Advertisement

Mössbauer and Supplementary Studies of Apollo 11 Lunar Samples

  • G. P. Huffman
  • G. R. Dunmyre
  • R. M. Fisher
  • P. J. Wasilewski
  • T. Nagata
Conference paper

Abstract

Mössbauer studies of Apollo 11 lunar fines (10084,89) and rock (10024) have been carried out over the temperature range 1.8–600°K. The major iron-bearing compounds are pyroxene and ilmenite, while the minor constituents are metallic iron and troilite (FeS1.00). The magnitude and temperature dependences of the isomer shifts and quadrupole splittings observed for the major peaks indicate that only Fe2 + ions are present. At low temperatures, ilmenite undergoes an antiferromagnetic transition and the pyroxene peaks are also split by the hyperfine field arising from a long spin-lattice relaxation time. The results of high-voltage electron microscopy as well as magnetic susceptibility, electron microprobe, and X-ray analysis on these samples are summarized and correlated with the Mössbauer studies.

Keywords

Isomer Shift Quadrupole Splitting Hyperfine Field Metallic Iron Lunar Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    “Lunar Sample Preliminary Examination Report,” Science 165:1211 (1969).Google Scholar
  2. 2.
    G. P. Huffman and R. M. Fisher, J. Appl. Phys. 38:735 (1967).CrossRefGoogle Scholar
  3. 3.
    “Apollo 11 Lunar Science Conference, Houston, 1970 (Condensed Version Proceedings),” Science 167(3918): 418–784 (1970).Google Scholar
  4. 4.
    P. Gay, G. M. Bancroft, and M. G. Brown, Science 167(3918): 418–784 (1970).CrossRefGoogle Scholar
  5. 4a.
    M. Ross et al., Science 167(3918): 418–784 (1970).CrossRefGoogle Scholar
  6. 5.
    S. V. Radcliffe, A. H. Heuer, R. M. Fisher, and J. M. Christie, Science 167(3918): 418–784 (1970);CrossRefGoogle Scholar
  7. 5a.
    D. T. Griggs, Science 167(3918): 418–784 (1970).Google Scholar
  8. 6.
    H. Fernández-Moran and S. L. Hafner, Ref. [3].Google Scholar
  9. 7.
    M. Ross et al., Ref. [3].CrossRefGoogle Scholar
  10. 8.
    T. Nagata, Y. Ishikawa, M. Kono, Y. Syono, and R. M. Fisher, Science 167(3918): 418–784 (1970).CrossRefGoogle Scholar
  11. 9.
    S. Margulies and J. R. Ehrman, Nucl Instr. and Methods 12:131 (1961).CrossRefGoogle Scholar
  12. 10.
    S. S. Hafner and D. Virgo, Science 165:285 (1969).CrossRefGoogle Scholar
  13. 11.
    G. Shirane, D. E. Cox, W. J. Takei, and S. L. Ruby, J. Phys. Soc. Japan 17:1598 (1962).CrossRefGoogle Scholar
  14. 12.
    G. K. Shenoy, G. M. Kalvius, and S. S. Hafner, J. Appl. Phys. 40:1314 (1969).CrossRefGoogle Scholar
  15. 13.
    T. Gold, M. J. Campbell, and B. T. O’Leary, Ref. [3].CrossRefGoogle Scholar

Copyright information

© New England Nuclear Corporation 1971

Authors and Affiliations

  • G. P. Huffman
    • 1
  • G. R. Dunmyre
    • 1
  • R. M. Fisher
    • 1
  • P. J. Wasilewski
    • 1
  • T. Nagata
    • 1
  1. 1.Edgar C. Bain Laboratory for Fundamental ResearchUnited States Steel Corporation Research CenterMonrovilleUSA

Personalised recommendations