Advertisement

Mössbauer Experiments with a He3/He4 Dilution Refrigerator

  • G. M. Kalvius
  • T. E. Katila
  • O. V. Lounasmaa

Abstract

The large cooling capacity of He3/He4 dilution refrigerators has made the temperature region below some hundredths of a degree available for Mössbauer resonance experiments. A spectrometer which allows the cooling of either the source or the absorber or both is described. Temperatures as low as 0.03°K were reached with this system. The application of very low temperatures is of interest for certain solid-state properties, such as low-lying magnetic transitions, paramagnetic relaxation, and localized magnetic moments, including the Kondo effect. It further allows Mössbauer measurements on oriented nuclei, which leads to an absolute thermometer, and gives information concerning the hyperfine interaction at the parent nuclei and the ß-decay matrix elements. In addition to a general discussion of these applications, data which were obtained with the Mössbauer isotopes Fe57, Eu151, and Au197 will be presented.

Keywords

Hyperfine Field Parent Nucleus Dilution Refrigerator Mossbauer Spectrum Absorber Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. G. Dash, R. D. Taylor, P. P. Craig, D. E. Nagle, D. R. Cochran, and W. E. Keller, Phys. Rev. Letters 5:152 (1960).CrossRefGoogle Scholar
  2. 2.
    J. G. Dash, R. D. Taylor, D. E. Nagle, P. O. Craig, and W. M. Visscher, Phys. Rev. 122:1116(1961).CrossRefGoogle Scholar
  3. 3.
    R. D. Taylor, in: Temperature, Its Measurement and Control in Science and Industry, C. M. Herzfeld and F. G. Brickwedde, eds. (Reinhold Publishing Corp., New York, 1962), Vol. 3, Part 1, p. 139.Google Scholar
  4. 4.
    R. D. Taylor, in : The Mössbauer Effect (Proc. Second International Conference on the Mössbauer Effect), D. M. Compton and A. H. Schoen, eds. (John Wiley and Sons, New York, 1962), p. 203.Google Scholar
  5. 5.
    M. Shinohara, A. Ito, T. Fujita, A. Ishigaki, and K. Ôno, Japan J. Appl.Phys. 6:982 (1967);CrossRefGoogle Scholar
  6. 5a.
    M. Shinohara, A. Ito, T. Fujita, A. Ishigaki, and K. Ôno, Japan J. Appl.Phys. 7:170 (1968).CrossRefGoogle Scholar
  7. 6.
    H. E. Hall, P. J. Ford, and K. Thompson, Cryogenics 6:80 (1966).CrossRefGoogle Scholar
  8. 7.
    B. S. Neganov, N. Borisov, and M. Liburg, Soviet Phys-JETP 23:959 (1966).Google Scholar
  9. 8.
    O. E. Vilches and J. C. Wheatley, Physics Letters 24A:440 (1967);Google Scholar
  10. 8a.
    O. E. Vilches and J. C. Wheatley, Physics Letters 25A:344 (1967).Google Scholar
  11. 9.
    J. C. Wheatley, O. E. Vilches, and W. R. Abel, Physics 4:1 (1968).Google Scholar
  12. 10.
    O. V. Lounasmaa, Helv. Phys. Acta 41:1021 (1968).Google Scholar
  13. 11.
    G. M. Kalvius, in: Mössbauer Effect Methodology, Vol. 1, I. J. Gruverman, ed. (Plenum Press, New York, 1965), p. 163ff.Google Scholar
  14. 12.
    W. A. Steyert and M. D. Daybell, in: Mössbauer Effect Methodology, Vol. 4, I. J. Gruverman, ed. (Plenum Press, New York, 1965), p. 3ff.Google Scholar
  15. 13.
    G. J. Ehnholm, T. E. Katila, O. V. Lounasmaa, and P. Reivari, Cryogenics 8:136(1968).CrossRefGoogle Scholar
  16. 14.
    L. D. Roberts and J. O. Thomson, Phys. Rev. 129:664 (1963).CrossRefGoogle Scholar
  17. 15.
    G. J. Ehnholm, T. E. Katila, O. V. Lounasmaa, and P. Reivari, Physics Letters 25A:758 (1967).Google Scholar
  18. 16.
    J. G. Ehnholm, T. E. Katila, O. V. Lounasmaa, P. Reivari, and G. M. Kalvius, Proc. Eleventh International Conference on Low Temperature Physics, Vol. 1, J. F. Allen, D. M. Finlayson, and D. M. McCall, eds. (St. Andrews, Scotland, 1968), p. 528.Google Scholar
  19. 17.
    S. Margulies and J. R. Ehrman, Nucl. Instr. Meth. 12:131 (1961).CrossRefGoogle Scholar
  20. 18.
    G. A. Bykov and Pham Zuy Hien, Soviet Phys.—JETP 16:646 (1963).Google Scholar
  21. 19.
    P. Reivari, Phys. Rev. Letters 22:167 (1969).CrossRefGoogle Scholar
  22. 20.
    H. A. Weidenmuller, Rev. Mod. Phys. 33:574 (1961).CrossRefGoogle Scholar
  23. 21.
    S. R. DeGroot, H. A. Tolhoek, and W. Huiskamp, in: Alpha- Beta- and Gamma-Ray Spectroscopy, K. Siegbahn, ed. (North-Holland Publishing Co., Amsterdam, 1968), p. 1199ff.Google Scholar
  24. 22.
    R. Geller, F. Wagner, W. Wiedemann, and P. Kienle, private communication (1968).Google Scholar
  25. 23.
    G. M. Kalvius, G. J. Ehnholm, T. E. Katila, O. V. Lounasmaa, and P. Reivari, Bull. Am. Phys. Soc. 13:1469 (1968).Google Scholar
  26. 24.
    R. L. Cohen, Phys. Rev. 171:343 (1968).CrossRefGoogle Scholar
  27. 25.
    D. A. Shirley, in: Hyperfine Structure and Nuclear Radiations, E. Mathias and D. A. Shirley, eds. (North-Holland Publishing Co., Amsterdam, 1968), p. 979ff.Google Scholar
  28. 26.
    V. S. Shirley, in : Hyperfine Structure and Nuclear Radiations, E. Mathias and D. A. Shirley, eds. (North-Holland Publishing Co., Amsterdam, 1968), p. 985.Google Scholar
  29. 27.
    H. H. Wickman, in: Chemical Applications of Mössbauer Spectroscopy, V. I. Goldanskii and R. H. Herber, eds. (Academic Press, New York, 1968), p. 548ff.Google Scholar
  30. 28.
    R. L. Cohen, Bull. Am. Phys. Soc. 13:667 (1968).Google Scholar
  31. 29.
    G. Gerth, P. Kienle, and K. Luchner, Physics Letters 27A:557 (1968).Google Scholar
  32. 30.
    F. Holtzberg, G. M. Kalvius, G. K. Shenoy, and B. D. Dunlap, unpublished (1968).Google Scholar
  33. 31.
    H. H. Wickman, I. Nowik, J. H. Wernick, D. A. Shirley, and R. B. Frankel, J. Appl. Phys. 37:1246 (1966).CrossRefGoogle Scholar
  34. 32.
    H. Maletta, W. Heidrich, and R. L. Mössbauer, Physics Letters 25A:295 (1968).Google Scholar
  35. 33.
    J. M. Baker, F. I. Williams, Proc. Roy. Soc. (London) A267:283 (1963).Google Scholar
  36. 34.
    A. J. Nozik, M. Kaplan, and A. I. Weiss, Bull. Am. Phys. Soc. 13:894 (1968).Google Scholar
  37. 35.
    M. Stachel, S. Hüfner, G. Crecelius, and D. Quitmann, Physics Letters 28A:188(1968).Google Scholar
  38. 36.
    R. A. Carrigan, Jr., P. D. Gupta, R. B. Sutton, M. Suzuki, A. C. Thompson, R. E. Coté, W. V. Prestwich, A. K. Gaigalas, and S. Raboy, Phys. Rev. Letters 20:874(1968).CrossRefGoogle Scholar
  39. 37.
    S. L. Ruby, in: Mössbauer Effect Methodology, Vol. 3, I. J. Gruverman, ed., (Plenum Press, New York, 1967), p. 203ff.Google Scholar
  40. 38.
    P. Kienle, Rev. Mod. Phys. 36:372 (1964).CrossRefGoogle Scholar
  41. 39.
    H. Horie and A. Arima, Phys. Rev. 99:778 (1955).CrossRefGoogle Scholar
  42. 40.
    I. Koniordos and R. Winkler, Phys. Letters 27A:198 (1968).Google Scholar
  43. 41.
    R. A. Uher, private communication; R. A. Uher and R. A. Sorensen, Nucl. Phys. 86:1 (1966).CrossRefGoogle Scholar
  44. 42.
    E. Steichele, Z. Physik 201:331 (1967).CrossRefGoogle Scholar
  45. 43.
    S. Hüfner, P. Kienle, D. Quitmann, and P. Brix, Z. Physik 187:67 (1965).CrossRefGoogle Scholar
  46. 44.
    A. Bohr and B. R. Mottelson, Mat. Fys. Medd. Dan. Vid. Selsk. 27(16) (1953).Google Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • G. M. Kalvius
    • 1
    • 2
  • T. E. Katila
    • 1
  • O. V. Lounasmaa
    • 1
  1. 1.Department of Technical PhysicsTechnical University of HelsinkiOtaniemiFinland
  2. 2.Argonne National LaboratoryArgonneUSA

Personalised recommendations