxé, K., Olson, L., and Ungerstedt, U., 1970, Depletion of catecholamines in vivo induced by electrical stimulation of central monoamine pathways, Brain Res. 24: 471–483.

    PubMed  Google Scholar 

  • Assicot, M., and Bohuon, C., 1970, Purification and studies of catechol-O-methyltransferase of rat liver, Europ. J. Biochem. 12: 490–495.

    Google Scholar 

  • Axelrod, J., 1962a, Purification and properties of phenylethanolamine N-methyltransferase, J. Biol. Chem. 237: 1657–1660.

    PubMed  Google Scholar 

  • Axelrod, J., 19626, Catechol-O-methyltransferase from rat liver, in: Methods in Enzymology, Vol. 5 (S. P. Colowick,and N. O. Kaplan, Eds.), pp. 748–751, Academic Press, New York.

    Google Scholar 

  • Axelrod, J., 1966, Methylation reactions in the formation and metabolism of catecholamines and other biogenic amines, Pharmacol. Rev. 18: 95–113.

    Google Scholar 

  • Axelrod, J., and Laroche, M. J., 1959, Inhibition of O-methylation of epinephrine and norepinephrine in vitro and in vivo, Science 130: 800.

    PubMed  Google Scholar 

  • Axelrod, J., and Tomchick, R., 1958, Enzymatic O-methylation of catecholamines, J. Biol. Chem. 233: 702–705.

    PubMed  Google Scholar 

  • Axelrod, J., and Vesell, E. S., 1970, Heterogeneity of N- and O-methyltransferases, Mol. Pharmacol. 6: 78–84.

    Google Scholar 

  • Axelrod, J., Albers, W., and Clemente, C. D., 1959, Distribution of catechol-O- methyltransferase in the nervous system and other tissues, J. Neurochem. 5: 68–72.

    Google Scholar 

  • Ayukawa, S., Takeuchi, T., Sezaki, M., Hara, T., Umezawa, H., and Nagatsu, T., 1968, Inhibition of tyrosine hydroxylase by aquayamycin,]. Antibiot. 21: 350–355.

    Google Scholar 

  • Ayukawa, S., Hamada, M., Kojiri, K., Takeuchi, T., Hara, T., Nagatsu, T., and Umezawa, H., 1969, Studies on a new pigment antibiotic chrothiomycin, J. Antibiot. 22: 303–308.

    PubMed  Google Scholar 

  • Bacq, Z. M., Gosselin, L., Dresse, A., and Renson, J., 1959, Inhibition of O-methyltransferase by catechol and sensitization to epinephrine, Science 130: 453.

    PubMed  Google Scholar 

  • Bagchi, S. P., and Zarycki, E. P., 1973, Formation of catecholamines from phenylalanine in brain—Effects of chlorpromazine and catron, Biochem. Pharmacol. 22: 1353–1368.

    Google Scholar 

  • Bapna, J., Neff, N. H., and Costa, E., 1970, The mechanism of tissue norepinephrine depletion by a,a’-dipyridyl, Neuropharmacology 9: 333–340.

    PubMed  Google Scholar 

  • Belleau, B., and Burba, J., 1961, Tropolones: A unique class of potent noncompetitive inhibitors of S-adenosylmethionine-catechol methyltransferase, Biochim. Biophys. Acta 54: 195–196.

    Google Scholar 

  • Belleau, B., and Burba, J., 1963, Occupancy of adrenergic receptors inhibition of pyrocatechol O-methyltransferase by tropolones, J. Med. Chem. 6: 755–759.

    PubMed  Google Scholar 

  • Besson, M. J., Cheramy, A., Feltz, P., and Glowinski, J., 1971, Dopamine: Spontaneous and drug induced release from the caudate nucleau in the rat, Brain Res. 32: 407–424.

    PubMed  Google Scholar 

  • Black, I. B., Hendry, I. A., and Iverson, L. L., 1971, Trans-synaptic regulation of growth and development of adrenergic neurones in a mouse sympathetic ganglion, Brain Res. 34: 229–240.

    PubMed  Google Scholar 

  • Blaschko, H., 1966, Amine oxidases, in: Molecular Basisof Some Aspects of Mental Activity, Vol. 1 ( O. Walaas, ed.), pp. 403–413, Academic Press, London.

    Google Scholar 

  • Blaschko, H., Hägen, P., and Welch, A. D., 1955, Observations on the intracellular particles of the adrenal medulla, J. Physiol. 129: 27–49.

    PubMed  Google Scholar 

  • Blumberg, W. E., Goldstein, M., Lauber, E., and Peisach, J., 1965, Magnetic resonance studies on the mechanism of the enzymic ß-hydroxylation of 3,4- dihydroxyphenylethylamine, Biochim. Biophys. Acta. 99: 187–190.

    Google Scholar 

  • Bohuon, C., and Assicot, M., 1973, Catechol-O-methyltransferase, in: Frontiers in Catecholamine Research ( E. Usdin and S. Snyder, eds.), pp. 107–112, Pergamon Press, London.

    Google Scholar 

  • Brodie, B. B., Costa, E., Dlabac, A., Neff, N. H., and Smookler, H. H., 1966, Application of steady state kinetics to the estimation of synthesis rate and turnover time of tissue catecholamines, J. Pharmacol. Exp. Ther. 154: 493–498.

    PubMed  Google Scholar 

  • Carlsson, A., Corrodi, H., and Waldeck, B., 1963, a-Substituierte Dopacetamide als Hemmer der Catechol-O-methyl-transferase und der enzymatischen Hydroxylierung aromatischer Aminosäuren in den catecholamin-metabolismus eingreifende Substanzen, Helv. Chim. Acta 46: 2271–2285.

    Google Scholar 

  • Cheema, S., Soldin, S. J., Knapp, A., Hofmann, T., and Scrimgeour, K. G., 1973, Properties of purified quinonoid dihydropterin reductase, Can. J. Biochem. 51: 1229–1239.

    Google Scholar 

  • Cheramy, A., Gauchy, C., Glowinski, J., and Besson, M. J., 1973, In vivo activation by benzotropine of dopamine release and synthesis in the caudate nucleus, Europ. J. Pharmacol. 21: 246–248.

    Google Scholar 

  • Chesson, M., Dubnick, B., Leeson, G., and Scott, C. C., 1959, Biochemical and pharmacological studies of ß-phenylethylhydrazine and selected related compounds, Ann. N. Y. Acad. Sei. 80: 597–608.

    Google Scholar 

  • Christenson, J. G., Dairman, W., and Udenfriend, S., 1970, Preparation and properties of a homogeneous aromatic L-amino acid decarboxylase, Arch. Biochem. Biophys. 141: 356–367.

    Google Scholar 

  • Christenson, J. G., Dairman, W. D., and Udenfriend, S., 1972, On the identity of DOPA decarboxylase and 5-hydroxytryptophan decarboxylase, Proc. Natl. Acad. Sei. 69: 343–347.

    Google Scholar 

  • Ciaranello, R. D., Barchas, R. E., Byers, G. S., Stemmle, D. W., and BARCHAS, J. P., 1969, Enzymatic synthesis of adrenaline in mammalian brain, Nature 221: 368–369.

    PubMed  Google Scholar 

  • Ciaranello, R. D., Dornbusch, J. N., and Barchas, R. E., 1972, Regulation of adrenal phenylethanolamine N-methyltransferase activity in three inbred mouse strains, Mol. Pharmacol. 8: 511–520.

    Google Scholar 

  • Ciaranello, R. D., Jacobowitz, D., and Axelrod, J., 1973, Effect of dexamethasone on phenylethanolamine N-methyltransferase in chromaffin tissue of the neonatal rat, J. Neurochem. 20: 799–805.

    PubMed  Google Scholar 

  • Collins, G. G. S., Sandler, M., Williams, E. D., and Youdim, M. B. H., 1970, Multiple forms of human brain mitochondrial monoamine oxidase, Nature 255: 817–820.

    Google Scholar 

  • Connett, R. J., and Kirshner, N., 1970, Purification and properties of bovine phenylethanolamine N-methyltransferase, J. Biol. Chem. 245: 329–334.

    PubMed  Google Scholar 

  • Costa, E., Green, A. R., Koslow, S. H., Lefevre, H. F., Revuelta, A. V., and Wang, C., 1972, Dopamine and norepinephrine in noradrenergic axons: A study in vivo of their precursor product relationship by mass fragmentography and radiochemistry, Pharmacol. Rev. 24: 167–190.

    Google Scholar 

  • Coupland, R. E., 1953, On the morphology and adrenaline-noradrenaline content of chro-maffin tissue, J. Endocrinol. 9: 194–203.

    PubMed  Google Scholar 

  • Coyle, J. T., 1972, Tyrosine hydroxylase in the rat brain—Cofactor requirements, regional and subcellular distribution, Biochem. Pharmacol. 21: 1935–1944.

    Google Scholar 

  • Craine, J. E., Hall, E. S., and Kaufman, S., 1972, The isolation and characterization of dihydropteridine reductase from sheep liver, J. Biol. Chem. 247: 6082–6091.

    PubMed  Google Scholar 

  • Creveling, C. R., 1962, Studies on dopamine-oxidase. Doctoral thesis, George Washington University, Washington, D.C.

    Google Scholar 

  • Creveling, C. R., Daly, J. W., Witkop, B., and Udenfriend, S., 1962, Substrates and inhibitors of dopamine-jS-oxidase, Biochim. Biophys. Acta 64: 125–134.

    Google Scholar 

  • Creveling, C. R., Morris, N., Shimizu, H., Ong, H. H., and Daly, J., 1972, Catechol-O- methyltransferase. IV. Factors affecting m- and p-methylation of substituted catechols, Mol. Pharmacol. 8: 398–409.

    Google Scholar 

  • Drain, D. J., Horlington, M., Lazare, R., and Poulter, G. A., 1962, The effect of a-methyl DOPA and same decarboxylase inhibitors on brain 5-hydroxytryptamine, Life Sci. 1: 93–97.

    PubMed  Google Scholar 

  • Duch, D. S., Viveros, O. H., and Kirshner, N., 1968, Endogenous inhibitors in adrenal medulla of dopamine-/miydroxylase, Biochem. Pharmacol. 17: 255–264.

    Google Scholar 

  • Ellenbogen, L., Taylor, R. J., Jr., and Brundage, G. B., 1965, On the role of pteridines as cofactors for tyrosine hydroxylase, Biochem. Biophys, Res. Commun. 19: 708–715.

    Google Scholar 

  • Voneuler, U. S., 1967, Some factors affecting catecholamine uptake, storage, and release in adrenergic nerve granules, Circ. Res. Suppl. 20, 21:111–5–111-11.

    Google Scholar 

  • Foldes, A., Jeffrey, P. L., Preston, B. N., and Austin, L., 1972, Dopamine/¡-hydroxylase of bovine adrenal medullae: A rapid purification procedure, Biochem. J. 126: 1209–1217.

    PubMed  Google Scholar 

  • Friedman, S., and Kaufman, S., 1965, 3,4-Dihydroxyphenylethylamine -hydroxylase—Physical properties, copper content, and role of copper in the catalytic activity, J. Biol. Chem. 240: 4763–4773.

    PubMed  Google Scholar 

  • Fuller, R. W., 1972, Selective inhibition of monoamine oxidase, in: Advances in Biochemical Psychopharmacology, Vol. 5 ( E. Costa and M. Sandler, eds.), pp. 339–354, Raven Press, New York.

    Google Scholar 

  • Fuller, R. W., and Hunt, J. M., 1965, Substrate specificity of phenylethanolamine iV-methyl- transferase, Biochem. Pharmacol. 14: 1896–1897.

    Google Scholar 

  • Fuller, R. W., WARREN, B. J., and MOLLOY, B. B., 1970, Substrate specificity of phenethanolamine iV-methyltransferase from rabbit adrenal, Biochim. Biophys. Acta 222: 210–212.

    Google Scholar 

  • Fuxe, K., Goldstein, M., Hokfelt, T., and Joh, T. H., 1971a, Cellular localization of dopamine-j3-hydroxylase and phenylethanolamine-N-methyltransferase as revealed by immunohistochemistry, in: Progress in Brain Research, Vol. 34 ( O. Eranko, ed.), pp. 127–138, Elsevier, Amsterdam.

    Google Scholar 

  • Fuxe, K., Goldstein, M., Hokfelt, T., Freedman,L.,and Anagnoste, B., 19716, The effect of hypophysectomy and ACTH treatment on catecholamine synthesizing enzymes in tissues, Acta Pharmacol. Toxicol. (Suppl. 4) 29: 15.

    Google Scholar 

  • Gauchy, C., Agid, Y., Glowinski, J., and Cheramy, A., 1973, Acute effects of morphine on dopamine synthesis and release and tyrosine metabolism in the rat striatum, Europ. J. Pharmacol. 22: 311–319.

    Google Scholar 

  • Geffen, L. B., Livett, D. G., and RUSH, R. A., 1969, Immunohistochemical localization of protein components of catecholamine storage vesicles, J. Physiol. 204: 593–605.

    PubMed  Google Scholar 

  • Gey, K. F., and Pletscher, A., 1961, Activity of monoamine oxidase in relation to the 5-hydroxytryptamine and norepinephrine content of rat brain, J. Neurochem:239–243.

    Google Scholar 

  • Glowinski, J., Agid, Y., Besson, M. J., Cheramy, A. Gauchy, C., and Javoy, F., 1973, Regulation of DA synthesis in the nigro neostriatal system, in: Frontiers in Catecholamine Research ( E. Usdin and S. Snyder, eds.), pp. 605–611, Pergamon Press, London.

    Google Scholar 

  • Goldstein, M., 1966, Dopamine-/?-hydroxylase: A copper enzyme, in: Biochemistry of Copper ( J. Peisach, ed.), pp. 443–453, Academic Press, New York.

    Google Scholar 

  • Goldstein, M., and CONTRERA, J. F., 1962, The substrate specificity of phenylamine-0- hydroxylase, J. Biol. Chem. 237: 1898–1902.

    PubMed  Google Scholar 

  • Goldstein, M., and JOH, T. H., 1967, The effect of reduced and oxidized pteridine on dopamines-hydroxylase activity, Mol. Pharmacol. 3: 396–398.

    Google Scholar 

  • Goldstein, M., Mckereghan, M. R., and Lauber, E., 1964a, The stereospecificity of the enzymatic amphetamine /?-hydroxylation, Biochim. Biophys. Acta 89: 191–193.

    Google Scholar 

  • Goldstein, M., Anagnoste, B., Lauber, E., and Mckereghan, M. R., 19646, Inhibition of dopamines-hydroxylase by disulfiram, Life Sci. 3: 763–767.

    Google Scholar 

  • Goldstein, M., Lauber, E., and Mckereghan, M. R., 1965, Studies on the purification and characterization of 3,4-dihydroxyphenylethylamine β-hydroxylase, J. Biol. Chem. 240: 2066–2072.

    PubMed  Google Scholar 

  • Goldstein, M., Joh, T. H., and Garvey, T. Q., Ill, 1968, Kinetic studies of the enzymatic dopamines-hydroxylase reaction, Biochemistry 7: 2724–2730.

    PubMed  Google Scholar 

  • Goldstein, M., Anagnoste, B., Battista, A. F., Owen, W. S., and Nakatani, S., 1969, Studies of amines in the striatum in monkeys with nigral lesions, J. Neurochem. 16: 645–653.

    PubMed  Google Scholar 

  • Goldstein, M., Fuxe, K., and Hokfelt, T., 1972, Characterization and tissue localization of catecholamine synthesizing enzymes, Pharmacol. Rev. 24: 293–309.

    Google Scholar 

  • Goldstein, M., Anagnoste, B., Freedman, L. S., Roffman, M., Ebstein, R. P., Park, D. H., Fuxe, K., and Hokfelt, T., 1973, Characterisation, localisation and regulation of catecholamine synthesising enzymes, in: Frontiers in Catecholamine Research ( E. Usdin and S. Snyder, eds.), pp. 69–78, Pergamon Press, London.

    Google Scholar 

  • Gomes, B., Igaue, I., Kloepfer, H. G., and Yasunobu, K. T., 1969, Amine oxidase. XIV. Isolation and characterization of the multiple beef amine oxidase components, Arch. Biochem. Biophys. 132: 16–27.

    Google Scholar 

  • Goodall, MCC., and Kirshner, N., 1957, Biosynthesis of adrenaline and noradrenaline in vitro, J. Biol. Chem. 226: 213–221.

    PubMed  Google Scholar 

  • Gorkin, V. Z., 1973, Transformation of monoamine oxidases and deamination of fatty- aromatic monoamines, in: Frontiers in Catecholamine Research ( E. Usdin and S. Snyder, eds.), pp. 151–152, Pergamon Press, London.

    Google Scholar 

  • Hagen, P., 1956, Biosynthesis of norepinephrine from 3,4-dihydroxyphenylethylamine (dopamine), J. Pharmacol. Exp. Ther. 116: 26.

    Google Scholar 

  • Hall, D. W. R., Logan, B. W., and Parsons, G. H., 1969, Further studies on the inhibition of monoamine oxidase by M + B 9302 (clorgyline)–l:. Substrate specificity in various mammalian species, Biochem. Pharmacol. 18: 1447–1454.

    Google Scholar 

  • Hansson, E., Fleming, R. M., and Clark, W. G., 1964, Effect of some benzylhydrazines and benzyloxyamines on DOPA and 5-hydroxytryptophan decarboxylase in vivo, Int. J. Neuropharmacol. 3: 177–188.

    PubMed  Google Scholar 

  • Hartman, B. K., 1973, The innervation of cerebral blood vessels by central noradrenergic neurons, in: Frontiers in Catecholamine Research ( E. Usdin and S. Snyder, eds.), pp. 91–96, Pergamon Press, London.

    Google Scholar 

  • Hartman, B. K., and Udenfriend, S., 1970, Immunofluorescent localization of dopamine-hydroxylase in tissues, Mol. Pharmacol. 6: 85–92.

    Google Scholar 

  • Hidaka, H., Nagatsu, T., Takeya, K., Takeuchi, T., Suda, H., Kojiri, K., Matsuzaki, M., and Umerzawa, H., 1969, Fusaric acid, a hypotensive agent produced by fungi,/. Anitbiot. 22: 228–230.

    Google Scholar 

  • Hidaka, H.,. Asano, T., and Takemoto, N., 1973, Analogues of fusaric (5-butylpicolinic) acid as potent inhibitors of dopamine -hydroxylase, Mol. Pharmacol. 9: 172–177.

    Google Scholar 

  • Hokfelt, T., Fuxe, K., Goldstein, M., and Johansson, O., 1974, Immunohistochemical evidence for the existence of adrenaline neurons in the rat brain, Brain Res. 66: 235–251.

    Google Scholar 

  • Holtz, P., Heise, R., and Ludtke, K., 1938, Fermentativer Abbau von 1-Dioxyphenylalanin (DOPA) durch Niere, Arch. Exp. Pathol. Pharmakol. 191: 87–118.

    Google Scholar 

  • Horita, A., and Mcgrath, W. R., 1960, The interaction between reversible and irreversible monoamine oxidase inhibitors, Biochem. Pharmacol. 3: 206–211.

    Google Scholar 

  • Houslay, M. D., and Tipton, K. F., 1973, The nature of the electrophoretically separable forms of monoamine oxidase, in: Frontiers in Catecholamine Research ( E. Usdin and S. Snyder, eds.), pp. 147–149, Pergamon Press, London.

    Google Scholar 

  • Ikeda, M., Levitt, M., and Udenfriend, S., 1965, Hydroxylation of phenylalanine by purified preparations of adrenal and brain tyrosine hydroxylase, Biochem. Biophys. Res. Commun. 18: 482–488.

    Google Scholar 

  • Ikeda, M., Fahien, L. A., and Udenfriend, S., 1966, A kinetic study of bovine adrenal tyrosine hydroxylase,/. Biol. Chem. 241: 4452–4456.

    Google Scholar 

  • Inscoe, J. K., Daly, J., and Axelrod, J., 1965, Factors affecting the enzymatic formation of O-methylated dihydroxy derivatives, Biochem. Pharmacol. 14: 1257–1263.

    Google Scholar 

  • Jarrott, B., 1971, Occurrence 2nd properties of catechol-O-methyltransferase in adrenergic neurons,/. Neurochem. 11: 17–27.

    Google Scholar 

  • Jarrott, B., and Iversen, L. L., 1971a, Subcellular distribution of monoamine oxidase activity in rat liver and vas deferens, Biochem. Pharmacol. 17: 1619–1625.

    Google Scholar 

  • Jarrott, B., and Iversen, L. L., 19716, Noradrenaline metabolizing enzymes in normal and sympathetically denervated vas deferens,/. Neurochem. 18: 1–6.

    Google Scholar 

  • Jarrott, B., and Langer, S. Z., 1971, Changes in monoamine oxidase and catechol-O- methyltransferase activities after denervation of the nictitating membrane of the cat, /. Physiol. 212: 549–559.

    Google Scholar 

  • Javoy, F., Agid, Y., Bouvet, D., and Glowinski, J., 1972, Feedback control of dopamine synthesis in dopaminergic terminals of the rat striatum, /. Pharmacol. Exp. Ther. 182: 454–463.

    Google Scholar 

  • Jequier, E., Robinson, D. S., Lovenberg, W., and Sjoerdsma, A., 1969, Further studies on tryptophan hydroxylase in rat brain stem and beef pineal, Biochem. Pharmacol. 18: 1071–1081.

    Google Scholar 

  • Joh, T. H., and Goldstein, M., 1973, Isolation and characterization of multiple forms of phenylethanolamine N-methyltransferase, Mol. Pharmacol. 9: 117–129.

    Google Scholar 

  • Joh, T. H., Kapit, R., and Goldstein, M., 1969, A kinetic study of particulate bovine adrenal tyrosine hydroxylase, Biochim. Biophys. Acta 171: 378–380.

    Google Scholar 

  • Joh, T. H., Geghman, C., and Reis, D., 1973, Immunochemical demonstration of increased accumulation of tyrosine hydroxylase protein in sympathetic ganglia and adrenal medulla elicited by reserpine, Proc. Natl. Acad. Sci. 70: 2767–2771.

    PubMed  Google Scholar 

  • Johnston, J. P., 1968, Some observations upon a new inhibitor of monoamine oxidase in brain tissue, Biochem. Pharmacol. 17: 1285–1297.

    Google Scholar 

  • Jonason, J., 1969, Metabolism of catecholamines in the central and peripheral nervous system, Acta Physiol. Scand. Suppl. 320: 1–50.

    PubMed  Google Scholar 

  • Karobath, M., and Baldessarini, R. J., 1972, Formation of catechol compounds from phenylalanine and tyrosine with isolated nerve endings, Nature New Biol. 236: 206–208.

    PubMed  Google Scholar 

  • Katz, R. I., Goodwin, J. S., and Kopin, I. J., 1969, Disposition of neurotransmitters in experimental mouse glioma, Life Sci. 8: 561–569.

    PubMed  Google Scholar 

  • Kaufman, S., 1957, The enzymatic conversion of phenylalanine to tyrosine, J. Biol. Chem. 226: 511–524.

    PubMed  Google Scholar 

  • Kaufman, S., 1967, Metabolism of the phenylalanine hydroxylation cofactor, /. Biol. Chem. 242: 3934–3943.

    Google Scholar 

  • Kirshner, N., 1957, Pathway of noradrenaline formation from DOPA, J. Biol. Chem. 226: 821–825.

    PubMed  Google Scholar 

  • Kirshner, N., and GOODALL, MCC., 1957, The formation of adrenaline from noradrenaline, Biochim. Biophys. Acta 24: 658–659.

    Google Scholar 

  • Korf, J., Aghajanian, G. K., and Roth, R. H., 1973, Stimulation and destruction of the locus coeruleus: Opposite effects on 3-methoxy-4-hydroxyphenylglycol sulfate levels in the rat cerebral cortex, Europ. J. Pharmacol. 21: 305–310.

    Google Scholar 

  • Krakoff, L. R., and Axelrod, J., 1967, Inhibition of phenylethanolamine-iV-methyl transfer-ase, Biochem. Pharmacol. 16: 1384–1386.

    Google Scholar 

  • Kuczenski, R., 1973, Rat brain tyrosine hydroxylase, J. Biol. Chem. 248: 2261–2265.

    PubMed  Google Scholar 

  • Kuczenski, R. T., and Mandell, A. J., 1972, Regulatory properties of soluble and particulate rat brain tyrosine hydroxylase, J. Biol. Chem. 247: 3114–3122.

    PubMed  Google Scholar 

  • Laduron, P., 1972, N-Methylation of dopamine to epinine in adrenal medulla: A new model for the biosynthesis of adrenaline, Arch. Int. Pharmacodyn. 195: 197–208.

    Google Scholar 

  • Laduron, P., and BELPAIRE, F., 1968, Tissue fractionation and catecholamines. II, Biochem. Pharmacol. 17: 1127–1140.

    Google Scholar 

  • Lancaster, G. A., and Sourkes, T. L., 1972, Purification and properties of hog-kidney 3,4-dihydroxyphenylalanine decarboxylase, Canad. J. Biochem. 50: 791–797.

    Google Scholar 

  • Levin, E. Y., and Kaufman, S., 1961, Studies on the enzyme catalyzing the conversion of 3,4-dihydroxyphenylethylamine to norepinephrine, J. Biol. Chem. 236: 2043–2049.

    PubMed  Google Scholar 

  • Levin, E. Y., Levenberg, B., and Kaufman, S., 1960, The enzymatic conversion of 3,4- dihydroxyphenylethylamine to norepinephrine, J. Biol. Chem. 235: 2080–2086.

    PubMed  Google Scholar 

  • Levitt, M., Spector, S., Sjoerdsma, A., and Udenfriend, S., 1965, Elucidation of the rate-limiting step in norepinephrine biosynthesis in the perfused guinea-pig heart, J. Pharmacol. Exp. Ther. 148: 1–8.

    PubMed  Google Scholar 

  • Levitt, M., Gibb, J. W., Daly, J. W., Lipton, M., and Udenfriend, S., 1967, A new class of tyrosine hydroxylase inhibitors and a simple assay of inhibition in vivo, Biochem. Pharmacol. 16: 1313–1321.

    Google Scholar 

  • Lind, K. E., 1972, Dihydropteridine reductase: Investigation of the specificity for quinoid dihydropteridine and the inhibition by 2,4-diaminopteridines, Europ. J. Biochem. 25: 560–562.

    Google Scholar 

  • Livett, B. G., Geffen, L. B., and Rush, R. A., 1969, Immunohistochemical evidence for the transport of dopamine-hydroxylase and a catecholamine-binding protein in sympathetic nerves, Biochem. Pharmacol. 18: 923–924.

    Google Scholar 

  • Lloyd, T., and Weiner, N., 1971, Isolation and characterization of a tyrosine hydroxylase cofactor from bovine adrenal medulla, Mol. Pharmacol. 7: 569–580.

    Google Scholar 

  • Lovenberg, W., Weissbach, H., and Udenfriend, S., 1962, Aromatic L-aminoacid decarboxyl-ase, J. Biol. Chem. 237: 89–93.

    PubMed  Google Scholar 

  • Lovenberg, W., Barchas, J., Weisbach, Y., and Udenfriend, S., 1963, Characteristics of the inhibition of aromatic L-amino acid decarboxylase by a-methylamino acids, Arch. Biochem. Biophys. 103: 9–14.

    Google Scholar 

  • Mcgeer, E. G., Mcgeer, P. L., and Peters, D. A., 1967, Inhibition of brain tyrosine hydroxylase by 5-halotryptophans, Life Sci. 6: 2221–2232.

    PubMed  Google Scholar 

  • McGeer, P. L., and McGeer, E. G., 1964, Formation of adrenaline by brain tissue, Biochem. Biophys. Res. Commun. 17: 502–507.

    Google Scholar 

  • Mizutani, K., Nagatsu, T., Asashima, M., and Kinoshita, S., 1971, Inhibition of tyrosine hydroxylase by naphthoquinone pigments in Echinodermata, J. Jap. Biochem. Soc. 43: 747–751.

    Google Scholar 

  • Mizutani, K., Nagatsu, T., Asashima, M., and Kinoshita, S., 1972, inhibition of tyrosine hydroxylase by naphthoquinone pigments of echinoids, Biochem. Pharmacol. 21: 2463–2468.

    Google Scholar 

  • Molinoff, P. B., Weinshilboum, R. M., and Axelrod, J., 1971, A sensitive enzymatic assay for dopamine-jS-hydroxylase, J. Pharmacol. Exp. Ther. 178: 425–431.

    PubMed  Google Scholar 

  • Moore, K. E., and Dominic, J. A., 1971, Tyrosine hydroxylase inhibitors, Fed. Proc. 30: 859–870.

    Google Scholar 

  • Moore, K. E., Wright, P. F., and Bert, J. K., 1967, Toxicologic studies with a-methyltyrosine, an inhibitor of tyrosine hydroxylase, J. Pharmacol. Exp. Ther. 155: 506–515.

    PubMed  Google Scholar 

  • Musacchio, J. M., 1967, Subcellular distribution of adrenal tyrosine hydroxylase, Pharmacologist 9: 210.

    Google Scholar 

  • Musacchio, J. M., 1968, Subcellular distribution of adrenal tyrosine hydroxylase, Biochem. Pharmacol. 17: 1470–1473.

    Google Scholar 

  • Musacchio, J. M., and Craviso, G. L., 1973, Properties of tyrosine hydroxylase, in: Frontiers in Catecholamine Research ( E. Usdin and S. Snyder, eds.), pp. 47–52, Pergamon Press, London.

    Google Scholar 

  • Musacchio, J. M., and Wurzburger, R. J., 1973, Catecholamine biosynthesis: Regional distribution of dihydropteridine reductase in the bovine brain, Fed. Proc. 32: 707.

    Google Scholar 

  • Musacchio, J. M., Julou, L., Kety, S. S., and Glowinski, J., 1969, Increase in rat brain tyrosine hydroxylase activity produced by electroconvulsive shock, Proc. Natl. Acad. Sci. 63: 1117–1119.

    PubMed  Google Scholar 

  • Musacchio, J. M., Wurzburger, R. J., and D’angelo, G. L., 1971a, Different molecular forms of bovine adrenal tyrosine hydroxylase, Mol. Pharmacol. 7: 136–146.

    Google Scholar 

  • Musacchio, J. M., D’angelo, G. L., and McQueen, C. A., 19716, Dihydropteridine reductase: Implication on the regulation of catecholamine biosynthesis, Proc. Natl. Acad. Sci. 68: 2087–2091.

    Google Scholar 

  • Musacchio, J. M., Craviso, G. L., and Wurzburger, R. J., 1972, Dihydropteridine reductase in the rat brain, Life Sci. 11: 267–276 (Part II).

    Google Scholar 

  • Musacchio, J. M., Mcqueen, C. A., and Crabiso, G. L., 1973, Tyrosine hydroxylase: Subcellular distribution and molecular and kinetic characteristics of the different enzyme forms, in: New Concepts in Neurotransmitter Regulation ( A. J. Mandell, ed.), pp. 69–88, Plenum Press, New York.

    Google Scholar 

  • Nagatsu, I., Nagatsu, T., Mizutani, K., Umezawa, H., Matsuzaki, M., and Takeuchi, T., 1971, Adrenal tyrosine hydroxylase and dopamine β-hydroxylase in spontaneously hypertensive rats, Nature 230: 381–382.

    PubMed  Google Scholar 

  • Nagatsu, T., Levitt, M., and Udenfriend, S., 1964a, Tyrosine hydroxylase—Initial step in norepinephrine biosynthesis,/. Biol. Chem. 239: 2910–2917.

    Google Scholar 

  • Nagatsu, T., Levitt, M., and Udenfriend, S., 19646, A rapid and simple radioassay for tyrosine hydroxylase activity, Anal. Biochem. 9: 122–126.

    Google Scholar 

  • Nagatsu, T., Kuzuya, H., and Hidaka, H., 1967, Inhibition of dopamine β-hydroxylase by sulfhydryl compounds and the nature of the natural inhibitors, Biochim. Biophys. Acta 139: 319–327.

    Google Scholar 

  • Nagatsu, T., Yamamoto, T., and Nagatsu, I., 1970, Partial separation and properties of tyrosine hydroxylase from human pheochromocytoma: Effect of norepinephrine, Biochim. Biophys. Acta 198: 210–218.

    Google Scholar 

  • Nagatsu, T., Nagatsu, I., Umezawa, H., and Takeuchi, T., 1971, Effect of oudenone on adrenal tyrosine hydroxylase activity in vivo and on tissue catecholamine concentrations, Biochem. Pharmacol. 20: 2505–2507.

    Google Scholar 

  • Nagatsu, T., Mizutani, K., Nagatsu, I., Matsuura, S., and Sugimoto, T., 1972a, Pteridines as cofactor or inhibitor of tyrosine hydroxylase, Biochem. Pharmacol. 21: 1945–1953.

    Google Scholar 

  • Nagatsu, T., Nakano, G., Mizutani, K., and Harada, M., 19726, Purification and properties of amine oxidases in brain and connective tissue (dental pulp), in: Advances in Biochemical Psychopharmacology, Vol. 5 (E. Costa and M. Sandler, Eds.), pp. 25–36, Raven Press, New York.

    Google Scholar 

  • Nakashima, Y., Suzue, R., Sanada, H., and Kawada, S., 1972, Effect of ascorbic acid on tyrosine hydroxylase activity in vivo, Arch. Biochem. Biophys. 152: 515–520.

    Google Scholar 

  • Neff, N. H., Yang, H.-Y. T., and Goridis, C., 1973, Degradation of the transmitter amines by specific types of monoamine oxidases, in: Frontiers in Catecholamine Research ( E. Usdin and S. Snyder, eds.), pp. 133–137, Pergamon Press, London.

    Google Scholar 

  • Nielsen, K. H., Simonsen, V., and Lind, K. E., 1969, Dihydropteridine reductase—a method for the measurement of activity, and investigations of the specificity for NADH and NADPH, Europ. J. Biochem. 9: 497–502.

    Google Scholar 

  • Nikodijevic, B., Creveling, C. R., and Udenfriend, S., 1963, Inhibition of dopamine /J-hydroxylase in vivo by benzyloxyamine and benzylhydrazine analogs, J. Pharmacol. Exp. Ther. 140: 224–228.

    PubMed  Google Scholar 

  • Pendleton, R. G., and SNOW, I. B., 1973, The binding order of substrates to phenylethanolamine iV-methyltransferase, Mol. Pharmacol. 9: 718–715.

    Google Scholar 

  • Petrack, B., Sheppy, F., and Fetzer, V., 1968, Studies on tyrosine hydroxylase from bovine adrenal medulla, J. Biol. Chem. 243: 743–748.

    PubMed  Google Scholar 

  • Petrack, B., Sheppy, F., Fetzer, V., Manning, T., Chertock, H., and Ma, D., 1972, Effect of ferrous ion on tyrosine hydroxylase of bovine adrenal medulla, J. Biol. C/im. 247: 4872–4878.

    Google Scholar 

  • Petrack, B., Fetzer, V., and Altiere, R., 1973, Comparative studies on bovine and guinea pig tyrosine hydroxylase, in: Frontiers in Catecholamine Research ( E. Usdin and S. Snyder, eds.), pp. 97–100, Pergamon Press, London.

    Google Scholar 

  • Pletscher, A., and Gey, K. F., 1963, The effect of a new decarboxylase inhibitor on endogenous and exogenous amines, Biochem. Pharmacol 12: 223–228.

    Google Scholar 

  • Pletscher, A., Gey, K. F., and Zeller, P., 1960, Monoaminoxydase-Hemmer, in: Progress in Drug Research, Vol. II ( E. Jucker, ed.), pp. 417–590, Birkhauser-Verlag, Basel/Stuttgart.

    Google Scholar 

  • Pletscher, A., Goschke, H., Gey, K. F., and Tholen, H., 1961, Species differences in the action of monoamine oxidase inhibitors, Med. Exp. 4: 113–117.

    Google Scholar 

  • Pohorecky, L. A., Zigmond, M., Karten, H., and Wurtman, R. J., 1969, Enzymatic conversion of norepinephrine to epinephrine by the brain, J. Pharmacol. Exp. Ther. 165: 190–195.

    PubMed  Google Scholar 

  • Poillon, W. N., 1973, Tyrosine hydroxylase of sheep brain: Some catalytic and chemical properties of the detergent-solubilized, partially purified enzyme, J. Neurochem. 21: 729–741.

    PubMed  Google Scholar 

  • Pomerantz, S. H., 1964, Tyrosine hydroxylation catalyzed by mammalian tyrosinase: An improved method of assay, Biochem. Biophys. Res. Commun. 16: 188–194.

    Google Scholar 

  • Potter, L. T., and Axelrod, J., 1963, Subcellular localization of catecholamines in tissues of the rat,/. Pharmacol. Exp. Ther. 142: 291–298.

    Google Scholar 

  • Reis, D. J., Ross, R. A., and JOH, T. H., 1974, Reserpine increases the accumulation of tyrosine hydroxylase and dopamines-hydroxylase enzyme protein in catecholamine neurons of rat brain. Fed. Proc. 33: 535.

    Google Scholar 

  • Rodriguesdelores Aenaiz, G., and Derobertis, E., 1964,5-Hydroxytryptophan decarboxyl-ase activity in nerve endings of the rat brain, J. Neurochem. 11: 213–219.

    Google Scholar 

  • Roth, R. H., Walters, J. R., and Aghajanian,G. K., 1973, Effect of impulse flow on the release and synthesis of dopamine in the rat striatum, in: Frontiers in Catecholamine Research ( E. Usdin and S. Snyder, eds.), pp. 567–574, Pergamon Press, London.

    Google Scholar 

  • Scatton, B., Cheramy, A., Besson, M. J., and Glowinski, J., 1970, Increased synthesis and release of dopamine in the striatum of the rat after amantadine treatment, Europ. J. Pharmacol. 13: 131–133.

    Google Scholar 

  • Scrimgeour, K. G., and Cheema, S., 1971, Discussion paper: Quinonoid dihydropterin reductase, Ann. N.Y. Acad. Sci. 186: 115–118.

    PubMed  Google Scholar 

  • Shiman, R., Akino, M., and Kaufman, S., 1971, Solubilization and partial purification of tyrosine hydroxylase from bovine adrenal medulla, J. Biol. Chem. 246: 1330–1340.

    PubMed  Google Scholar 

  • Silberstein, S. D., Shein, H. M., and Berv, K. R., 1972, Catechol-O-methyl transferase and monoamine oxidase activity in cultured rodent astrocytoma cells, Brain Res. 41: 245–248.

    PubMed  Google Scholar 

  • Smith, T. E., Weissbach, H., and Udenfriend, S., 1964, Studies on monoamine oxidase: The mechanism of inhibition of monamine oxidase by iproniazid, Biochemistry 2: 746–751.

    Google Scholar 

  • Sourkes, T. L., 1966, Dopadecarboxylase: Substrates, coenzyme, inhibitors, in: Pharmacological Reviews, Vol. 18 ( G. H. Acheson, ed.), pp. 53–60, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Spector, S., Sjoerdsma, A., and Udenfriend, S., 1965, Blockade of endogenous norepine-phrine synthesis by a-methyl-tyrosine, an inhibitor of tyrosine hydroxylase, J. Pharmacol. Exp. Ther. 147: 86–95.

    PubMed  Google Scholar 

  • Squires, R. F., 1972, Multiple forms of monoamine oxidase in intact mitochondria as characterized by selective inhibitors and thermal stability: A comparison of eight mam-malian species, in: Advances in Biochemical Psychopharmacology, Vol. 5 ( E. Costa and M. Sandler, eds.), pp. 355–370, Raven Press, New York.

    Google Scholar 

  • Stjarne, L., and Lishajko, F., 1967, Localization of different steps in noradrenaline synthesis to different fractions of a bovine splenic nerve homogenate, Biochem. Pharmacol. 16: 1719–1728.

    Google Scholar 

  • Stolk, J. M., and Hanlon, D. P., 1973, Inhibition of brain dopamines-hydroxylase activity by methimazole, Life Sci. 12: 417–423.

    Google Scholar 

  • Taylor, R. J., Stubbs, C. S., and Ellenbogen, L., 1968, inhibition of tyrosine hydroxylase in vitro and in vivo by 3-amino-pyrrolo[3,4c]isoxazole and derivatives, Biochem. Pharmacol. 17: 1779–1788.

    Google Scholar 

  • Taylor, R. J., Stubbs, C. S., and Ellenbogen, L., 1969, Tyrosine hydroxylase inhibition in vitro and in vivo by chelating agents, Biochem. Pharmacol. 18: 587–594.

    Google Scholar 

  • Taylor, R. J., Stubbs, C. S., and Ellenbogen, L., 1970, Tyrosine hydroxylase inhibition invitro and in vivo by deoxyfrenolicin, Biochem. Pharmacol. 19: 1737–1741.

    Google Scholar 

  • Thoenen, H., 1970, Induction of tyrosine hydroxylase in peripheral and central adrenergic neurons by cold-exposure of rats, Nature 228: 861–862.

    PubMed  Google Scholar 

  • Tipton, K. F., 1968a, The purification of pig brain mitochondrial monoamine oxidase, Europ. J. Biochem. 4: 103–107.

    Google Scholar 

  • Tipton, K. F., 19686, The reaction pathway of pig brain mitochondrial monoamine oxidase, Europ. J. Biochem. 5: 316–320.

    Google Scholar 

  • Tipton, K. F., 1972, Some properties of monoamine oxidase, in: Advances in Biochemical Psychopharmacology, Vol. 5 ( E. Costa and M. Sandler, eds.), pp. 11–24, Raven Press, New York.

    Google Scholar 

  • Tipton, K. F., 1973, Biochemical aspects of monoamine oxidase, Brit. Med. Bull. 29: 116–119.

    Google Scholar 

  • Tipton, K. F., Houslay, M. D., and Garrett, N. J., 1973, Allotopic properties of human brain monoamine oxidase, Nature New Biol. 246: 213–214.

    PubMed  Google Scholar 

  • Udenfriend, S., 1966, Biosynthesis of the sympathetic neurotransmitter, norepinephrine, in: The Harvey Lectures, Series 60, pp. 57–83, Academic Press, New York.

    Google Scholar 

  • Udenfriend, S., and Creveling, C. R., 1959, Localization of dopamine-/?-oxidase in brain,/. Neurochem. 4: 350–352.

    Google Scholar 

  • Udenfriend, S., Zaltzman-Nirenberg, P., and Nagatsu, T., 1965, inhibitors of purified beef adrenal tyrosine hydroxylase, Biochem. Pharmacol. 14: 837–845.

    Google Scholar 

  • Umezawa, H., Takeuchi, T., Inuma, H., Suzuki, K., Ito, M., Matsuzaki, M., Nagatsu, T., and Tanabe, O., 1970, A new microbial product, oudenone, inhibiting tyrosine hydroxylase, J. Antibiotics 28: 514–518.

    Google Scholar 

  • Vanderschoot, J. B., Creveling, C. R., Nagatsu, T., and Udenfriend, S., 1963, On the mechanism of inhibition of dopamines–oxidase by benzylamines, J. Pharmacol. Exp. Ther. 141: 74–78.

    Google Scholar 

  • Voltattorni, C. B., Minelli, A., and Turano, C., 1971, Spectral properties of the coenzyme bound to dopa decarboxylase from pig kidney, FEBS Letters 17: 231–235.

    PubMed  Google Scholar 

  • Voneuler, U. S., 1967, Some factors affecting catecholamine uptake, storage, and release in adrenergic nerve granules, Circ. Res. Suppl. 20, 21:111–5-111-11.

    Google Scholar 

  • Vonvoigtlander, P. F., and MOORE, K. E., 1971, Nigrostriatal pathway: Stimulation-evoked release of [3H]dopamine from caudate nucleus, Brain Res. 35: 580–583.

    Google Scholar 

  • Wallace, E. F., Krantz, M. J., and Lovenberg, W., 1973, Dopamines-hydroxylase: A tetrameric glycoprotein, Proc. Natl. Acad. Sci. 70: 2253–2255.

    PubMed  Google Scholar 

  • Waymire, J. C., Bjur, R., and WEINER, N., 1971, Assay of tyrosine hydroxylase by coupled decarboxylation of dopa formed from l-l4C-L-tyrosine, Anal. Biochem. 43: 588–600.

    Google Scholar 

  • Weiner, N., Waymire, J. C., and Schneider, F. H., 1971, The localization and kinetics of tyrosine hydroxylase of the adrenals of several species and of human chromaffin tissue, Acta Cient. Venez. 22: 179–183.

    Google Scholar 

  • Weiner, N., Bjur, R., Lee, F.-L., Becker, G., and Mosimann, W. F., 1973, Studies on the mechanism of regulation of tyrosine hydroxylase activity during nerve stimulation, in: Frontiers in Catecholamine Research ( E. Usdin and S. Snyder, eds.), pp. 211–221, Pergamon Press, London.

    Google Scholar 

  • Wurtman, R. J., and Axelrod, J., 1966, Control of enzymatic synthesis of adrenaline in the adrenal medulla by adrenal cortical steroids, J. Biol. Chem. 241: 2301–2305.

    PubMed  Google Scholar 

  • Wurtman, R. J., Axelrod, J., Vesell, E. S., and Ross, G. T., 1968, Species differences in inducibility of phenylethanolamine-N-methyl transferase, Endocrinology 82: 584–590.

    PubMed  Google Scholar 

  • Wurzburger, R. J., and Musacchio, J. M., 1971, Subcellular distribution and aggregation of bovine adrenal tyrosine hydroxylase, J. Pharmacol. Exp. Ther. 177: 155–168.

    PubMed  Google Scholar 

  • Yasunobu, K. T., Igaue, I., and Gomes, B., 1968, The purification and properties of beef liver mitochondrial monoamine oxidase, in: Advances in Pharmacology, Vol. 6, Part A ( S. Garattini and P. A. Shore, eds.), pp. 43–59, Academic Press, New York.

    Google Scholar 

  • Youdim, M. B. H., Collins, C. G. S., and Sandler, M., 1969, Multiple forms of rat brain monoamine oxidase, Nature 223: 626–628.

    PubMed  Google Scholar 

  • Zeller, E. A., and Hsu, M., 1973, On the the mechanism of inhibition of monoamine oxidase, in: Frontiers in Catecholamine Research ( E. Usdin and S. Snyder, eds.), pp. 153–155, Pergamon Press, London.

    Google Scholar 

  • Zhelyaskov, D. K., Levitt, M., and Udenfriend, S., 1968, Tryptophan derivatives as inhibitors of tyrosine hydroxylase in vivo and in vitro, Mol. Pharmacol. 4: 445–451.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Musacchio, J.M. (1975). Enzymes Involved in the Biosynthesis and Degradation of Catecholamines. In: Iversen, L.L., Iversen, S.D., Snyder, S.H. (eds) Biochemistry of Biogenic Amines. Handbook of Psychopharmacology, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3171-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3171-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3173-5

  • Online ISBN: 978-1-4684-3171-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics