Advertisement

Microiontophoretic Application of Drugs onto Single Neurons

  • John S. Kelly
Part of the Handbook of Psychopharmacology book series (HBKPS, volume 2)

Abstract

To many of us, the ultimate test of transmitter identity is the demonstration that a putative transmitter substance when applied to a single neuron has the ability to mimic the effects of the naturally occurring transmitter. It follows, therefore, that a great deal of ingenuity has been devoted to developing techniques which leave the neural elements of the tissue intact and yet allow test substances to be applied directly onto the neurons for which they are believed to have an affinity. Ideally, the application should be restricted to the postjunctional receptors, or at least to the synaptic regions of the neuron thought to be operated by the transmitter under study. Often, however, we are content to apply our substances into the rough vicinity of the neuron, perhaps as much as 30–60 μm from the neural membrane. This technique also has an attraction for pharmacologists since substances thought to act in a specific fashion at a particular synapse can be tested directly for their ability to antagonize, potentiate, or mimic the actions of the naturally occurring transmitter. This chapter is therefore primarily concerned with the techniques used to eject pharmacologically active agents into the extracellular space of neurons with fine glass microelectrodes (Fig. 1).

Keywords

Bulk Flow Spontaneous Release Transport Number Postsynaptic Response Squid Giant Axon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian, R. H.: 1956. The effect of internal and external potassium concentration on the membrane potential of the frog muscle, J. Physiol. 133: 631–658.PubMedGoogle Scholar
  2. Anderson, C. R., Stevens, C. F.: 1973. Voltage clamp analysis of acetylcholine produced end-plate current fluctuation at frog neuromuscular junction, J. Physiol. 235: 655–692.PubMedGoogle Scholar
  3. Bingley, M. S.: 1965. The generation of potentials due to fluid flow and applied pressure, paper presented at the Society for Experimental Biology Conference, April 1965.Google Scholar
  4. Biscoe, T. J., Curtis, D. R.: 1967. Strychnine and cortical inhibition, Nature 214: 914–915.PubMedCrossRefGoogle Scholar
  5. Bloom, F. E.: 1974. To spritz or not to spritz: The doubtful value of aimless iontophoresis, Life Sci. 14: 1819–1834.PubMedCrossRefGoogle Scholar
  6. Bloom, F. E., Siggins, G. R., Hoffer, B. J.: 1974. Interpreting the failure to confirm the depression of cerebellar Purkinje cells by cyclic AMP, Science, 185: 627–629.PubMedCrossRefGoogle Scholar
  7. Bradley, P. B., Candy, J. M.: 1970. Iontophoretic release of acetylcholine, noradrenaline, 5-hydroxytryptamine and D-lysergic acid diethylamide from micropipettes, Brit. J. Pharmacol. 40: 194–201.Google Scholar
  8. Bradley, P. B., Roberts, M. H. T., Straughan, D. W.: 1974. Recent advances in methods for studying the pharmacology of single cortical neurons. Neuropharmacology (Special Issue) 13: 401 - 573.Google Scholar
  9. Bradshaw, C. M., Roberts, M. H. T., Szabadi, E.: 1973a. Comparison of the effects of imipramine and desipramine on single cortical neurones, Brit. J. Pharmacol. 48: 358–359 P.Google Scholar
  10. Bradshaw, C. M., Roberts, M. H. T., Szabadi, E.: 1973b., Kinetics of the release of noradrenaline from micropipettes; interaction between ejecting and retaining currents, Brit. J. Pharmacol. 49: 667–677.Google Scholar
  11. Brooks, V. B., Curtis, D. R., Eccles, J. C.: 1957, The action of tetanus on the inhibition of motor neurones, J. Physiol. 135: 655–672.PubMedGoogle Scholar
  12. Bunney, B. S., Walters, J. R., Roth, R. H., Aghajanian, G. K.: 1973. Dopaminergic neurons: Effects of antipsychotic drugs and amphetamine on single cell activity, J. Pharmacol. Exp. Ther. 185: 560–571.PubMedGoogle Scholar
  13. Caldwell, P. C., Lea, T. J.: 1973. Use of intracellular glass scintillator for the continuous measurement of the uptake of 14C-labelled glycine into squid giant axons, J. Physiol. 232: 4–5 P.Google Scholar
  14. Caldwell, P. C., Hodgkin, A. L., Keynes, R. D., Shaw, T. I.: 1960. The effects of injecting “energy-rich” phosphate compounds on the active transport of ions in the giant axons of Loligo, J. Physiol. 152: 561–590.PubMedGoogle Scholar
  15. Carslaw, H. S., Jaeger, J. C.: 1959. Conduction of Heat in Solids, 2nd ed., Oxford University Press, Oxford.Google Scholar
  16. Chambers, R. W., Kopac, M. J.: 1950. in: Handbook of Microscopical Technique, 3rd ed., pp. 492–543, Harper, New York.Google Scholar
  17. Clarke, G., Hill, R. G., Simmonds, M. A.: 1973. Microiontophoresic release of drugs from micropipettes: Use of 24Na as a model, Brit. J. Pharmacol. 48: 156–161.Google Scholar
  18. Coceani, F., Viti, A.: 1972. The release of prostaglandine EI from micropipettes in vitro, Brain Res. 45: 469–477.PubMedCrossRefGoogle Scholar
  19. Crank, J.: 1957. The Mathematics of Diffusion, Oxford University Press, Oxford.Google Scholar
  20. Curtis, D. R.: 1964. Microelectrophoresis, in: Physical Techniques in Biological Research, Vol. V: Electrophysiological Methods, Part A ( W. L. Natsuk, ed.), pp. 144–190, Academic Press, New York.Google Scholar
  21. Curtis, D. R., Felix, D.: 1971. The effect of bicuculline upon synaptic inhibition in the cerebral and cerebellar cortices of the cat, Brain Res. 34: 301–321.PubMedCrossRefGoogle Scholar
  22. Curtis, D. R., Perrin, D. D., Watkins, J. C.: 1960. The excitation of spinal neurones by the iontophoretic application of agents which cheolate calcium, J. Neurochem. 6: 1–20.PubMedCrossRefGoogle Scholar
  23. Curtis, D. R., Duggan, A. W., Johnston, G. A. R.: 1970. The inactivation of extracellularly administered amino acids in the feline spinal cord, Exp. Brain Res. 10: 447–462.PubMedCrossRefGoogle Scholar
  24. Davies, J. T., Rideal, E. K.: 1961. Interfacial Phenomenar. Academic Press, New York.Google Scholar
  25. Del Castillo, J., Katz, B.: 1955. On the localization of acetylcholine receptors, J. Physiol. 128: 157–181.Google Scholar
  26. De Robertis, E., Gerschenfeld, H. F.: 1961. Submicroscopic morphology and function of glial cells, Int. Rev. Neurobiol. 3: 1–65.CrossRefGoogle Scholar
  27. Eccles, J. C., Jaeger, J. C.: 1957. The relationships between the mode of operation and the dimensions of the junctional regions at synapses and motor end-organs, Proc. Roy. Soc. Lond. Ser. B 148: 38.CrossRefGoogle Scholar
  28. Firth, D. R., De Felice, L. J.: 1971. Electrical resistance and volume flow in glass microelectrodes, Can. J. Physiol. Pharmacol. 49: 436–447.PubMedCrossRefGoogle Scholar
  29. Gent, J. P., Morgan, R., Wolstencraft, J. H.: 1974. Determination of the relative potency of two excitant amino acids, Neuropharmacology 13: 441–447.PubMedCrossRefGoogle Scholar
  30. Globus, A., Lux, H. D., Schubert, P.: 1968. Somadendritic spread of intracellular injected tritiated glycine in cat spinal motor neurones, Brain Res. 11: 440–445.PubMedCrossRefGoogle Scholar
  31. Godfraind, J. M., Pumain, R.: 1972. Cyclic AMP and noradrenaline iontophoretic release on rat cerebellar Pukinje neurons, Arch. Int. Pharmacodyn. Ther. 196: 131–132.PubMedGoogle Scholar
  32. Gottesfeld, Z., Kelly, J. S., Renaud, L. P.: 1972. The in vivo neuropharmacology of amino-oxyacetic acid in the cerebral cortex of the cat, Brain Res. 42: 319–335.PubMedCrossRefGoogle Scholar
  33. Gough, D. A., Andrade, J. D.: 1973. Enzyme electrodes, Science 180: 380–384.PubMedCrossRefGoogle Scholar
  34. Grundfest, H., Kao, L. Y., Altamirano, M.: 1954, Bioelectric effects of ions microinjected into the giant axon of Loligo, J. Gen. Physiol. 38: 245–282.PubMedCrossRefGoogle Scholar
  35. Haigler, H. J., Aghajanian, G. K.: 1974. Lysergic acid diethylamide and serotin: A comparison of effects of serotinergic neurons and neurons receiving on serotonergic input, J. Pharmacol. Exp. Ther. 188: 688–699.PubMedGoogle Scholar
  36. Herz, A., Zieglgänsberger, W., Färber, G.: 1969. Microelectrophoretic studies concerning the spread of glutamic acid and GAB A in brain tissue, Exp. Brain Res. 9: 221–235.PubMedCrossRefGoogle Scholar
  37. Hoffer, B. J., Neff, N. H., Siggins, G. R.: 1971. Microiontophoretic release of norepinephrine from micropipettes, Neuropharmacology 10: 175–180.PubMedCrossRefGoogle Scholar
  38. Iversen, L. L.: 1971. Role of transmitter uptake mechanisms in synaptic transmission, Brit. J. Pharmacol. 41: 571–591.Google Scholar
  39. Jaeger, J. C.: 1965. Diffusion from constrictions, in: Studies in Physiology, Presented to John C. Eccles ( D. R. Curtis, A. K. Mclntyre, eds.), pp. 106–117, Springer, New York.Google Scholar
  40. Katz, B., Miledi, R.: 1972. The statistical return of the acetycholine potential and its molecular components, J. Physiol. 224: 665–669.PubMedGoogle Scholar
  41. Katz, B., Miledi, R.: 1973. The characteristics of “end-plate-noise” produced by different depolarizing drugs, J. Physiol. 230: 707–717.PubMedGoogle Scholar
  42. Kelly, J. S., Renaud, L. P.: 1974. Physiological identification of inhibitory interneurones in the feline pericuneate cortex, Neuropharmacology 13: 463–474.PubMedCrossRefGoogle Scholar
  43. Kelly, J. S., Simmonds, M. A., Straughan, D. W.: 1975. Microelectrode techniques, in: Methods in Brain Research ( P. B. Bradley, ed.). pp. 333–377. Wiley, New York.Google Scholar
  44. Keynes, R. D.: 1964. Addendum: Microinjection, in: Physical Techniques in Biological Research, Vol. V: Electrophysiological Methods, Part A ( W. L. Natsuk, ed.). pp. 183–189. Academic Press, New York.Google Scholar
  45. Kopac, M. J.: 1964. Micromanipulators: Principles of design, operation and application, in: Physical Techniques in Biological Research, Vol. V: Electrophysiological Methods, Part A ( W. L. Natsuk, ed.). pp. 191–233. Academic Press, New York.Google Scholar
  46. Kriz, N., Sykovä, E., Ujec, E., Vjklicky, L. L.: 1974. Changes of extracellular potassium concentration induced by neural activity in the spinal cord of the cat, J. Physiol. 238: 1–15.PubMedGoogle Scholar
  47. Krnjevic, K.: 1972. Microiontophoresis, in: Methods in Neurochemistry ( M. Dekker, ed.), Pergamon Press, New York.Google Scholar
  48. Krnjevic, K., Lisiewicz, A.: 1972. Injection of calcium ions into spinal motorneurones, J. Physiol. 225: 363–390.PubMedGoogle Scholar
  49. Krnjevic, K., Miledi, R.: 1958. Acetylcholine in mammalian neuromuscular transmission, Nature 182: 805–806.PubMedCrossRefGoogle Scholar
  50. Krnjevic, K., Morris, M. E.: 1972. Extracellular K+ activity and slow potential changes in spinal cord and medulla, Can. J. Physiol. Pharmacol. 50: 1214–1217.PubMedCrossRefGoogle Scholar
  51. Krnjevic, K., Morris, M. E.: 1974. An excitatory action of substance P on cuneate neurones, Can. J. Physiol. Pharmacol. 52: 736–744.PubMedCrossRefGoogle Scholar
  52. Krnjevic, K., Phillis, J. W.: 1963. Iontophoretic studies in neurones in the mammalian cerebral cortex, J. Physiol. 165: 274–304.PubMedGoogle Scholar
  53. Krnjevic, K., Whittaker, V. P.: 1965. Excitation and depression of cortical neurones by brain fractions released from micropipettes, J. Physiol. 179: 298–322.PubMedGoogle Scholar
  54. Krnjevic, K., Laverty, R., Sharman, D. F.: 1963a. Iontophoretic release of adrenaline, noradrenaline and 5-hydroxytryptamine from micropipettes, Brit. J. Pharmacol. Chemother. 20: 491–496.Google Scholar
  55. Krnjevic, K., Mitchell, J. F., Szerb, J. C.: 1963b. Determination of iontophoretic release of acetylcholine from micropipettes, J. Physiol. 165: 421–436.PubMedGoogle Scholar
  56. Lake, N., Jordan, L. M.: 1974. Failure to confirm cyclic AMP as second messenger for norepinephrine in rat cerebellum, Science 183: 663–664.PubMedCrossRefGoogle Scholar
  57. Lavallee, M.: 1964. Intracellular pH of rat atria muscle fibres measured by glass micropipette electrodes, Circ. Res. 15: 185–193.PubMedGoogle Scholar
  58. Mccreery, R. L., Dreiling, R., Adams, R. N.: 1974. Voltammetry in brain tissue: Quantitative studies of drug interactions, Brain Res. 73: 23–33.PubMedCrossRefGoogle Scholar
  59. Morgan, R., Vrbova, G., Wolstencroft, J. H.: 1972. Correlation between the retinal input to lateral geniculate neurones and their relative response to glutamate and aspartate, J. Physiol. 224–241 P.Google Scholar
  60. Neame, K. D., Richards, T. G.: 1972. Elementary Kinetics of Membrane Carrier Transport, Blackwell, Oxford.Google Scholar
  61. Obata, K., Takeda, K., Shinozaki, H.: 1970. Electrophoretic release of γ-aminobutyric acid and glutamic acid from micropipettes, Int. J. Neuropharmacol. 9: 191–194.CrossRefGoogle Scholar
  62. Pappenheimer, J. R.: 1953. Passage of molecules through capillary walls, Physiol. Rev. 33: 387–423.PubMedGoogle Scholar
  63. Paton, W. D. M., Waud, D. R.: 1964. A quantitative investigation of the relationship between rate of access of a drug to a receptor and the rate of onset or offset of action, Arch. Exp. Pathol. Pharmacol. 248: 124–143.CrossRefGoogle Scholar
  64. Prince, D. A., Lux, H. D., Neher, E.: 1973. Measurement of extracellular potassium activity in cat cortex, Brain Res. 50: 489–495.PubMedCrossRefGoogle Scholar
  65. Ritchie, J. M., Greengard, P.: 1966. On the mode of action of local anaesthetic, Ann. Rev. Pharmacol. 6: 405–430.PubMedCrossRefGoogle Scholar
  66. Rubio, R., Zubieta, G.: 1961. The variation of the electrical resistance of micro-electrodes during the flow of current, Acta Physiol. Latino-Am. 11: 91–94.Google Scholar
  67. Rutgers, A. J.: 1940. Streaming potentials and surface conductance, Trans. Faraday Soc. 36: 69–80.CrossRefGoogle Scholar
  68. Schanne, O. F., Kawata, H., Schafer, B., Lavallee, M.: 1966, A study of the electrical resistance of the frog sartorius muscle. J. Gen. Physiol. 49: 897–912.PubMedCrossRefGoogle Scholar
  69. Schon, F., Kelly, J. S.: 1974. Autoradiographic localization of ß-GABA and (3H)glutamate over satellite glial cells, Brain Res. 66: 275–288.CrossRefGoogle Scholar
  70. Schubert, P., Kreutzberg, G. W., Lux, H. D.: 1972. Use of microelectrophoresis in the autoradiographic demonstration of fiber projections, Brain Res. 39: 274–277.PubMedCrossRefGoogle Scholar
  71. Segal, M., Bloom, F. E.: 1974. The action of norepinephrine in the rat hippocampus. I. Iontophoretic study, Brain Res. 72: 79–97.PubMedCrossRefGoogle Scholar
  72. Shoemaker, W. J., Balentine, L., Hoffer, B. J., Siggins, G. R., Henrikson, S., Bloom, F. E.: 1974. in press, quoted from Bloom etal, 1974.Google Scholar
  73. Thomas, R. C.: 1974. Intracellular pH of snail neurones measured with a new pH-sensitive glass microelectrode, J. Physiol. 238: 159–180.PubMedGoogle Scholar
  74. Thron, C. D.: 1974. Linearity and super imposition in pharmacokinetics, Pharmacol. Rev. 26: 3–31.PubMedGoogle Scholar
  75. Walker, J. L.: 1971. Ion specific liquid ion exchanger microelectrodes, Anal. Chem. 43: 89–92A.CrossRefGoogle Scholar
  76. Waud, D. R.: 1968. On diffusion from a point source, J. Pharmacol. Exp. Ther. 159: 123–128.PubMedGoogle Scholar
  77. Weiderhielm, C. A., Woodbury, J. W., Kirk, S., Rushmer, R. F.: 1964. Pulsatile pressures in the microcirculation of frog’s mesentery, Am. J. Physiol. 207: 173–176.Google Scholar
  78. Werman, R., Davidoff, R. A., Aprison, M. H.: 1966. The inhibitory action of cystathion, Life Sci. 5: 1431–1440.PubMedCrossRefGoogle Scholar
  79. Zieglgansberger, W., Herz, A., Teschenacher, H.: 1969. Electrophoretic release of tritium labelled glutamic acid from micropipettes in vitro, Brain Res. 15: 298–300.PubMedCrossRefGoogle Scholar
  80. Zieglgansberger, W., Sothmann, G., Herz, A.: 1974. Iontophoretic release of substances from micropipettes in vitro, Neuropharmacology 13: 417–422.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • John S. Kelly
    • 1
  1. 1.M.R.C. Neurochemical Pharmacology Unit, Department of Pharmacology, Medical SchoolCambridge UniversityCambridgeEngland

Personalised recommendations