Mössbauer Effect Studies on Eu151 in Mixed Oxide Structures

  • G. W. Dulaney
  • A. F. Clifford


In an effort to obtain more nearly monochromatic Sm151 sources for Eu151 a study of the effect of crystal structure on absorption linewidth was undertaken. The broadest lines were found for ternary oxides of presumed high crystal symmetry, such as EuCrO3, while the narrowest lines were found for the soft, asymmetric anhydrous EuCl3. In the case of Eu2Ti2O7 quadrupole splitting was observed corresponding to 1.30 ± 0.04 for the ratio of the quadrupole moments of the excited and ground states and with a value of 1.00 ± 0.02 mm/sec for Γ. The measured quadrupole coupling constant was -280 ± 7 Mc/sec. Absorption efficiencies were found, as expected, to be greatest for the most rigid crystals and least for the soft ones. Isomer shifts were found to vary in order of intuitive “ionicity,” but in some cases the correlation was much better with mass than with electronegativity.


Isomer Shift Quadrupole Splitting Mossbauer Spectrum Recoilless Fraction Electro Negativity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. H. Barrett and D. A. Shirley, Phys. Rev. 131:123 (1963).CrossRefGoogle Scholar
  2. 2.
    I. Nowik and S. Ofer, Phys. Rev. 132:241 (1963).CrossRefGoogle Scholar
  3. 3.
    H. H. Wickman, I. Nowik, J. H. Wernick, D. A. Shirley, and R. B. Frankel, J. Appl. Phys. 37:1246 (1966).CrossRefGoogle Scholar
  4. 4.
    P. Brix, S. Hüfner, P. Kienle, and D. Quitmann, Physics Letters 13:140 (1964).CrossRefGoogle Scholar
  5. 5.
    I. Nowik and S. Ofer, Rev. Mod. Phys. 36:392 (1964).Google Scholar
  6. 6.
    E. Steichele, S. Hüfner, and P. Kienle, Physics Letters 14:321 (1965).CrossRefGoogle Scholar
  7. 7.
    S. Hüfner, P. Kienle, D. Quitmann, and P. Brix, Z. Phys. 187:67 (1965).CrossRefGoogle Scholar
  8. 8.
    U. Atzmony, E. R. Bauminger, I. Nowik, S. Ofer, and J. H. Wernick, Phys. Rev. 156:263 (1967).CrossRefGoogle Scholar
  9. 9.
    F. A. Deeney, J. A. Delaney, and V. P. Ruddy, Physics Letters 25A:370 (1967).Google Scholar
  10. 10.
    U. Atzmony and S. Ofer, Physics Letters 14:284 (1965).CrossRefGoogle Scholar
  11. 11.
    E. Steichele, S. Hüfner, and P. Kienle, Physics Letters 21:220 (1966).CrossRefGoogle Scholar
  12. 12.
    F. A. Deeney, J. A. Delaney, and V. P. Ruddy, J. Inorg. Nucl. Chem. 30:1175 (1968).CrossRefGoogle Scholar
  13. 13.
    W. H. Zachariasen, J. Chem. Phys. 3:197 (1935).CrossRefGoogle Scholar
  14. 14.
    M. Cordey-Hayes, J. Inorg. Nucl. Chem. 26:915 (1964);CrossRefGoogle Scholar
  15. 14a.
    D A. Shirley, Rev. Mod. Phys. 36: 339 (1964).CrossRefGoogle Scholar
  16. 15.
    A. F. Clifford, J. Am. Chem. Soc. 79:5404 (1957);CrossRefGoogle Scholar
  17. 15a.
    A. F. Clifford, J. Phys. Chem. 63:1227 (1959).CrossRefGoogle Scholar
  18. 16.
    A. J. F. Boyle and G. J. Perlow, Bull. Am. Phys. Soc. 10:482 (1965).Google Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • G. W. Dulaney
    • 1
  • A. F. Clifford
    • 1
  1. 1.Digital Equipment CorporationMaynardUSA

Personalised recommendations