Biochemical Identification of Membrane Receptors: Principles and Techniques

Part of the Handbook of Psychopharmacology book series (HBKPS, volume 2)


Since the earliest pharmacological studies, the cell membrane has been considered a likely site of drug interaction (Clark, 1933). Yet only within the past decade has considerable progress been made in the identification and purification of a variety of membrane-localized hormone receptors. This chapter will not attempt a comprehensive summary of all such studies completed to date; rather, an attempt will be made to elaborate on a few specific studies which, it is felt, will not only illustrate the general approaches that can be used to study ligand-membrane interactions but will also reveal some of the successes and pitfalls of these approaches. Examples will be drawn largely from work done in this laboratory, primarily because of our familiarity with the intimate details of these studies, both published and unpublished. Furthermore, examples will deal only with several of the polypeptide hormones and with catecholamines and will thus omit a large body of work on cholinergic receptors and on membrane receptors for an enlarging number of polypeptide hormones and other compounds. Studies on cytoplasmic for steroids are considered beyond the scope of this discussion. For details of these studies, the reader is referred to review articles elsewhere (Hall, 1972; Cuatrecasas, 1973a, 1974; Lis and Sharon. 1973; Hollenberg and Cuatrecasas, 1975a).


Insulin Receptor Membrane Receptor Wheat Germ Agglutinin Insulin Binding Biochemical Identification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong, K. J., Noall, M. W., Stouffer, J. E.: 1972. Dextran-linked insulin: A soluble high molecular weight derivative with biological activity in vivo and in vitro, Biochem. Biophys. Res. Commun. 47: 354–360.PubMedGoogle Scholar
  2. Banerjee, S. P., Hollenberg, M. D., Cuatrecasas, P.: 1973a. unpublished observations.Google Scholar
  3. Banerjee, S. P., Snyder, S. H., Cuatrecasas, P., Greene, L. A.: 1973b. Binding of nerve growth factor in sympathetic ganglia, Proc. Natl. Acad. Sci. 70: 2519–2523.PubMedGoogle Scholar
  4. Barnard, E. A., Wieckowski, J., Chiu, T. H.: 1971. Cholinergic receptor molecules and cholinesterase molecules at mouse skeletal muscle junctions, Nature 234: 207–209.PubMedGoogle Scholar
  5. Bataille, D. P., Freychet, P., Kitabgi, P. E., Rosselin, G. E.: 1973. Gut glucagon: A common receptor site with pancreatic glucagon in liver cell plasma membranes, FEBS Letters 30: 215–218.PubMedGoogle Scholar
  6. Bennett, G. V., Cuatrecasas, P.: 1972. Insulin receptor of fat cells in insulin resistant metabolic states, Science 176: 805–806.Google Scholar
  7. Bilezikian, J. P., Aurbach, G. D.: 1973a. A-adrenergic receptor of the turkey erythrocyte. I. Binding of catecholamines and relationship to adenylate cyclase activity, J. Biol. Chem. 248: 5577–5583.PubMedGoogle Scholar
  8. Bilezikian, J. P., Aurbach, G. D.: 1973b. A-adrenergic receptor of the turkey erythrocyte. II. Characterization and solubilization of the receptor, J. Biol. Chem. 248: 5584–5589.PubMedGoogle Scholar
  9. Birnbaumer, L., Pohl, S. L.: 1973. Relation of glucagon-specific binding sites to glucagon-dependent stimulation of adenylyl cyclase activity in plasma membranes of rat liver, J. Biol. Chem. 248: 2056–2061.PubMedGoogle Scholar
  10. Bockman, R. S., Sonenberg, M.: 1973. personal communication.Google Scholar
  11. Chang, K.-J., Cuatrecasas, P.: 1974. ATP-dependent inhibition of insulin-stimulated glucose transport in fat cells—Possible role of membrane phosphorylation, J. Biol. Chem., 249: 3170–3180.PubMedGoogle Scholar
  12. Chang, K.-J., Bennett, V., Cuatrecasas, P.: (1975) Membrane receptors as general markers for plasma membrane isolation procedures—The use of [125I]-labelled wheat germ agglutinin, insulin, and cholera toxin, J. Biol. Chem. 250: 488–500.PubMedGoogle Scholar
  13. Changeux, J.-P., Kasai, M., Huchet, M., Meunier, J.-C.: 1970. Extraction à partir du tissu électrique de gymnote d’une proteine présentant plusieurs propriétés characteristiques du recepteur physiologique de i’acetylcholine, Compt. Rend. Acad. Sci. Paris 270: 2864–2867.Google Scholar
  14. Changeux, J.-P., Meunier, J.-C., Huchet, M.: 1971. Studies on the cholinergic receptor protein of Electrophorus electricus. 1. An assay in vitro for the cholinergic receptor site and solubilization of receptor protein from electric tissue, Mol. Pharmacol 7: 538–553.PubMedGoogle Scholar
  15. Clark, A. J.: 1926a. The reaction between acetylcholine and muscle cell, J. Physiol. 61: 530–546.PubMedGoogle Scholar
  16. Clark, A. J.: 1926b. The antagonism of acetylcholine by atropine, J. Physiol. 61: 547–556.PubMedGoogle Scholar
  17. Clark, A. J.: 1933. Mode of Action of Drugs on Cells, Edward Arnold, London.Google Scholar
  18. Cohen, S.: 1962. Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal, J. Biol. Chem. 237: 1555–1562.PubMedGoogle Scholar
  19. Cohen, S.: 1972. Epidermal growth factor, J. Invest. Dermatol. 59: 13–16.PubMedGoogle Scholar
  20. Cohen, S. A., Fishbach, G. D.: 1973. Regulation of muscle acetylcholine sensitivity by muscle activity in cell culture, Science 181: 76–78.PubMedGoogle Scholar
  21. Cooper, D., Reich, E.: 1972. Neurotoxin from venom of the cobra, Naja naja siamensis: Purification and radioactive labelling, J. Biol. Chem. 247: 3008–3013.PubMedGoogle Scholar
  22. Covelli, I., Mozzi, R., Rossi, R., Frati, L.: 1972. The mechanism of action of the epidermal growth factor, Hormones 3: 183–191.PubMedGoogle Scholar
  23. Cuatrecasas, P.: 1969a. Interaction of insulin with the cell membrane, the primary action of insulin, Proc. Natl. Acad. Sci. 63: 450–457.PubMedGoogle Scholar
  24. Cuatrecasas, P.: 1969b. Insulinsepharose: Immunoreactivity and use in the purification of antibody, Biochem. Biophys. Res. Commun. 35: 531–537.PubMedGoogle Scholar
  25. Cuatrecasas, P.: 1971a. Insulin-receptor interaction in adipose tissue cells: Direct measurement and properties, Proc. Natl. Acad. Sci. 68: 1264–1268.PubMedGoogle Scholar
  26. Cuatrecasas, P.: 1971b. Unmasking of insulin reception in fat cells and fat cell membranes, J. Biol. Chem. 246: 6532–6542.PubMedGoogle Scholar
  27. Cuatrecasas, P.: 1971c. Properties of the insulin receptor of isolated fat cell membranes, J. Biol. Chem. 246: 7265–7274.PubMedGoogle Scholar
  28. Cuatrecasas, P.: 1972a. Properties of the insulin receptor isolated from liver and fat cell membranes, J. Biol. Chem. 247: 1980–1991.PubMedGoogle Scholar
  29. Cuatrecasas, P.: 1972b. Affinity chromatography and purification of the insulin receptor of liver cell membranes, Proc. Natl. Acad. Sci. 69: 1277–1281.PubMedGoogle Scholar
  30. Cuatrecasas, P.: 1972c. The insulin receptor, Diabetes 21 396–402 (Suppl. 2).PubMedGoogle Scholar
  31. Cuatrecasas, P.: 1972c. Isolation of the insulin receptor of liver and fat cell membranes, Proc. Natl. Acad. Sci. 69: 318–322.PubMedGoogle Scholar
  32. Cuatrecasas, P.: 1973a. Insulin receptor of liver and fat cell membranes, Fed. Proc. 32: 1838–1846.Google Scholar
  33. Cuatrecasas, P.: 1973b. Interaction of concanavalin A and wheat germ agglutinin with the insulin receptor of fat cells and liver, J. Biol. Chem. 248: 3528–3534.PubMedGoogle Scholar
  34. Cuatrecasas, P.: 1973c. The interaction of Vibrio cholerae enterotoxin with cell membranes, Biochemistry 12: 3547–3557.PubMedGoogle Scholar
  35. Cuatrecasas, P.: 1973d. Gangliosides and membrane receptors for cholera toxin, Biochemistry 12: 3558–3566.PubMedGoogle Scholar
  36. Cuatrecasas, P.: 1976e. Cholera toxin-fat cell interaction and the mechanism of activation of the lipolytic response, Biochemistry 12: 3567–3576.Google Scholar
  37. Cuatrecasas, P.: 1973. Vibrio cholerae choleragenoid—Mechanism of inhibition of cholera toxin action, Biochemistry 12: 3577–3581.PubMedGoogle Scholar
  38. Cuatrecasas, P.: 1973g. unpublished observations.Google Scholar
  39. Cuatrecasas, P.: 1973i. Interaction of wheat germ agglutinin and concanavalin A with isolated fat cells, Biochemistry 12: 1312–1323.PubMedGoogle Scholar
  40. Cuatrecasas, P.: 1974. Membrane receptors, Ann. Rev. Biochem. 43: 169–214.PubMedGoogle Scholar
  41. Cuatrecasas, P., Hollenberg, M. D.: 1975. Binding of insulin and other hormones to non-receptor materials: saturability, specificity and apparent “negative cooperativity”, Biochem. Biophys. Res. Commun. 62: 31–41.PubMedGoogle Scholar
  42. Cuatrecasas, P., Tell, G. P. E.: 1973. Insulin-like activity of concanavalin A and wheat germ agglutinin—Direct interactions with insulin receptors, Proc. Natl. Acad. Sci. 70: 485–489.PubMedGoogle Scholar
  43. Cuatrecasas, P., Fuchs, S., Anfinsen, C. B.: 1967. Catalytic properties and specificity of the extracellular nuclease of Staphylococcus aureus, J. Biol. Chem. 242: 3063–3067.PubMedGoogle Scholar
  44. Cuatrecasas, P., Desbuquois, B., Krug, F.: 1971a. Insulin receptor interactions in liver cell membranes, Biochem. Biophys. Res. Commun. 44: 333–339.PubMedGoogle Scholar
  45. Cuatrecasas, P., Illiano, G., Green, I.: 1971b. Production of anti-glucagon antibodies in poly-L-lysine “responder” guinea-pigs, Nature New Biol. 230: 60–61.PubMedGoogle Scholar
  46. Cuatrecasas, P., Tell, G. P. E., Sica, V., Parikh, I., Chang, K.-J.: 1974. Noradrenaline binding and the search for catecholamine receptors, Nature 247: 92–97.PubMedGoogle Scholar
  47. Deplazas, S. F., Derobertis, E.: 1972. Isolation of a proteolipid from spleen capsule binding (±)-[3H]-norepinephrine, Biochim. Biophys. Acta 266: 246–254.Google Scholar
  48. Desbuquois, B.: 1974. Eur. J. Biochem. (in press).Google Scholar
  49. Desbuquois, B., Aurbach, G. D.: 1971. Use of polyethylene glycol to separate free and antibody-bound peptide hormones in radioimmunoassays, J. Clin. Endocrinol. 33: 732–738.Google Scholar
  50. Desbuquois, B., Cuatrecasas, P.: 1972. Independence of glucagon receptors and glucagon inactivation in liver cell membranes, Nature New Biol. 236: 202–204.Google Scholar
  51. Desbuquois, B., Laudet, M. H., Laudet, P.: 1973. Vasoactive intestinal polypeptide and glucagon stimulation of adenylate cyclase activity via distinct receptors in liver and fat cell membranes, Biochem. Biophys. Res. Commun. 53: 1187–1194.Google Scholar
  52. Desbuquois, B., Krug, F., Cuatrecasas, P.: 1974. Inhibitors of glucagon inactivation: Effect on glucagon-receptor interactions and glucagon-stimulated adenylate cyclase activity in liver cell membranes, Biochim. Biophys. Acta, 343: 101–120.PubMedGoogle Scholar
  53. Dulak, N. C., Temin, H. M.: 1973a. A partially purified polypeptide fraction from rat liver cell conditioned medium with multiplication stimulating activity for embryo fibroblasts, J. Cell. Physiol. 81: 153–160.PubMedGoogle Scholar
  54. Dulak, N. C., Temin, H. M.: 1973b. Multiplication stimulating activity for chicken embryo fibroblasts from rat liver cell conditioned medium: A family of small polypeptides, J. Cell. Physiol. 81: 161–170.PubMedGoogle Scholar
  55. Dunnick, J. K., Marinetti, G. V.: 1971. Hormone action at the membrane level. III. Epinephrine interaction with rat liver plasma membrane, Biochim. Biophys. Acta 249: 122–134.PubMedGoogle Scholar
  56. Edelman, G. M.: 1973. personal communication.Google Scholar
  57. El-Allawy, R. M. M., Gliemann, J.: 1972. Trypsin treatment of adipocytes: Effect on sensitivity to insulin, Biochim. Biophys. Acta 273: 97–109.PubMedGoogle Scholar
  58. Eldefrawi, M. E., O’Brien, R. D.: 1971. Autoinhibition of acetylcholine binding to Torpedo electroplax; A possible molecular mechanism for desensitization, Proc. Natl. Acad. Sci. 68: 2006–2007.PubMedGoogle Scholar
  59. Frati, L., Daniele, S., Delogu, A., Covelli, I.: 1972. Selective binding of the epidermal growth factor and its specific effects on the epithelial cells of the cornea, Exp. Eye Res. 14: 135–141.PubMedGoogle Scholar
  60. Freychet, P., Roth, J., Neville, D. M. Jr.: 1971a. Insulin receptors in the liver: Specific binding of I25I-insulin to the plasma membrane and its relation to insulin bioactivity, Proc. Natl. Acad. Sci. 68: 1833–1837.PubMedGoogle Scholar
  61. Freychet, P., Roth, J., Neville, D. M. Jr.: 1971b. Monoiodoinsulin: Demonstration of its biological activity and binding to fat cells and liver membranes, Biochem. Biophys. Res. Commun. 43: 400–408.PubMedGoogle Scholar
  62. Freychet, P., Kahn, R., Roth, J., Neville, D. M. Jr.: 1972. Insulin interactions with liver plasma membranes: Independence of binding of the hormone and its degradation, J. Biol. Chem. 247: 3953–3961.PubMedGoogle Scholar
  63. Gardner, J. D., Klaveman, H. L., Bilezikian, J. P., Aurbach, G. D.: 1973. Effect of A-adrenergic catecholamines on sodium transport in turkey erythrocytes, J. Biol. Chem. 248: 5590–5597.PubMedGoogle Scholar
  64. Garrat, C. J.: 1964. Effect of iodination on the biological activity of insulin, Nature 201: 1324–1325.Google Scholar
  65. Gavin, J. R. III., Roth, J., Jen, P., Freychet, P.: 1972. Insulin receptors in human circulating cells and fibroblasts, Proc. Natl. Acad. Sci. 69: 747–751.PubMedGoogle Scholar
  66. Gavin, J. R. III., Gorden, P., Roth, J., Archer, J. A., Bluell, D. N.: 1973. Characteristics of the human lymphocyte insulin receptor, J. Biol. Chem. 248: 2202–2207.PubMedGoogle Scholar
  67. Gey, G. O., Thalhimer, W.: 1924. Observations on the effect of insulin introduced into the medium of tissue culture, J. Am. Med. Soc. 82: 1609.Google Scholar
  68. Giacobini, G., Filogarno, G., Weber, M., Boquet, P., Changeux, J.-P.: 1973. Effects of a snake a-neurotoxin on the development of innervated skeletal muscles in chick embryo, Proc. Natl. Acad. Sci. 70: 1708–1712.PubMedGoogle Scholar
  69. Giorgio, N. A., Johnson, C. B., Blecher, M.: 1974. Hormone receptors. III. Properties of glucagon-binding proteins isolated from liver plasma membranes, J. Biol. Chem. 249: 428–437.PubMedGoogle Scholar
  70. Gliemann, J., Osterlind, K., Vinten, J., Gammeltoft, S.: 1972. A procedure for measurement of distribution spaces in isolated fat cells, Biochim. Biophys. Acta 286: 1–9.PubMedGoogle Scholar
  71. Goldfine, I. D., Gardner, J. D., Neville, D. M. Jr.: 1972. Insulin action in isolated rat thymocytes. I. Binding of 125I-insulin and stimulation of a-amino isobutyric acid transport, J. Biol. Chem. 247: 6919–6926.PubMedGoogle Scholar
  72. Goldstein, A., Lowney, L. I., Pal, B. K.: 1971. Stereospecific and nonspecific interactions of the morphine congener levorphanol in subcellular fractions of mouse brain, Proc. Natl. Acad. Sci. 68: 1742–1747.PubMedGoogle Scholar
  73. Greaves, M. F., Bauminger, S.: 1972. Activation of T and B lymphocytes by insoluble phytomitogens, Nature New Biol. 235: 67–70.PubMedGoogle Scholar
  74. Greenwood, F. C., Hunter, W. M.: 1963. The preparation of 13II-labelled human growth hormone of high specific activity, Biochem. J. 89: 114–123.PubMedGoogle Scholar
  75. Hall, W. Z.: 1972. Release of neurotransmitters and their interaction with receptors, Ann. Rev. Biochem. 41: 925–952.PubMedGoogle Scholar
  76. Hembree, W. C., Ehrenkaufer, R. E., Lieberman, S., Wolf, A. P.: 1973. A general method of tritium labeling utilizing microwave discharge activation of tritium gas methodology and application to biological compounds, J. Biol. Chem. 248: 5532–5540.PubMedGoogle Scholar
  77. Henderson, P. J. F.: 1973. Steady-state enzyme kinetics with high-affinity substrates or inhibitors. Biochem. J. 135: 101–107.PubMedGoogle Scholar
  78. Hintz, R. L., Clemmons, D. R., Underwood, L. E., van Wyk, J. J.: 1972. Competitive binding of somatomedin to the insulin receptors of adipocytes, chondrocytes and liver membranes, Proc. Natl. Acad. Sci. 69: 2351–2355.PubMedGoogle Scholar
  79. Hollenberg, M. D., Cuatrecasas, P.: 1973a. Epidermal growth factor: Receptors in human fibroblasts and modulation of action by cholera toxin, Proc. Natl. Acad. Sci. 70: 2964–2968.PubMedGoogle Scholar
  80. Hollenberg, M. D., Cuatrecasas, P.: 1974a. Hormone receptors and membrane glycoproteins during in vitro transformation of lymphocytes, in: Control of Proliferation in Animal Cells ( B. Clarkson, R. Baserga, eds.), p. 423–434, Cold Spring Harbor, N.Y.Google Scholar
  81. Hollenberg, M. D., Cuatrecasas, P.: 1975a. Studies on the interaction of hormones with plasma membrane receptors, in: Biochemical Actions of Hormones, Vol. 3 (G. Litwack, ed.), Academic Press, New York, in press.Google Scholar
  82. Hollenberg, M. D., Cuatrecasas, P.: 1975b. Insulin and EGF: Human fibroblast receptors related to DN A synthesis and amino acid transport, in preparation J. Biol. Chem. (in press).Google Scholar
  83. Hollenberg, M. D., O’Keefe, E. J., Cuatrecasas, P.: 1973. unpublished observations.Google Scholar
  84. Hummel, J. P., Dreyer, W. J.: 1962. Measurement of protein-binding phenomena by gel filtration, Biochim. Biophys. Acta 63: 530–532.PubMedGoogle Scholar
  85. Iversen, L. L.: 1967. The Uptake and Storage of Noradrenalin in Sympathetic Nerves, Cambridge University Press, London.Google Scholar
  86. Izzo, J. L., Roncone, A., Izzo, M. J., Bale, W. F.: 1964. Relationship between degree of iodination of insulin and its biological, electrophoretic and immunochemical properties, J. Biol. Chem. 239: 3749–3784.PubMedGoogle Scholar
  87. Kirshner, N.: 1962. Uptake of catecholamines by a particulate fraction of the adrenal medulla, J. Biol. Chem. 237: 2311–2317.PubMedGoogle Scholar
  88. Krug, U., Cuatrecasas, P.: 1973. unpublished observations.Google Scholar
  89. Krug, U., Krug, F., Cuatrecasas, P.: 1972. Emergence of insulin receptors on human lymphocytes during in vitro transformation, Proc. Natl. Acad. Sci. 69: 2604–2608.PubMedGoogle Scholar
  90. Krug, U., Hollenberg, M. D., Cuatrecasas, P.: 1973. Changes in the binding of concanavalin A and wheat germ agglutinin to human lymphocytes during in vitro transformation, Biochem. Biophys. Res. Commun. 52: 305–312.PubMedGoogle Scholar
  91. Kuhar, M. J., Pert, C. B., Snyder, S. H.: 1973. Regional distribution of opiate receptor binding in monkey and human brain, Nature 245: 447–450.PubMedGoogle Scholar
  92. Lefkowitz, R. J., Haber, E.: 1971. A fraction of the ventricular myocardium that thas the specificity of the cardiac A-adrenergic receptor, Proc. Natl. Acad. Sci. 68: 1773–1777.PubMedGoogle Scholar
  93. Lefkowitz, R. J., Levey, G. S.: 1972. Norepinephrine—Dissociation and ft-receptor binding from adenylate cyclase activation in solubilized myocardium, Life Sci. 11:821–828 (Part 2).Google Scholar
  94. Lefkowitz, R. J., Haber, E., O’Hara, D.: 1972. Identification of the cardiac beta-adrenergic receptor protein: Solubilization and purification by affinity chromatography, Proc. Natl. Acad. Sci. 69: 2828–2832.PubMedGoogle Scholar
  95. Lefkowitz, R. J., O’Hara, D. S., Warshaw, J.: 1973a. Binding of catecholamines to receptors in cultured myocardial cells, Nature New Biol. 244: 79–80.PubMedGoogle Scholar
  96. Lefkowitz, R. J., Sharp, G. W. G., Haber, E.: 1973b. Specific binding of A-adrenergic catecholamines to a subcellular fraction from cardiac muscle, J. Biol. Chem. 248: 342–349.PubMedGoogle Scholar
  97. Levine, S., Pictet, R., Rutter, W. J.: 1973. Control of cell proliferation and cytodifferentiation by a factor reacting with the cell surface, Nature New Biol. 246: 49–51.PubMedGoogle Scholar
  98. Lis, H., Sharon, N.: 1973. The biochemistry of plant lectins, Ann. Rev. Biochem. 42: 541–574.PubMedGoogle Scholar
  99. Livingston, J. N., Cuatrecasas, P., Lockwood, D. H.: 1974. Studies of glucagon resistance in large rat adipocytes: 125I-labeled glucagon-binding and lipolytic capacity, J. Lipid Res. 15: 26–32.PubMedGoogle Scholar
  100. Maguire, M. E., Golmann, P. H., Gilman, A. G.: 1974. The reaction of [3H]norepinephrine with particulate fractions of cells responsive to catecholamines, Molec. Pharmacol. 10: 563–581.Google Scholar
  101. Marinetti, G. V., Ray, T. K., Tomasi, V.: 1969. Glucagon and epinephrine stimulation of adenyl cyclase activity in isolated rat liver plasma membranes, Biochem. Biophys. Res. Commun. 36: 185–193.PubMedGoogle Scholar
  102. Massaglia, A., Rosa, U., Rialdi, G., Rossi, C. A.: 1969. Iodination of insulin in aqueous and organic solvents, Biochem. J. 115: 11–18.PubMedGoogle Scholar
  103. Melmon, K. L., Bourne, H. R., Weinstein, J., Sela, M.: 1972. Receptors for histamine can be detected on the surface of selected leukocytes, Science 177: 707–709.PubMedGoogle Scholar
  104. Meunier, J.-C., Olsen, R. W., Menez, A., Fromageot, P., Boquet, P., Changeux, J.-P.: 1972. Some physical properties of the cholinergic receptor protein from Electrophorus electricus revealed by a tritiated a-toxin from Naja nigricollis venom, Biochemistry 11: 1200–1210.PubMedGoogle Scholar
  105. Miledi, R., Molinoff, P., Potter, L. T.: 1971. Isolation of the cholinergic receptor protein of Torpedo electric tissue, Nature 229: 554–557.PubMedGoogle Scholar
  106. Molinoff, P. B., Axelrod, J.: 1971. Biochemistry of catecholamines, Ann. Rev. Biochem. 40: 465–500.PubMedGoogle Scholar
  107. Oka, T., Topper, Y. J.: 1971. Insulin sepharose and the dynamics of insulin action, Proc. Natl. Acad. Sci. 68: 2066–2068.PubMedGoogle Scholar
  108. O’Keefe, E., Hollenberg, M. D., Cuatrecasas, P.: 1974. Epidermal growth factor: characteristics of specific binding in membranes from liver, placenta and other target tissues, Arch. Biochem. Biophys. 164: 518–526.PubMedGoogle Scholar
  109. Paton, W. D. M., Rang, H. P.: 1965. The uptake of atropine and related drugs by intestinal smooth muscle of the guinea pig in relation to acetylcholine receptors, Proc. Roy. Soc. Lond. Ser. B 163: 1–44.Google Scholar
  110. Pert, C. B., Snyder, S. H.: 1973a. Opiate receptor: Demonstration in nervous tissue, Science 179: 1011–1014.PubMedGoogle Scholar
  111. Pert, C. B., Snyder, S. H.: 1973b. Properties of opiate-receptor binding in rat brain, Proc. Natl. Acad. Sci. 70: 2243–2247.PubMedGoogle Scholar
  112. Pierson, R. W. Jr., Temin, H. M.: 1972. The partial purification from calf serum of a fraction with multiplication-stimulating activity for chicken fibroblasts in cell culture and with nonsuppressible insulin-like activity, J. Cell. Physiol. 79: 319–330.PubMedGoogle Scholar
  113. Pohl, S. L., Krans, H. M. J., Kozyreff, V., Birnbaumer, L., Rodbell, M.: 1971. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. VI. Evidence for a role of membrane lipids, J. Biol. Chem. 246: 4447–4454.PubMedGoogle Scholar
  114. Pohl, S. L., Krans, H. M. J., Birnbaumer, L., Rodbell, M.: 1972. Inactivation of glucagon by plasma membranes of rat liver, J. Biol. Chem. 247: 2295–2301.PubMedGoogle Scholar
  115. Porter, C. W., Chiu, T. H., Wieckowski, J., Barnard, E. A.: 1973. Types and locations of cholinergic receptor-like molecules in muscle fibres, Nature New Biol. 241: 3–7.PubMedGoogle Scholar
  116. Raftery, M. A., Schmidt, J., Clark, D. G., Wolcott, R. G.: 1971. Demonstration of a specific a-bungarotoxin binding component in Electrophorus electricus electroplax membranes, Biochem. Biophys. Res. Commun. 45: 1622–1629.PubMedGoogle Scholar
  117. Raftery, M. A., Schmidt, J., Clark, D. G.: 1972. Specificity of a-bungarotoxin binding to Torpedo californica electroplax, Arch. Biochem. Biophys. 152: 882–886.PubMedGoogle Scholar
  118. Rodbell, M., Krans, H. M. J., Pohl, S. L., Birnbaumer, L.: 1971a. Theglucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. III. Binding of glucagon: method of assay and specificity, J. Biol. Chem. 246: 1861–1871.PubMedGoogle Scholar
  119. Rodbell, M., Krans, H. M. J., Pohl, S. L., Birnbaumer, L.: 1971b. Theglucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. IV. Effects of guanyl nucleotides on binding of 125I-glucagon, J. Biol. Chem. 246: 1872–1876.PubMedGoogle Scholar
  120. Rodbell, M., Birnbaumer, L., Pohl, S. L., Sundby, F.: 1971C. The reaction of glucagon with its receptor: Evidence for discrete regions of activity and binding in the glucagon molecule, Proc. Natl. Acad. Sci. 68: 909–913.Google Scholar
  121. Ronzio, R. A., Rutter, W. J.: 1973. Effects of a partially purified factor from chick embryos on macromolecular synthesis of embryonic pancreatic epithelia, Develop. Biol. 30: 307–320.PubMedGoogle Scholar
  122. Rubalcava, B., Rodbell, M.: 1973. The role of acidic phospholipids in glucagon action on rat liver adenylate cyclase, J. Biol. Chem. 248: 3831–3837.PubMedGoogle Scholar
  123. Scatchard, G.: 1949. The attractions of proteins for small molecules and ions, Ann. N. Y. Acad. Sci. 51: 660–672.Google Scholar
  124. Schramm, M., Feinstein, H., Naim, E., Long, M., Lasser, M.: 1972. Epinephrine binding to the catecholamine receptor and activation of the adenylate cyclase in erythrocyte membranes, Proc. Natl. Acad. Sci. 69: 523–527.PubMedGoogle Scholar
  125. Shiu, R. P. C., Kelly, P. A., Friesen, N. G.: 1973. Radioreceptor assay for prolactin and other lactogenic hormones, Science 180: 968–971.PubMedGoogle Scholar
  126. Shore, P. A.: 1972. Transport and storage of biogenic amines, Ann. Rev. Pharmacol. 12: 209–226.PubMedGoogle Scholar
  127. Simon, E. J., Hiller, J. M., Edelman, I.: 1973. Stereospecific binding of the potent narcotic analgesic [3H]etorphine to rat brain homogenate, Proc. Natl. Acad. Sci. 70: 1947–1949.PubMedGoogle Scholar
  128. Snyder, S. H.: 1973, personal communication.Google Scholar
  129. Soderman, D. D., Germershausen, J., Katzen, M.: 1973. Affinity binding of intact fat cells and their ghosts to immobilized insulin, Proc. Natl. Acad. Sci. 70: 792–796.PubMedGoogle Scholar
  130. Sonenberg, M.: 1971. Interaction of human growth hormone and human erythrocyte membranes studied by intrinsic fluorescence, Proc. Natl. Acad. Sci. 68: 1051–1055.PubMedGoogle Scholar
  131. Stadie, W. C., Haugaard, N., Vaughan, M.: 1952. Studies of insulin binding with isotopically labelled insulin, J. Biol. Chem. 199: 729–739.PubMedGoogle Scholar
  132. Stadie, W. C., Haugaard, N., Vaughan, M.: 1953. The quantitative relation between insulin and its biological activity, J. Biol. Chem. 220: 745–751.Google Scholar
  133. Stjarne, L.: 1964. Studies of catecholamine uptake storage and release mechanisms, Acta Physiol. Scand 62:1–97 (Suppl. 228 ).Google Scholar
  134. Suzuki, F., Dakuhara, Y., Ono, M., Takeda, Y.: 1972. Studies on the mode of action of insulin: Properties and biological activity of an insulin-dextran complex, Endocrinology 90: 1220–1230.PubMedGoogle Scholar
  135. Sytkowski, A. J., Vogel, Z., Nirenberg, M. W.: 1973. Development of acetylcholine receptor clusters on cultured muscle cells, Proc. Natl. Acad. Sci. 70: 270–274.PubMedGoogle Scholar
  136. Tell, G. P. E., Cuatrecasas, P.: 1974. Adrenergic receptors: Stereo-specificity and lack of affinity for catechols, Biochem. Biophys. Res. Commun., 57: 793–800.PubMedGoogle Scholar
  137. Temin, H. M., Pierson, R. W. Jr., Dulak, N. C.: 1972. The role of serum in the control of multiplication of avian and mammalian cells in culture, in: Growth, Nutrition and Metabolism of Cells in Culture, Vol. I, (V. I. Cristofalo, G. Rothblat,eds.), pp. 50–81, Academic Press, New York.Google Scholar
  138. Thorell, J. I., Johansson, B. G.: 1971. Enzymatic iodination of polypeptides with 125I to high specific activity, Biochim. Biophys. Acta 251: 363–369.PubMedGoogle Scholar
  139. Tomasi, V., Koretz, S., Ray, T. Dunnick, J., Marinetti, G. V.: 1970. Hormone action at the membrane level. II. The binding of epinephrine and glucagon to the rat liver plasma membranes, Biochim. Biophys. Acta 211: 31–42.PubMedGoogle Scholar
  140. Tsushima, T., Friesen, H. G.: 1973. Radioreceptor assay for growth hormone, J. Clin. Endocrinol. Metab. 37: 334–337.PubMedGoogle Scholar
  141. Uloth, R. H., Kirk, J. R., Gould, W. A., Larsen, A. A.: 1966. Sulfonanilides. I. Monoalkyl- and arylsulfonamidophenethanolamines, J. Med. Chem. 9: 88–97.PubMedGoogle Scholar
  142. Venter, J. C., Dixon, J. E., Maroko, P. R., Kaplan, N. O.: 1972. Biologically active catecholamines covalently bound to glass beads, Proc. Natl. Acad. Sci. 69: 1141–1145.PubMedGoogle Scholar
  143. Venter, J. C., Ross, J. Jr., Dixon, J., Mayer, S. E., Kaplan, N. D.: 1973. Immobilized catecholamine and cocaine effects on contractibility of cardiac muscle, Proc. Natl. Acad. Sci. 70: 1214–1217.PubMedGoogle Scholar
  144. Weinstein, Y., Melmon, K. L., Bourne, H. R., Sela, M.: 1973. Specific leukocyte receptors for small endogenous hormones: Detection by cell binding to insolubilized hormone derivatives, J. Clin. Invest. 52: 1349–1361.PubMedGoogle Scholar
  145. Wolfe, B. B., Zirrolli, J. A., Molinoff, P. B.: 1973. Binding of [3H]epinephrine to proteins of rat ventricular muscle: Nonidentity with beta adrenergic receptors, Molec. Pharmacol. 10: 582–596.Google Scholar
  146. Yalow, R. S., Berson, S. A.: 1966. Purification of 1311 parathyroid hormone with microfine granules of precipitated silica, Nature 212: 357–358.PubMedGoogle Scholar
  147. Young, A. B., Snyder, S. H.: 1973. Strychnine binding associated with glycine receptors of the central nervous system, Proc. Natl. Acad. Sci. 70: 2832–2836.PubMedGoogle Scholar
  148. Zull, J. E., Repke, D. W.: 1972. Studies with tritiated polypeptide hormones. The preparation and properties of an active, highly tritiated derivative of parathyroid hormone: Acetamidino-parathyroid hormone, J. Biol. Chem. 247: 2183–2188.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  1. 1.Department of Pharmacology and Experimental TherapeuticsThe Johns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Department of MedicineThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations