Mössbauer Effect Studies of Spinodal Decomposition in Fe-Cr

  • D. Chandra
  • L. H. Schwartz
Conference paper


Mössbauer effect studies have been carried out to investigate the 475°C decomposition of binary Fe-Cr alloys. Homogenized and quenched alloys of compositions Fe-24, 30, 37, 44, and 60 at. %Cr gave complex spectra at room temperature. Satisfactory fitting of the data was obtained by assuming random atomic arrangement and Mössbauer parameters obtained from dilute Fe-Cr alloys. These fits indicate that the fractional change of the iron hyperfine field due to an additional chromium nearest or next-nearest neighbor remains virtually constant over this wide composition range. The effect of more distant neighbors is evidenced by the required assumption of linewidths somewhat larger than natural.

When the Fe-60 at. %Cr alloy was aged at 475°C for up to 30 hr, the spectrum broadened by about 20% but showed no signs of resonant absorption at energies expected for the equilibrium two-phase alloy. This indicates that initial decomposition produces regions of composition not very much different from the average composition. Affter 80 hr of aging, new structure appeared in the spectrum and became stronger with subsequent aging. The results of spectra measured at 200°C and room temperature are consistent with expectations for spinodal decomposition.


Hyperfine Field Spinodal Decomposition Chromium Alloy M6ssbauer Spectrum Mossbauer Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Cser, J. Ostanevich, and L. Pál, Phys. Stat. Sol. 20:581 (1967);CrossRefGoogle Scholar
  2. 1a.
    L. Cser, J. Ostanevich, and L. Pál, Phys. Stat. Sol. 20:591 (1967).CrossRefGoogle Scholar
  3. 2.
    G. Shirane, C. W. Chen, P. A. Flinn, and R. Nathans, Phys. Rev. 131:183 (1963).CrossRefGoogle Scholar
  4. 3.
    A. Heilmann and W. Zinn, Z.Metallk. 58:113 (1967).Google Scholar
  5. 4.
    H. L. Marcus, M. E. Fine, and L. H. Schwartz, J. Appl. Phys. 38:4750 (1967).CrossRefGoogle Scholar
  6. 5.
    A. Nagarajan and P. A. Flinn, Appl. Phys. Letters 11(4): 120 (1967).CrossRefGoogle Scholar
  7. 6.
    R. O. Williams, Trans. AIME 212:497 (1958).Google Scholar
  8. 7.
    H. E. Cook and J. E. Hilliard, Trans. AIME 233: 142 (1965).Google Scholar
  9. 8.
    J. W. Cahn, Trans. AIME 242:166 (1968).Google Scholar
  10. 9.
    J. E. Hilliard, in Phase Transformations, H. I. Aaronson, ed. (American Society for Metals, Metals Park, Ohio, 1970).Google Scholar
  11. 10.
    R. Lagneborg, Trans. ASM 60:67 (1967).Google Scholar
  12. 11.
    E. Z. Vintaikin, V. B. Dimitriev, and V. Yu. Kolontsov, Fiz. Metal, i Metallov. 27(6): 1131 (1969).Google Scholar
  13. 12.
    G. K. Wertheim, V. Jaccarino, J. A. Wernick, and D. N. E. Buchanan, Phys. Letters. 12:24(1964).CrossRefGoogle Scholar
  14. 13.
    M. B. Stearns, Phys. Rev. 147:439 (1966).CrossRefGoogle Scholar
  15. 14.
    W. E. Sauer and R. J. Reynik, in Mössbauer Effect Methodology, Vol. 4,1. J. Gruverman, ed. (Plenum Press, New York, 1968), p. 201.Google Scholar
  16. 15.
    C. E. Johnson, M. S. Ridout, and T. E. Cranshaw, Proc. Phys. Society 81:1079 (1963).CrossRefGoogle Scholar
  17. 16.
    P. A. Flinn,in Advances in Materials Science, Vol. 1, H. Herman, ed. (Interscience, New York, 1967), p. 163.Google Scholar
  18. 17.
    H. Yamamoto, Japan J. Appl. Phys. 3:745 (1969).CrossRefGoogle Scholar
  19. 18.
    F. Adcock, J. Iron Steel Institute 124:99 (1931).Google Scholar
  20. 19.
    R. O. Williams and H. W. Paxton, J. Iron Steel Institute 185:358 (1957).Google Scholar

Copyright information

© New England Nuclear Corporation 1971

Authors and Affiliations

  • D. Chandra
    • 1
  • L. H. Schwartz
    • 1
  1. 1.Materials Science DepartmentNorthwestern UniversityEvanstonUSA

Personalised recommendations