Mössbauer Effect Studies of Iron Storage and Transport Proteins

  • K. Spartalian
  • W. T. Oosterhuis
  • B. Window


The iron proteins as a general group of biological materials, due to their crucial biological functions and their varied physical characteristics, have been of considerable interest to the biologist and physicist alike. The importance of iron in biological systems lies in its versatility as a trace metal element. The relative ease with which iron can be reduced and oxidized makes it an excellent candidate for the active sites of proteins and enzymes that participate in electron transfer processes. Moreover, it can bind and orient molecules that react while bound to it, and it can also exist as Fe2+, Fe3+, and sometimes as Fe4+ in a variety of crystalline fields in high or low spin configurations.(1) The present study is concerned with the means through which living organisms obtain and secure iron, namely the iron storage and transport proteins.


Iron Atom Iron Storage Freeze Solution Serum Transferrin Spin Hamiltonian Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. P. Coughlan. Sci. Prog. Oxf. 59, 1 (1971)Google Scholar
  2. 2.
    G. A. Snow. Bacteriol. Rev. 34, 99 (1970)Google Scholar
  3. 3.
    J. B. Neilands. Structure and Bonding 1, 59 (1966).CrossRefGoogle Scholar
  4. 4.
    G. A. Snow. Biochem. J. 94, 160 (1965)Google Scholar
  5. 5.
    H. H. Wickman, M. P. Klein and D. A. Shirley. Phys. Rev. 152, 345 (1966)CrossRefGoogle Scholar
  6. 6.
    J. L. Bock and G. Lang. Biochim. Biophys. Acta 264, 245 (1972)CrossRefGoogle Scholar
  7. 7.
    R. E. Feeney and St. K. Komatsu. Structure and Bonding 1, 149 (1966)CrossRefGoogle Scholar
  8. 8.
    P. Aisen. Fifth International Conference on Magnetic Resonance in Biological Systems. New York, December 1972.Google Scholar
  9. 9.
    J. Fletcher and E. R. Huehns. Nature 218, 1211 (1968)CrossRefGoogle Scholar
  10. 10.
    R. Aasa, B. G. Malmstrom, P. Saltman and T. Vanngard. Biochem. Biophys. Acta 75, 203 (1963)CrossRefGoogle Scholar
  11. 11.
    J. J. Windle, A. K. Wiersema, J. R. Clark and R. E. Feeney. Biochemistry 2, 1341 (1963)CrossRefGoogle Scholar
  12. 12.
    R. D. Dowsing and J. F. Gibson. J. Chem. Phys. 50, 294 (1969)CrossRefGoogle Scholar
  13. 13.
    R. Aasa. J. Chem. Phys. 52, 3919 (1969)CrossRefGoogle Scholar
  14. 14.
    P. Aisen, R. Aasa and A. G. Refield. J. Biol. Chemistry 244, 4628 (1969)Google Scholar
  15. 15.
    R. Aasa. Biochem. Biophys. Res. Com. 49 #3, 806 (1972)CrossRefGoogle Scholar
  16. 16.
    K. Spartalian and W. T. Oosterhuis. To be published.Google Scholar
  17. 17.
    G. Lang. Proceedings of “International Conference on the Applications of the Mössbauer Effect”, Ayelet Hashahar, Israel, 1972.Google Scholar
  18. 18.
    J. F. Boas and B. Window. Aust. J. Phys. 19, 573 (1966)Google Scholar
  19. 19.
    W. Kundig, H. Bommel, G. Constabaris and R. H. Lindquist. Phys. Rev. 142, 327 (1966)CrossRefGoogle Scholar
  20. 20.
    L. Néel. J. Phys. Soc. Japan 17, Suppl. B-I, 676 (1962)Google Scholar
  21. 21.
    A. Blaise, J. Chappert and J. Giradet. C. r. hebd. Séanc. Acad. Sci., Paris 261, 2310 (1965)Google Scholar

Copyright information

© New England Nuclear Corporation 1973

Authors and Affiliations

  • K. Spartalian
    • 1
  • W. T. Oosterhuis
    • 1
  • B. Window
    • 1
  1. 1.Physics Dept.Carnegie-Mellon UniversityPittsburghUSA

Personalised recommendations