Recoil Radiation Damage Following Coulomb Excitation

  • N. Hershkowitz
  • C. G. JacobsJr.
Conference paper


Coulomb excitation by 6-MeV alpha particles has been used to produce excited states of Hf178, Hf180, Hf177, W182, W183, W184, and W186. The Mössbauer effect of hafnium in several refractory hafnium compounds and of tungsten in tungsten metal has been observed. In all experiments, anomalous hyperfine structure or line broadening was observed. Simultaneous measurements of the absorber thickness dependence of Mössbauer spectra of the even-even isotopes of tungsten have yielded the narrowest sources yet reported for W184 and W186. Although the observed spectra for W186 are narrower than what is expected from electronic lifetime measurements, it is likely that broadened lines have been observed. The anomalous hyperfine structure and line broadening are interpreted to be the result of radiation damage produced by replacement collisions made by excited nuclei. In all cases, the anomalous structure can be interpreted as electric quadrupole interactions.


Radiation Damage Coulomb Excitation Mossbauer Spectrum Recoil Nucleus Excited Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. G. Jacobs, Jr., and N. Hershkowitz, Phys. Rev. B1,839 (1970).Google Scholar
  2. 2.
    J. C. Walker and Y. K. Lee, in Mössbauer Effect Methodology, Vol. 3,1. Gruverman, ed. (Plenum Press, New York, 1967).Google Scholar
  3. 3.
    C. M. Lederer, J. M. Hollander, and I. Perlman, Table of Isotopes (John Wiley and Sons, New York, 1967).Google Scholar
  4. 4.
    C. Erginsoy, G. H. Vineyard, and A. Shimizu, Phys. Rev. 139: A118 (1965).CrossRefGoogle Scholar
  5. 5.
    J. R. Beeler, Jr., and D. G. Besco, “Knock-on Cascades and Point Defect Configurations in Binary Materials,” in Proc. Symp. Radiation Damage in Solids, Venice, 1962 (International Atomic Energy Commission, Vol. 1, yienna, 1962).Google Scholar
  6. 6.
    G. M. Kalvius, G. D. Sprouse, and S. S. Hanna, in Hyperfine Structure and Nuclear Radiations, E. Matthias and D. A. Shirley, eds. (Interscience Publishers, New York, 1968).Google Scholar
  7. 7.
    Y. K. Lee, P. W. Keaton, Jr., E. T. Ritter, and J. C. Walker, Phys. Rev. Letters 14:957 (1965).CrossRefGoogle Scholar
  8. 8.
    D. Seyboth, F. E. Obenshain, and G. Czjzek, Phys. Rev. Letters 14:954 (1965).CrossRefGoogle Scholar
  9. 9.
    D. W. Hafemeister and E. Brooks Shera, Phys. Rev. Letters 14:593 (1965).CrossRefGoogle Scholar
  10. 10.
    D. A. Goldberg, P. W. Keaton, Jr., Y. K. Lee, L. Mandansky, and J. C. Walker, Phys. Rev. Letters 15:418 (1965).CrossRefGoogle Scholar
  11. 11.
    Clarence, G. Jacobs, Jr., Ph.D. Thesis, University of Iowa, 1969 (unpublished).Google Scholar
  12. 12.
    E. Gerdau, P. Steiner, and D. Steenken, in Hyperfine Structure and Nuclear Radiations, E. Matthias and D. A. Shirley, eds. (Interscience Publishers, New York, 1968), p. 261.Google Scholar
  13. 13.
    R. E. Snyder, J. W. Ross, and D. St. P. Bunbury, J. Phys. C1, 1662 (1968).Google Scholar
  14. 14.
    A. J. F. Boyle and H. E. Hall, Rept. Prog. Phys. 25:441 (1962).CrossRefGoogle Scholar
  15. 15.
    S. S. Hanna and R. S. Preston, Phys. Rev. 139:722 (1965).CrossRefGoogle Scholar
  16. 16.
    M. W. Mekshes and N. Hershkowitz, Phys. Rev. C2, 289 (1970).Google Scholar
  17. 17.
    K. Hardy, D. Rüssel, and R. Wilenzick, Phys. Letters A26:422 (1968).Google Scholar
  18. 18.
    R. E. Rundle, Acta Cryst. 1:180 (1948).CrossRefGoogle Scholar

Copyright information

© New England Nuclear Corporation 1971

Authors and Affiliations

  • N. Hershkowitz
    • 1
  • C. G. JacobsJr.
    • 1
  1. 1.Department of Physics and AstronomyThe University of IowaIowa CityUSA

Personalised recommendations