Some Unusual Oxidation States of Antimony. A Mössbauer Investigation

  • T. Birchall
  • J. G. Ballard
  • B. P. Della Valle
Conference paper


Compounds of antimony normally contain the element In either the III or the V oxidation state. Compounds containing these oxidation states give rise to 121Sb Mössbauer spectra yielding parameters which fall within reasonably well defined limits for each oxidation state. It has been clearly demonstrated by Stevens and Bowen at a previous Symposium1 that antimony in the III oxidation state has a chemical Isomer shift at velocities more negative than IpSb, while Sb (V) has a more positive chemical Isomer shift. The shape of the 121Sb resonance can also yield valuable Information about the antimony environment and both parameters taken together can provide an insight into the nature of the bonding in the compound being studied. Some of the earliest demonstrations of the power of the technique have been in proving that Sb204 contains both Sb (111) and Sb(V) rather than Sb (IV), and in showing that “Sb2S5” does not contain Sb (v), but is rather a Sb (III) polysulphide.2–4


Isomer Shift Quadrupole Coupling Constant Iron Foil Recoil Free Fraction Unusual Oxidation State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. G. Stevens and L. H. Bowen, Mössbauer Effect Methodology 5, 27 (1969).Google Scholar
  2. 2.
    G. G. Long, J. G. Stevens and L. H. Bowen, Inorg. Nucl. Chem. Letters 5, 21 (1969).CrossRefGoogle Scholar
  3. 3.
    G. G. Long, J. G. Stevens and L. H. Bowen, Inorg. Nucl. Chem. Letters 5, 799 (1969).CrossRefGoogle Scholar
  4. 4.
    T. Birchall and B. Della Valle, Chem. Comm. 675 (1970).Google Scholar
  5. 5.
    T. Birchall and B. Della Valle, Can. J. Chem. 49, 2808 (1971).CrossRefGoogle Scholar
  6. 6.
    T. Birchall, P. A. W. Dean, B. Della Valle and R. J. Gillespie, Can. J. Chem., in press.Google Scholar
  7. 7.
    P. A. W. Dean and R. J. Gillespie, Chem. Comm. 853 (1970).Google Scholar
  8. 8.
    R. J. Gillespie and O. C. Valdya, Chem. Comm. 40 (1972).Google Scholar
  9. 9.
    A. J. Edwards and R. J. C. Sills, J. Chem. Soc. (A) 942 (1971).Google Scholar
  10. 10.
    G. G. Long, R. J. Tulbane and L. H. Bowen, Abstracts 158 Amer. Chem. Soc. Meeting, New York, Sept. 1969.Google Scholar
  11. 11.
    T. Birchall, B. Della Valle, E. Martineau and J. B. Milne, J. Chem. Soc. (A) 1855 (1971).Google Scholar
  12. 12.
    A. Y. Aleksandrov, S. P. Ionov, A. M. Prichard and V. I. Goldanski, Zhur. eksp. teor. Fiz. Pis’ma 13, 13 (1971).Google Scholar
  13. 13.
    J. D. Donaldson, M. J. Tricker and B. W. Dale, J. Chem. Soc. (A), 893 (1972).Google Scholar
  14. 14.
    R. H. Herber, Mössbauer Effect Methodology 6, 3 (1970).Google Scholar
  15. 15.
    L. H. Bowen, K. A. Tayler, H. Z. Dokezogy and H. H. Stadelmater, Mössbauer Effect Methodology 7, 233 (1971).Google Scholar
  16. 16.
    T. B. Brill, P. E. Gassou and G. G. Long, J. Inorg. Nucl. Chem. 33, 3285 (1971).CrossRefGoogle Scholar
  17. 17.
    S. C. Lawton and R. A. Jacobson, Inorg. Chem. 5, 743 (1966).CrossRefGoogle Scholar
  18. 18.
    R. A. Jacobson, private communication.Google Scholar
  19. 19.
    O. Ruff and W. Plato, Ber. 37, 674 (1904).Google Scholar
  20. 20.
    J. Bacon, P. A. W. Dean and R. J. Gillespie, Can. J. Chem. 47, 1655 (1969).CrossRefGoogle Scholar
  21. 21.
    A. A. Woolf and N. N. Greenwood, J. Chem. Soc. 2201 (1950).Google Scholar
  22. 22.
    A. J. Edwards, J. Chem. Soc. (A) 2751 (1970).Google Scholar
  23. 23.
    P. A. W. Dean and R. J. Gillespie, unpublished results.Google Scholar

Copyright information

© New England Nuclear Corporation 1973

Authors and Affiliations

  • T. Birchall
    • 1
  • J. G. Ballard
    • 1
  • B. P. Della Valle
    • 1
  1. 1.Department of ChemistryMcMaster UniversityHamiltonCanada

Personalised recommendations