The Mössbauer Effect in Microcrystals

  • D. Schroeer


Major modifications of the crystal lattice occur in microcrystals. This paper presents an examination of the effects of these lattice modifications on various aspects of Mössbauer spectra, together with a summary of the relevant literature. Examples discussed include the following: Surface vibrational modes and partial decoupling from the supporting medium can modify the Debye-Waller factor. The Debye temperature is affected by the “internal pressures” (which can be as much as ±200 kbar) corresponding to the changes in the lattice spacing created by surface effects. These internal pressures can result in isomer shifts. Various chemical valence states may be preferentially stabilized in microcrystals. The finite crystallite size leads to superparamagnetism. Transition temperatures, such as those of the Néel and Morin transitions, may be shifted through the internal pressures. Surface and core distortions through unsaturated chemical bonds and internal pressures can lead to changes in the electric-quadrupole interaction.


Internal Pressure Lattice Spacing Isomer Shift Quadrupole Splitting Debye Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. N. Mulay, spivn Mössbauer Effect Methodology, Vol. 3, I. J. Gruverman, ed. (Plenum Press, New York, 1967), p. 79.Google Scholar
  2. 2.
    Takada and N. Kawai, J. Phys. Soc. Japan 17 (Suppl. B-I):691 (1962).Google Scholar
  3. 3.
    N. Yamamoto, J. Phys. Soc. Japan 24:23 (1968).CrossRefGoogle Scholar
  4. 4.
    D. Schroeer and R. C. Nininger, Jr., Phys. Rev. Letters 19:632 (1967);CrossRefGoogle Scholar
  5. 4a.
    R. C. Nininger, Thesis (Physics), University of North Carolina, Chapel Hill, North Carolina (1967).Google Scholar
  6. 5.
    H. P. Klug and L. E. Alexander, X-Ray Diffraction Procedures (John Wiley and Sons, New York, 1954).Google Scholar
  7. 6.
    W. J. Schuele and V. D. Deetscreek, J. Appl. Phys. 32(Suppl.):235S (1961).CrossRefGoogle Scholar
  8. 7.
    K. Hasegawa and T. Sato, J. Appl. Phys. 38:4707 (1967).CrossRefGoogle Scholar
  9. 8.
    R. M. Wilenzick, D. C. Russell, R. H. Morriss, and S. W. Marshall, J. Chem. Phys. 47:533 (1967).CrossRefGoogle Scholar
  10. 9.
    K. Kimoto, Y. Kamiya, N. Nonoyama, and R. Uyeda, Jap. J. Appl. Phys. 2:702 (1963);CrossRefGoogle Scholar
  11. 9a.
    K. Kimota and I. Nichida, Jap. J. Appl. Phys. 6:1047 (1967).CrossRefGoogle Scholar
  12. 10.
    W. Buckel and R. Hilsch, Z. Physik 131:420 (1952);CrossRefGoogle Scholar
  13. 10a.
    W. Buckel and R. Hilsch, Z. Physik 138:109 (1954).CrossRefGoogle Scholar
  14. 11.
    H. Bülow and W. Buckel, Z. Physik 145:141 (1956).CrossRefGoogle Scholar
  15. 12.
    D. M. Young and J. A. Morrison, J. Sci. Instr. 31:90 (1954);CrossRefGoogle Scholar
  16. 12a.
    F. W. Thompson, G. S. Rose, and J. A. Morrison, J. Sci. Instr. 32:325 (1955).CrossRefGoogle Scholar
  17. 13.
    F. W. C. Boswell, Proc. Phys. Soc. (London) 54A:465 (1951).Google Scholar
  18. 14.
    F. G. Karioris, J. J. Woyci, and R. R. Buckrey, spivn in: Advances in X-ray Analysis Vol. 10 (Plenum Press, New York, 1967), p. 250.CrossRefGoogle Scholar
  19. 15.
    I. P. Suzdalev, M. Ya. Gen, V. I. Goldanskii, and E. F. Makarov, Soviet Phys.—JETP 24:79 (1967).Google Scholar
  20. 16.
    W. Kündig, H. Bömmel, G. Constabaris, and R. H. Lindquist, Phys. Rev. 142:327(1966).CrossRefGoogle Scholar
  21. 17.
    K. J. Ando, W. Kündig, G. Constabaris, and R. H. Lindquist, J. Phys. Chem. Solids 28:2291 (1967).CrossRefGoogle Scholar
  22. 18.
    R. H. Lindquist, G. Constabaris, W. Kündig, and A. M. Portis, J. Appl. Phys. 39:1001 (1968).CrossRefGoogle Scholar
  23. 19.
    V. G. Bhide, H. C. Bhasan, and G. K. Shenoy, Physics Letters 24A:109 (1967).Google Scholar
  24. 20.
    K. E. Easterling and H. M. Miekk-Oja, Acta Met. 15:1133 (1967).CrossRefGoogle Scholar
  25. 21.
    D. J. Sinkin, P. J. Ficalora, and R. A. Bemhaim, Physics Letters 19:536 (1965).CrossRefGoogle Scholar
  26. 22.
    M. Ron, H. Shechter, and S. Niedzwiedz, J. Appl. Phys. 39:265 (1968).CrossRefGoogle Scholar
  27. 23.
    D. W. Collins, J. T. Dehn, and L. N. Mulay, in : Mössbauer Effect Methodology, Vol. 3, I. J. Gruverman, ed. (Plenum Press, New York, 1967), p. 103.Google Scholar
  28. 24.
    J. H. P. Watson, Phys. Rev. 148:223 (1966);CrossRefGoogle Scholar
  29. 24A.
    J. H. P. Watson, Physics Letters 25A:326 (1967).Google Scholar
  30. 25.
    E. Kinder. Naturwiss., 31 :149 (1943).CrossRefGoogle Scholar
  31. 26.
    S. W. Marshall and R. M. Wilenzick, Phys. Rev. Letters 16:219 (1966).CrossRefGoogle Scholar
  32. 27.
    R. C. Thiel, Z. Physik 200:227 (1967).CrossRefGoogle Scholar
  33. 28.
    A. Kubo, J. Phys. Soc. Japan 17:975 (1962); in Jubilee Book in Honor of Professor Kastler, Société Française de Physique (to be published).CrossRefGoogle Scholar
  34. 29.
    J. Vail, Can. J. Phys. 45:2651, 2661 (1967).CrossRefGoogle Scholar
  35. 30.
    J. E. Lennard-Jones, Z. Krist. 75:215 (1930).Google Scholar
  36. 31.
    R. C. Garvie, Mat. Res. Bull. 1:161 (1966);CrossRefGoogle Scholar
  37. 31a.
    R. C. Garvie, Mat. Res. Bull. 2:897 (1967).CrossRefGoogle Scholar
  38. 32.
    P. J. Anderson and A. Scholz, Mat. Res. Bull. 2:895 (1967);CrossRefGoogle Scholar
  39. 32a.
    P. J. Anderson and A. Scholz, Mat. Res. Bull. 3:535 (1968).CrossRefGoogle Scholar
  40. 33.
    R. M. Curtis, Mat. Res. Bull. 3:533 (1968).CrossRefGoogle Scholar
  41. 34.
    A. A. Maradudin and J. Melngailis, Phys. Rev. 133:A1188 (1964);CrossRefGoogle Scholar
  42. 34a.
    A. A. Maradudin, spivn in: Solid State Physics, Vol. 19, F. Seitz and D. Turnbull, eds. (Academic Press, New York, 1966), p. 1.Google Scholar
  43. 35.
    J. W. Burton and R. P. Godwin, Phys. Rev. 158:218 (1967).CrossRefGoogle Scholar
  44. 36.
    N. Kawai, F. Ono, and K. Hirooka, J. Appl. Phys. 39:712 (1968).CrossRefGoogle Scholar
  45. 37.
    B. Fisher and D. S. Tannhauser, J. Chem. Phys. 44:1663 (1966).CrossRefGoogle Scholar
  46. 38.
    J. T. Richardson and W. O. Milligan, Phys. Rev. 102:1289 (1958).CrossRefGoogle Scholar
  47. 39.
    S. Roth and E. M. Hörl, Physics Letters 25A:299 (1967).Google Scholar
  48. 40.
    D. Schroeer, Physics Letters 21:123 (1966).CrossRefGoogle Scholar
  49. 41.
    J. W. Van Wieringen, Physics Letters 26A:370 (1968).Google Scholar
  50. 42.
    T. Nakamura and S. Shimizu, Bull. Inst. Chem. Research, Kyoto 42:299 (1964).Google Scholar
  51. 43.
    R. V. Hanks, Phys. Rev. 124:1319 (1961).CrossRefGoogle Scholar
  52. 44.
    W. Mönch, Z. Physik 170:93 (1962).CrossRefGoogle Scholar
  53. 45.
    K. H. Rieder and E. M. Hörl, Phys. Rev. Letters 20:209 (1968).CrossRefGoogle Scholar
  54. 46.
    R. W. Vaughan and H. G. Drickamer, J. Chem. Phys. 47:1530 (1967).CrossRefGoogle Scholar
  55. 47.
    H. M. Ok and J. G. Mullen, Phys. Rev. 168:550 (1968);CrossRefGoogle Scholar
  56. 47a.
    H. M. Ok and J. G. Mullen, Phys. Rev. Letters 21:823 (1968).CrossRefGoogle Scholar
  57. 48.
    D. Schroeer and W. Triftshäuser, Phys. Rev. Letters 20:1242 (1968).CrossRefGoogle Scholar
  58. 49.
    D. O. Patterson, PhD Thesis (Physics), University of Tennessee, Memphis, Tennessee (1967).Google Scholar
  59. 50.
    L. D. Roberts, J. O. Thomson, and D. O. Patterson, Bull. Am. Phys. Soc. 11:49 (1966);Google Scholar
  60. 50a.
    L. D. Roberts, D. O. Patterson, T. O. Thomson and R. P. Levy, Phys. Rev. 179:656(1969).CrossRefGoogle Scholar
  61. 51.
    D. J. Erickson, S. W. Marshall, R. M. Wilenzick, and D. Schroeer (to be published).Google Scholar
  62. 52.
    W. J. Schuele, S. Shtrikman, and D. Treves, J. Appl. Phys. 36:1010 (1965).CrossRefGoogle Scholar
  63. 53.
    T. Shinjo, J. Phys. Soc. Japan 21:917 (1966).CrossRefGoogle Scholar
  64. 54.
    C. Kittel, Introduction to Solid State Physics, 2nd ed. (John Wiley and Sons, New York, 1956), p. 407.Google Scholar
  65. 55.
    M. Eibschütz and S. Shtrickman, J. Appl. Phys. 39:997 (1968).CrossRefGoogle Scholar
  66. 56.
    I. S. Jacobs and C. P. Bean, spivn in: Magnetism, Vol. 3, G. T. Rado and H. Suhl, eds. (Academic Press, New York, 1963), p. 275.Google Scholar
  67. 57.
    R. C. Wayne and D. H. Anderson, Phys. Rev. 155:496 (1967).CrossRefGoogle Scholar
  68. 58.
    H. Umebayashi, B. C. Frazer, G. Shirane, and W. B. Daniels, Physics Letters 22:407 (1966).CrossRefGoogle Scholar
  69. 59.
    T. G. Worlton, R. B. Bennion, and R. M. Brugger, Physics Letters 24A:653 (1967).Google Scholar
  70. 60.
    C. W. Searle, Physics Letters 25A:256 (1967).Google Scholar
  71. 61.
    W. Kündig, K. J. Ando, R. H. Lindquist, and G. Constabaris, Czech. J. Phys. B17:467(1967).CrossRefGoogle Scholar
  72. 62.
    M. C. Hobson, Jr., and A. D. Campbell, J. Catalysis 8:294 (1967).CrossRefGoogle Scholar
  73. 63.
    D. Schroeer, Physics Letters 27A:507 (1968).Google Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • D. Schroeer
    • 1
  1. 1.Department of PhysicsUniversity of North CarolinaChapel HillUSA

Personalised recommendations