Neuropharmacological Responses from Nerve Cells in Tissue Culture

  • Bruce R. Ransom
  • Phillip G. Nelson
Part of the Handbook of Psychopharmacology book series (HBKPS, volume 2)


It has been amply demonstrated over the past several years that nervous tissue can maintain and develop a high degree of differentiation in culture. Essentially every region of the neuraxis has been successfully grown in some form of culture, and neural tissue from bird, mouse, rat, and man as well as invertebrate material has proven suitable for in vitro work (Murray, 1971; Nelson, 1974). In this chapter, we will be particularly concerned with electrophysiological responses of nerve (and muscle) cells to iontophoretically applied neurohormones but will also deal with some biochemical effects of neuropharmacological agents.


Spinal Cord Equilibrium Potential Synaptic Potential Membrane Polarization Gaba Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bunge, R. P., Rees, R., Wood, P., Burton, H., Ko, C.-P.: 1974. Anatomical and physiological observations on synapses formed on isolated autonomic neurons in tissue culture, Brain Res. 66: 401–412.CrossRefGoogle Scholar
  2. Cohen, M. W.: 1972. The development of neuromuscular connexions in the presence of D-tubocurarine, Brain Res. 41: 457–463.PubMedCrossRefGoogle Scholar
  3. Cohen, S. A., Fischbach, G.: 1973. Regulation of muscle acetylcholine sensitivity by muscle activity in cell culture, Science 181: 76–78.PubMedCrossRefGoogle Scholar
  4. Crain, S. M.: 1972. Tissue culture model of epileptiform activity, in: Experimental Models of Epilepsy—A Manual for the Laboratory Worker ( D. P. Purpura, J. K. Penry, D. Tower, C. W. Woodbury, R. Walter, eds.), pp. 291–316, Raven Press, New York.Google Scholar
  5. Crain, S. M.: 1973. Tissue culture studies of central nervous system maturation, in: Early Development, Res. Publ. Assoc. Res. Nerv. Ment. Dis. 51: 113–131.Google Scholar
  6. Crain, S. M., Bornstein, M. B.: 1974. Early onset in inhibitory transactions during synaptogenesis in fetal mouse brain cultures, Brain Res. 68: 351–357.PubMedCrossRefGoogle Scholar
  7. Crain, S. M., Peterson, E. R.: 1971. Development of paired explants of fetal spinal cord and adult skeletal muscle during chronic exposure to curare and hemicholinium, In Vitro 6: 373.Google Scholar
  8. Crain, S. M., Pollack, I.: 1973. Restorative effects of cyclic AMP on complex bioelectric activities of cultured fetal rodent CNS tissues after acute Ca++ deprivation, J. Neurobiol. 4: 321–342.PubMedCrossRefGoogle Scholar
  9. Crain, S. M., Bornstein, M. B., Peterson, E. R.: 1968. Maturation of cultured embryonic CNS tissue during chronic exposure to agents which prevent bioelectric activity, Brain Res. 8: 363–372.PubMedCrossRefGoogle Scholar
  10. Fischbach, G. D.: 1972. Synapse formation between dissociated nerve and muscle cells in low density cell cultures, Develop. Biol. 28: 407–429.PubMedCrossRefGoogle Scholar
  11. Fischbach, G. D., Cohen, S. A.: 1973. The distribution of acetylcholine sensitivity over uninnervated and innervated muscle fibers grown in cell culture, Develop. Biol. 31: 147–162.PubMedCrossRefGoogle Scholar
  12. Fischbach, G. D., Dichter, M. A.: 1974. Electrophysiologic and morphologic properties of neurons in dissociated chick spinal cord cell cultures, Develop. Neurol. 37: 100–116.Google Scholar
  13. Giller, E. L., Schrier, B. K., Shainberg, A., Fisk, H. R., Nelson, P. G.: 1973. Choline acetyltransferase activity is increased in combined cultures of spinal cord and muscle cells from the mouse, Science 182: 588–589.PubMedCrossRefGoogle Scholar
  14. Giller, E. L., Breakefield, X. O., Christian, C. N., Neale, E. A., Nelson, P. G.: 1974. Expression of neuronal characteristics in culture: Some pros and cons of primary cultures and continuous cell lines, in: Proceedings of the Golgi Centennial Symposium (M. Santini, ed.), Raven Press, New York, in press.Google Scholar
  15. Gilman, A., Nirenberg, M.: 1971. Effect of catecholamines on adenosine 3’–5’-cyclic monophosphate concentration of clonal satellite cells of neurons, Proc. Natl. Acad. Sci. 68: 2165–2168.PubMedCrossRefGoogle Scholar
  16. Godfrey, E. W., Nelson, P. G., Schrier, B. K., Breuer, A. C., Ransom, B. R.: 1975. Brain Res. (in press).Google Scholar
  17. Harris, A. J., Dennis, M. J.: 1970. Acetylcholine sensitivity and distribution on mouse neuroblastoma cells, Science 67: 1253–1255.CrossRefGoogle Scholar
  18. Harris, A. J., Kuffler, S. W., Dennis, M. J.: 1971. Differential chemosensitivity of synaptic and extrasynaptic areas on the neuronal surface membrane in parasympathetic neurons of the frog tested by micro-application of acetylcholine, Proc. Roy. Soc. Lond. Ser. B 177: 541–553.CrossRefGoogle Scholar
  19. Hartzell, H. C., Fambrough, D. M.: 1973. Acetylcholine receptor production and incorporation into membranes of developing muscle fibers, Develop. Biol. 30: 153–165.PubMedCrossRefGoogle Scholar
  20. Hosli, E., Hosli, L.: 1971. Acetylcholinesterase in cultured rat spinal cord, Brain Res. 30: 193–197.PubMedCrossRefGoogle Scholar
  21. Hosli, E., Meier-Ruge, W., Hosli, L.: 1971. Monoamine-containing neurones in cultures of rat brain stem, Experientia 27: 310.PubMedCrossRefGoogle Scholar
  22. Hosli, E., Ljungdahl, A., Hokfelt, T., Hosli, L.: 1972. Spinal cord tissue cultures—A model for autoradiographic studies on uptake of putative neurotransmitters such as glycine and GABA, Experientia 28: 1342–1344.PubMedCrossRefGoogle Scholar
  23. Hosli, L., Hosli, E.: 1972. Autoradiographic localization of the uptake of glycine in cultures of rat medulla oblongata, Brain Res. 45: 612–616.PubMedCrossRefGoogle Scholar
  24. Hosli, L., Hosli, E., Res, P. G.: 1973a. Nervous tissue culture: A model to study action and uptake of putative neurotransmitters such as amino acids, Brain Res. 62: 597–602.PubMedCrossRefGoogle Scholar
  25. Hosli, L., Hosli, E., Res, P. F.: 19736. Electrophysiological and histochemical properties of fetal human spinal cord, in: Dynamics of Degeneration and Growth in Neurones, Wenner-Gren Center International Symposium, Stockholm.Google Scholar
  26. Johnson, J. L.: 1972. Glutamic acid as a synaptic transmitter in the nervous system: A review, Brain Res. 37: 1–19.PubMedCrossRefGoogle Scholar
  27. Krnjevic, K.: 1974. Chemical nature of synaptic transmission in vertebrates, Physiol. Rev. 54: 418–540.Google Scholar
  28. Krnjevic, K., Schwartz, S.: 1967. Some properties of unresponsive cells in the cerebral cortex, Exp. Brain Res. 3: 206–219.Google Scholar
  29. Krnjevic, K., Pumain, R., Renaud, L.: 1971. The mechanism of excitation by acetylcholine in the cerebral cortex, J. Physiol. 215: 247–268.PubMedGoogle Scholar
  30. Kuffler, S.T.W., Nicholls, J. G.: 1966. The physiology of neuroglial cells, Ergeb. Physiol. Biol. Chem. Exp. Pharmakol. 57: 1–90.Google Scholar
  31. Lasher, R. S.: 1974. The uptake of [3H]GABA and differentiation of stellate neurons in cultures of dissociated postnatal rat cerebellum, Brain Res. 69: 235–254.PubMedCrossRefGoogle Scholar
  32. Murray, M. R.: 1971. Nervous tissues isolated in culture, in: Handbook of Neurochemistry, Vol. 5A ( A. Lajtha, ed.), pp. 373–438, Plenum, New York.Google Scholar
  33. Nelson, P. G.: 1973. Electrophysiological studies of normal and neoplastic cells in tissue culture, in: Tissue Culture of the Nervous System ( G. Sato, ed.), pp. 135–160, Plenum, New York.CrossRefGoogle Scholar
  34. Nelson, P. G.: 1975. Nerve and muscle cells in culture, Physiol. Rev. 55: 1–6.PubMedCrossRefGoogle Scholar
  35. Nelson, P. G., Peacock, J. H.: 1973. Electrical activity in dissociated cell cultures from fetal mouse cerebellum, Brain Res. 61: 163–174.PubMedCrossRefGoogle Scholar
  36. Nelson, P., Ruffner, W., Nirenberg, M.: 1969. Neuronal tumor cells with excitable membranes grown in vitro, Proc. Natl. Acad. Sci. 64: 1004–1010.PubMedCrossRefGoogle Scholar
  37. Nelson, P. G., Peacock, J. H., Amano, T.: 1971. Responses of neuroblastoma cells to iontophoretically applied acetylcholine, J. Cell Physiol. 77: 353–362.PubMedCrossRefGoogle Scholar
  38. Olson, M. I., Bunge, R. P.: 1973. Anatomical observations on the specificity of synapse formation in tissue culture, Brain Res. 59: 19–33.PubMedCrossRefGoogle Scholar
  39. Paul, J.: 1972. Cell and Tissue Culture, Williams and Wilkins, Baltimore.Google Scholar
  40. Peacock, J. H., Nelson, P. G.: 1973. Chemosensitivity of mouse neuroblastoma cells in vitro, J. Neurobiol. 4: 363–374.PubMedCrossRefGoogle Scholar
  41. Peacock, J. H., McMorris, F. A., Nelson, P. G.: 1973a. Electrical excitability and chemosensitivity of mouse neuroblastoma x mouse or human fibroblast hybrids, Exp. Cell Res. 79: 199–212.PubMedCrossRefGoogle Scholar
  42. Peacock, J. H., Nelson, P. G., Goldstone, M. W.: 1973b. Electrophysiologic study of cultured neurons dissociated from spinal cords and dorsal root ganglia of fetal mice, Develop. Biol. 30: 137–152.PubMedCrossRefGoogle Scholar
  43. Purves, D., Sakmann, B.: 1974. The effect of contractile activity on fibrillation and extrajunctional acetylcholine-sensitivity in rat muscle maintained in organ culture, J. Physiol. 237: 157–182.PubMedGoogle Scholar
  44. Rall, W., Burke, R. E., Smith, T. G., Nelson, P. G., Frank, K.: 1967. Dendritic location of synapses and possible mechanisms for the monosynaptic EPSP in motoneurons, J. Neurophysiol. 30: 1169–1193.PubMedGoogle Scholar
  45. Sato, G.: (ed.), 1973. Tissue Culture of the Nervous System, Vol. 1 of Current Topics in Neurobiology, Plenum, New York.Google Scholar
  46. Schon, F., Kelly, J. S.: 1974. Autoradiographic localization of [3H]GABA and [H3]glutamate over satellite glial cells, Brain Res. 66: 275–288.CrossRefGoogle Scholar
  47. Schrier, B. K., Thompson, E. J.: 1974. On the role of glial cells in the mammalian nervous system, J. Biol. Chem. 219: 1769–1780.Google Scholar
  48. Schubert, D., Harris, A. J., Heinemann, S., Kidokoro, Y., Patrick, J., Steinbach, J. H.: 1973. Differentiation and interaction of clonal cell lines of nerve and muscle, in: Tissue Culture of the Nervous System ( G. Sato, ed.), pp. 55–86, Plenum, New York.CrossRefGoogle Scholar
  49. Tasaki, I., Chang, J. J.: 1958. Electric response of glia cells in cat brain, Science 128: 1209–1210.PubMedCrossRefGoogle Scholar
  50. Wardell, W. M.: 1966. Electrical and pharmacological properties of mammalian neuroglial cells in tissue culture, Proc. Roy. Soc. Lond. Ser. B 165: 326–361.CrossRefGoogle Scholar
  51. Werman, R.: 1966. Criteria for identification of a central nervous system transmitter, Comp. Biochem. Physiol. 18: 745–766.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Bruce R. Ransom
    • 1
  • Phillip G. Nelson
    • 1
  1. 1.Behavioral Biology Branch, National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaUSA

Personalised recommendations