Advertisement

Coincidence Mössbauer Spectroscopy

  • Gilbert R. Hoy
  • Dennis W. Hamill
  • Peter P. Wintersteiner
Conference paper

Abstract

Coincidence Mössbauer spectroscopy (CMS) is a technique which merges the methods of the Mössbauer effect and γ-γ angular correlation. The ultimate goal is to obtain solid-state information which would otherwise be unavailable. The usual procedure is to observe two γ-rays in delayed coincidence. The first γ-ray signals the formation of the Mössbauer state, the second γ-ray signals its decay. The Mössbauer absorption spectrum using a particular delay time T is, in the simplest cases, characteristic of T. This is called “time filtering.” Experimental and computational techniques used in CMS are presented. Experimental data are shown that can be explained in terms of time filtering. Additional data indicate the improved resolution and increased percentage effect obtained using CMS. Numerical results are given so that one can estimate the necessary T needed to obtain a particular linewidth. Difficulties associated with interpreting multiline spectra are pointed out. A brief discussion of possible uses of CMS is also given.

Keywords

Perturbed Angular Correlation M6ssbauer Spectrum Mossbauer Spectrum Absorber Thickness Accidental Coincidence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Triftshaüser and P. P. Craig, Phys. Rev. Letters 16:1161 (1966);CrossRefGoogle Scholar
  2. 1.
    W. Triftshaüser and P. P. Craig, Phys. Rev. 162:274(1967).CrossRefGoogle Scholar
  3. 2.
    W. Neuwirth, Z. Physik 197:473 (1966).CrossRefGoogle Scholar
  4. 3.
    K. Albrecht and W. Neuwirth, Z. Physik 203:420 (1967).CrossRefGoogle Scholar
  5. 4.
    D. W. Hamill and G. R. Hoy, Bull. Am. Phys. Soc. 13:179 (1968).Google Scholar
  6. 5.
    K. Albrecht, U. Hauser, and W. Neuwirth, in Hyper fine Structure and Nuclear Radiations, E. Matthias and D. A. Shirley, eds. (North-Holland Publishing Co., Amsterdam, 1968).Google Scholar
  7. 6.
    D. W. Hamill and G. R. Hoy, Phys. Rev. Letters 21:724 (1968).CrossRefGoogle Scholar
  8. 7.
    R. E. Holland, F. J. Lynch, G. J. Perlow, and S. S. Hanna, Phys. Rev. Letters 4:181 (1960).CrossRefGoogle Scholar
  9. 8.
    F. J. Lynch, R. E. Holland, and M. Hamermesh, Phys. Rev. 120:513 (1960).CrossRefGoogle Scholar
  10. 9.
    C. S. Wu, Y. K. Lee, N. Benczer-Koller, and P. Simms, Phys. Rev. Letters 5:432 (1960).CrossRefGoogle Scholar
  11. 10.
    S. M. Harris, Phys. Rev. 124:1178 (1961).CrossRefGoogle Scholar
  12. 11.
    A. H. Muir, Jr., K. J. Ando, and H. M. Coogan (eds.), Mossbauer Effect Data Index (Interscience Publishers, New York, 1966).Google Scholar
  13. 12.
    M. Blume, in Hyperfine Structure and Nuclear Radiations, E. Matthias and D. A. Shirley, eds. (North-Holland Publishing Co., Amsterdam, 1968).Google Scholar
  14. 13.
    K. Siegbahn (ed.), αβγ Ray Spectroscopy, Vols. 1 and 2 (North-Holland Publishing Co., Amsterdam, 1968).Google Scholar
  15. 14.
    F. J. Lynch, IEEE Trans. Nucl. Sci. NS-13:140 (1966).CrossRefGoogle Scholar
  16. 15.
    C. Hohenemser, R. Reno, H. C. Benski, and J. Lehr, Phys. Rev. 184:298 (1969).CrossRefGoogle Scholar
  17. 16.
    D. W. Hamill, Ph.D. Dissertation, Boston University, 1969, unpublished.Google Scholar
  18. 17.
    S. Margulies and J. R. Ehrman, Nucl. Instr. and Methods 12:131 (1961).CrossRefGoogle Scholar
  19. 18.
    E. Karlesson, E. Matthias, and K. Siegbahn (eds.), Perturbed Angular Correlations, (North-Holland Publishing Co., Amsterdam, 1964), p. 329.Google Scholar
  20. 19.
    M. Lax and I. Waller, Phys.Rev. 138A.:523 (1965).CrossRefGoogle Scholar
  21. 20.
    J. G. Dash and R. H. Nussbaum, Phys. Rev. Letters 16:567 (1966).CrossRefGoogle Scholar
  22. 21.
    S. M. Harris, Phys. Rev. 163:280 (1967).CrossRefGoogle Scholar
  23. 22.
    W. M. Visscher, Phys. Rev. 134A:965 (1964).CrossRefGoogle Scholar
  24. 23.
    A. D. Dinhofer, Phys. Rev. 131:535 (1963).CrossRefGoogle Scholar
  25. 24.
    A. J. Freeman, in Hyperfine Structure and Nuclear Radiations, E. Matthias and D. A. Shirley, eds. (North-Holland Publishing Co., Amsterdam 1968).Google Scholar
  26. 25.
    E. Obenshain, in Mossbauer Effect Methodology, Vol. 4, I. J. Gruverman, ed. (Plenum Press, New York, 1968).Google Scholar

Copyright information

© New England Nuclear Corporation 1971

Authors and Affiliations

  • Gilbert R. Hoy
    • 1
  • Dennis W. Hamill
    • 1
  • Peter P. Wintersteiner
    • 1
  1. 1.Physics DepartmentBoston UniversityBostonUSA

Personalised recommendations