Emission of Mössbauer γ-Rays From Crystals

  • J. P. Hannon
  • G. T. Trammell
Conference paper


Coherence effects are of central importance in the emission of Mössbauer γ-rays from crystalline sources. When the source is located within a crystal the emitted photon is coherently diffracted by the surrounding lattice, and the radiation pattern outside the crystal exhibits a set of light and dark Kossel cones, corresponding to the various internal Bragg reflections, whose positions and intensities are determined by the crystal structure. The theory of the Kossel effect for X-rays and its application to crystal structure determinations have been discussed extensively in the literature (1–4). As we shall see however there are important new features arising in the theory and application of the emission of Mössbauer γ-rays from crystals.


Destructive Interference Bragg Condition Coherence Effect Soviet Phys Recoilless Fraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Kossel, H. Loeck, and H. Voges, Z. Physik 94, 139 (1935).CrossRefGoogle Scholar
  2. 2.
    Max von Laue, Rontgenstrahleninterferenzen (Akademische Verlagsgesellschaft, Frankfurt am Main, 1960) pp. 430–448.Google Scholar
  3. 3.
    R. W. James, The Optical Principles of the Diffraction of X Rays (Cornell University Press, Ithaca, N.Y., 1965) pp. 413–457.Google Scholar
  4. 4.
    See for example R. Tixier and C. Wache, J. Appl. Cryst. 3, 466 (1970).CrossRefGoogle Scholar
  5. 5.
    G. T. Trammell, Chemical Effects on Nuclear Transformations (International Atomic Energy Agency, Vienna, 1961), Vol. I, p. 75.Google Scholar
  6. 6.
    C. Muzikar, Zh. Eksperim. i Teor. Fiz. 41, 1168 (1961) English translation: Soviet Phys.-JETP 14, 833 (1962).Google Scholar
  7. 7.
    M. I. Podgoretskii and I. I. Raizen, Zh. Eksperim. i Teor. Fiz. 39, 1473 (1960) English translation: Soviet Phys. — JEPT 12, 1023 (1961).Google Scholar
  8. 8.
    D. F. Zaretskii and V. V. Lomonosov, Zh. Eksperim. i Teor. Fiz. 48, 368 (1965) English transl.: Soviet Phys. — JEPT 21, 243 (1965).Google Scholar
  9. 9.
    Pham duy Hein, Zh. Eksperim. i Teor. Fiz 58, 145 (1970) English translation: Soviet Phys. — JETP 31, 83 (1970).Google Scholar
  10. 10.
    P. A. Alexandrov and Yu. Kagan, Zh. Eksperim. i Teor. Fiz. 59, 1733 (1970) English translation: Soviet Phys. — JETP 32, 942 (1971).Google Scholar
  11. 11.
    J. P. Hannon and G. T. Trammell, Phys. Rev. 169, 315 (1968).CrossRefGoogle Scholar
  12. 12.
    J. P. Hannon and G. T. Trammell, Phys. Rev. 186, 306 (1969).CrossRefGoogle Scholar
  13. 13.
    P. J. Black, Nature 206, 1223 (1965).CrossRefGoogle Scholar
  14. 14.
    F. Parak, R. L. Mössbauer, U. Biebl, H. Formanek, W. Hoppe, Z. Phys. 244, 456 (1971).CrossRefGoogle Scholar
  15. 15.
    G. Borrmann, Z. Physik 42, 157 (1941). For a discussion of the x-ray Borrmann effect see Refs. 2 and 3, and also E. P. Ewald, Reviews of Modern Physics 37, 46 (1965).Google Scholar
  16. 16.
    See for example L. D. Landau and E. M. Lifshitz, Electrodynamics of a Continuous Media (Addison-Wesley, Inc., 1960) pp. 288–289.Google Scholar
  17. 17.
    J. P. Hannon, N. J. Carron, G. T. Trammell, to be published.Google Scholar
  18. 18.
    G. T. Trammell, private communication to R. L. Mössbauer and F. Parak, October, 1968.Google Scholar
  19. 19.
    B. W. Batterman, Phys. Rev. Letters 22, 703 (1969).CrossRefGoogle Scholar

Copyright information

© New England Nuclear Corporation 1973

Authors and Affiliations

  • J. P. Hannon
    • 1
  • G. T. Trammell
    • 1
  1. 1.Physics DepartmentRice UniversityHoustonUSA

Personalised recommendations