Determination of Zero-Point Phonon Parameters: Calibration of the Second-Order Doppler Shift

  • T. A. Kitchens
  • P. P. Craig
  • R. D. Taylor


A considerable body of research has been devoted to the determination of the Mössbauer recoil-free fraction, or f-factor, from which the mean square atomic displacement of resonant nuclei can be deduced. A quantity intimately related to the mean square displacement, but considerably less accessible to experiment, is the mean square velocity. Normally this quantity is hidden amida wealth of complexity relating to the chemical shifts of source and absorber. We have developed a technique of inter comparing two quantities, both directly determined from the Mössbauer experiments—the recoil-free fraction and the second order Doppler shift—so as to permit deduction of the absolute zero-point mean-square velocity. This quantity has not been hitherto determined in any experiments of which we are aware, and we believe it will prove valuable in permitting tests of theoretical models of impurities in crystal lattices. Results are presented for a number of systems involving both the Fe57 and the Sn119 resonances.


Debye Model Einstein Model Resonant Nucleus Mossbauer Effect Order Doppler Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. L. McMillan, Phys. Rev. 167:331 (1968).CrossRefGoogle Scholar
  2. 2.
    R. D. Taylor and P. P. Craig, Phys. Rev. 175:782 (1968).CrossRefGoogle Scholar
  3. 3.
    V. I. Goldanskii and R. H. Herber (eds.), Chemical Applications of Mössbauer Spectroscopy (Academic Press, New York, 1968).Google Scholar
  4. 4.
    B. J. Josephson, Phys. Rev. Letters 4:341 (1960).CrossRefGoogle Scholar
  5. 5.
    W. A. Steyert and R. D. Taylor, Phys. Rev. 134:A716 (1964).CrossRefGoogle Scholar
  6. 6.
    W. M. Visscher, Phys. Rev. 129:28 (1963).CrossRefGoogle Scholar
  7. 7.
    A. A. Maradudin and P. A. Flinn, Phys. Rev. 126:2059 (1962);CrossRefGoogle Scholar
  8. 7a.
    K. N. Pathak and B. Deo, Physica 35:167 (1967);CrossRefGoogle Scholar
  9. 7b.
    R. M. Housley and F. Hess, Phys. Rev. 146:517 (1966).CrossRefGoogle Scholar
  10. 8.
    R.J. Elliott, SPIin : Phonons in Perfect Lattices and Lattices with Point Imperfections; R. W. H. Stevenson, ed. (Oliver and Boyd, Edinburgh and London, 1966), Chap. 14.Google Scholar
  11. 9.
    J. G. Dash, D. P. Johnson, and W. M. Visscher, Phys. Rev. 168:1087 (1968).CrossRefGoogle Scholar
  12. 10.
    Y. Hazony, J. Chem. Phys. 45:2664 (1966).CrossRefGoogle Scholar
  13. 11.
    M. G. Clark, G. M. Bancroft, and A. J. Stone, J. Chem. Phys. 47:4250 (1967).CrossRefGoogle Scholar
  14. 12.
    J. S. Shier and R. D. Taylor, Solid State Commun. 5:147 (1967).CrossRefGoogle Scholar
  15. 13.
    Yu. Kagan, Zh. Eksperim. i Teor. Fiz. 47:366 (1964);Google Scholar
  16. 13a.
    Yu. Kagan, Soviet Phys.—JETP 20:243 (1965).Google Scholar
  17. 14.
    R. H. Nussbaum, D. G. Howard, W. L. Nees, and C. F. Steen, Phys. Rev. 173:653 (1968).CrossRefGoogle Scholar
  18. 15.
    R. D. Taylor and J. S. Shier (unpublished).Google Scholar
  19. 16.
    J. S. Shier and R. D. Taylor, Phys. Rev. 174:346 (1968).CrossRefGoogle Scholar
  20. 17.
    V. J. Minkiewicz, G. Shirane, and R. Nathans, Phys. Rev. 162:528 (1967).CrossRefGoogle Scholar
  21. 18.
    D. Bijl, in: Progress in Low Temperature Physics, Vol. 2, C. J. Gorter, ed. (North-Holland Publishing Co., Amsterdam, 1957), Chap. XIII.Google Scholar
  22. 19.
    L. J. Vieland and A. W. Wicklund, Phys. Rev. 166:424 (1968).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • T. A. Kitchens
    • 1
  • P. P. Craig
    • 1
  • R. D. Taylor
    • 2
  1. 1.Brookhaven National LaboratoryUptonNew YorkUSA
  2. 2.Los Alamos Scientific LaboratoryLos AlamosUSA

Personalised recommendations