Advertisement

Mössbauer Studies of Implanted Ions in Semiconductors

  • D. Hafemeister
  • H. de Waard

Abstract

The method of radioactive ion implantation for studying the location of impurities in semiconductors is discussed. Mössbauer measurements in semiconductors are reviewed with special emphasis on the case of Te129m ions implanted into single crystals of silicon, germanium and diamond as well as in several alkalide halides. The spectra of all semiconducting sources display two well separated MÖssbauer lines of comparable intensity. The positions, widths and relative intensities of the lines are found to depend only slightly on annealing and on dose. No dependence on the dope already present in the semiconductors has been observed. The results obtained for I129 in these semiconductors are compared with data obtained at Stanford with Fe57 implanted in semiconductors by recoil, using a Van de Graaff accelerator. The separation of the lines of the I129 sources is observed to be proportional to that of the Fe57 sources. On the basis of the systematics of I129 isomer shifts, the line with negative isomer shift (decreased s-density) is tentatively assigned to be due to iodine atoms in substitutional sites, that with positive shift to atoms at interstitial sites. The nature of the interaction causing the very large shifts is discussed.

Keywords

Isomer Shift Interstitial Site Iodine Atom Substitutional Site Hall Effect Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Crawford, Electronics 45, 85 (1972).Google Scholar
  2. 2.
    D. Hafemeister and H. deWaard, Phys. Rev. B7, 3014 (1973).Google Scholar
  3. 3.
    G. M. Kalvius, G. D. Sprouse and S. S. Hanna, Hyperfine Structure and Nuclear Radiations; Ed. E. Matthias and D. A. Shirley (North-Holland, Amsterdam, 1968) p. 686.Google Scholar
  4. G. L. Latshaw, G. D. Sprouse, P. B. Russell, G. M. Kalvius and S. S. Hanna, Bull. Am. Phys. Soc. 13, 1949 (1968).Google Scholar
  5. G. L. Latshaw, PhD. Thesis, Stanford Univ., 1971 (unpublished).Google Scholar
  6. 4.
    G. K. Werthenm, A. Hausmann, and W. Sander; The Electronic Structure of Point Defects (North-Holland, Amsterdam, 1971) p. 43.Google Scholar
  7. 5.
    D. Hafemeister and H. deWaard, J. Applied Phys. 43, 5205 (1972).CrossRefGoogle Scholar
  8. 6.
    Ion Implantation in Semiconductors, Ed. J. W. Mayer, L. Eriksson and J. A. Davies (Academic Press, New York, 1970).Google Scholar
  9. 7.
    Ion Implantation, Ed. F. H. Eisen and L. T. Chadderton. (Gordon and Breach Science Publishers, Inc., New York, 1970).Google Scholar
  10. 8.
    Ion Implantation in Semiconductors, Ed. I. Ruge and J. Graul (Springer, Berlin, 1971).Google Scholar
  11. 9.
    C. Czjzek, J. L. C. Ford, F. E. Obenshain, and D. Seyboth; Phys. Letters 19, 673 (1966).CrossRefGoogle Scholar
  12. 10.
    F. de S. Barros, D. Hafemeister, and P. J. Viccaro, J. Chem. Phys. 52, 2865 (1970).CrossRefGoogle Scholar
  13. 11.
    J. G. Mullen, Phys. Rev. 131, 1410 (1963).CrossRefGoogle Scholar
  14. 12.
    L. Eriksson, J. A. Davies, N. G. E. Johansson, and J. W. Mayer; J. Appl. Phys. 40, 842 (1969).CrossRefGoogle Scholar
  15. 13.
    J. Gyulai, O. Meyer, R. D. Pashley, and J. W. Mayer; Radiation Effects 7, 17 (1971) and p. 297 of ref. 2.CrossRefGoogle Scholar
  16. 14.
    P. Norem and G. K. Wertheim, J. Phys. Chem. Solids 23, 1111 (1962).CrossRefGoogle Scholar
  17. 15.
    B. Boltaks, M. Bakhadyrkhanov, and P. Seregin; Soviet Physics-Solid State 13, 2358 (1972).Google Scholar
  18. 16.
    D. Hafemeister, G. de Pasquali, and H. de Waard; Phys. Rev. 135, B1089 (1964).CrossRefGoogle Scholar
  19. 17.
    S. T. Picraux, N. G. E. Johansson and J. W. Mayer, Semiconductor Silicon (Ed. Electrochemical Soc. Inc, New York 1969) p. 422.Google Scholar
  20. 18.
    L. R. Walker, G. K. Wertheim, and V. Jaccarino; Phys. Rev. Letters 6, 98 (1961).CrossRefGoogle Scholar
  21. 19.
    S. Bukhspan, C. Goldstein, J. Soriano, and J. Shamir, J. Chem. Phys. 51, 3976 (1969).CrossRefGoogle Scholar
  22. 20.
    D. A. Shirley, Rev. Mod. Phys. 36, 339 (1964).CrossRefGoogle Scholar
  23. 21.
    S. Ruby and G. Shenoy, Phys. Rev. 186, 316 (1969).CrossRefGoogle Scholar
  24. 22.
    M. Pasternak, A. Simopoulos and Y. Hazony, Phys. Rev. 140, A1892 (1965).CrossRefGoogle Scholar
  25. 23.
    S. Bukhspan, C. Goldstein and T. Sonnino, J. Chem. Phys. 40, 5477 (1968).CrossRefGoogle Scholar
  26. 24.
    R. S. Nelson, J. A. Cairns and N. Blamires, p. 305 of ref. 2.Google Scholar
  27. 25.
    L. C. Feldman and H. deWaard, preliminary investigation of a 1015/cm2 Te dose in silicon carried out at Bell Labs.Google Scholar
  28. 26.
    H. deWaard, Contributed paper. Proceedings of the I.A.E.A. panel on applications of the Mössbauer effect (Vienna, May 1971).Google Scholar

Copyright information

© New England Nuclear Corporation 1973

Authors and Affiliations

  • D. Hafemeister
    • 1
  • H. de Waard
    • 2
  1. 1.Natuurkundig LaboratoriumGroningenThe Netherlands
  2. 2.Bell LaboratoriesMurray HillUSA

Personalised recommendations