Mössbauer Investigation of Apollo 11 Lunar Samples

  • A. H. MuirJr.
  • R. M. Housley
  • R. W. Grant
  • M. Abdel-Gawad
  • M. Blander
Conference paper


Mössbauer spectroscopy has been used to study samples of lunar dust and rocks returned on the Apollo 11 mission. In addition to iron metal, the Fe2+ minerals ilmenite, pyroxene, troilite, and iron-containing glass were identified. There was no evidence for Fe3+ or for unusual iron charge-state ions. Heavy liquids were used to separate the dust into fractions of differing specific-gravity ranges. The light part, which contained most of the glass, also contained most of the iron metal. The antiferromagnetic transition in the ilmenite of the dust and rocks was investigated by the constant-velocity counting rate method. All samples studied had transition temperatures of 57° ± 2°K, corresponding to stoichiometric FeTiO3. A magnetically separated sample of rock 10057 was used to clarify the nature of the magnetically ordered phases in the rocks, principally troilite with minor amounts of iron metal. As illustrated by the ilmenite iron to silicate iron ratio, the compositions of the dust and breccia were similar, but differed significantly from the typical rock compositions.


Metallic Iron Light Fraction Iron Metal Mossbauer Spectrum Lunar Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lunar Sample Preliminary Examination Team, Science 165:1211 (1969).Google Scholar
  2. 2.
    Apollo 11 Preliminary Science Report, NASA SP-214, National Aeronautics and Space Administration, Washington, D.C., 1969.Google Scholar
  3. 3.
    “Apollo 11 Lunar Science Conference, Houston, 1970 (Condensed Version Proceedings),” in Science 167 (3918):418–784 (1970).Google Scholar
  4. 4.
    A. A. Levinson (ed.), “Proc. Apollo 11 Lunar Science Conference, Houston, 1970,” Geochim. Cosmochim. Acta (Suppl. I) 1–3 (1970).Google Scholar
  5. 5.
    A. H. Muir, Jr., R. M. Housley, R. W. Grant, M. Abdel-Gawad, and M. Blander, Science 167:688 (1970).CrossRefGoogle Scholar
  6. 6.
    G. Shirane, D. E. Cox, W. J. Takei, and S. L. Ruby, J. Phys. Soc. Japan 17:1598 (1962).CrossRefGoogle Scholar
  7. 7.
    A. H. Muir, Jr., in Mössbauer Effect Methodology, Vol. 4, I. J. Gruverman, ed. (Plenum Press, New York, 1968), p. 75.Google Scholar
  8. 8.
    C. H. Shomate, J. Am. Chem. Soc. 68:964 (1946);CrossRefGoogle Scholar
  9. 8a.
    J. J. Stickler, S. Kern, A. Wold, and G. S. Heller, Phys. Rev. 164:765 (1967).CrossRefGoogle Scholar
  10. 9.
    D. H. Hengstenberg, unpublished data.Google Scholar
  11. 10.
    Y. Ishikawa, J. Phys. Soc. Japan 17:1835 (1962).CrossRefGoogle Scholar
  12. 11.
    U.S. Hafner and M. Kalvius, Z. Krist. 123:443 (1966).CrossRefGoogle Scholar
  13. 12.
    Lunar Sample Preliminary Examination Team, Science 167:1325 (1970).Google Scholar

Copyright information

© New England Nuclear Corporation 1971

Authors and Affiliations

  • A. H. MuirJr.
    • 1
  • R. M. Housley
    • 1
  • R. W. Grant
    • 1
  • M. Abdel-Gawad
    • 1
  • M. Blander
    • 1
  1. 1.Science CenterNorth American Rockwell CorporationThousand OaksUSA

Personalised recommendations